monster patrolling. As before, ray casting is used to verify LOS but ray casting now only happens if a blocked grid is encountered when searching the surroundings in a growing spiral. If a blocked grid is found, all beams that might possibly go through this grid (heuristically tested, probably tests more than needed) are checked right away and all grids behind the blocked one are marked as well - this blocking can be reversed, if we later find another beam that unblocks it. A beam that was already tried isn't tried a second time.
The values are stored in a (2*LOS_RANGE)^2 array and then directly compared when deciding where to send a patrolling monster next. In the worst case we still need to fire beams at each of the edge grids, but that probably can't be avoided entirely, though performance could obviously still be improved.
The increase in speed is very much noticeable, i.e. for me Crawl runs smoothly again. :)
git-svn-id: https://crawl-ref.svn.sourceforge.net/svnroot/crawl-ref/trunk@5330 c06c8d41-db1a-0410-9941-cceddc491573
UCEAWJ4I6AEFR64SSUFQSX6Q62JGLMJQ5BOO5MQSV3XIE7KAS6CQC
H7AOW4T4Q7AKOXREMK6ZXN3GK6A4I24ICE6VTROMJ5Y3LX47TSDAC
NK2TBKWOQBD2ZRGAO4Z3HMZPIN7UX3HNUS2YHEIJUUINUTRMPODQC
K2CS6TCX2NDVL2ASEHGP4J4K4IJ6FP3ANNKTSIWVG43HPYSBX6ZQC
RPOZZWKG5GLPHVZZ7ZKMKS64ZMV2LDCQSARBJFJ6FZOTOKCQO7FAC
W6IY6LF3MREPXC23AAKA2BJNUCJYCSOWY55DIWJWFLUEE2Y3LGNQC
EOMCPVNQLX3IMLC46EAO67DPBH5KEG2FQTPBLGU62HIRWA3UQ7XQC
77H4BWWPPGLM3PLZH4QTAJRXIZTSDVNCOKZE223I437FN2UJ34RQC
LTX72QGIPNUGWQN5ULPOMFCOPZTK7472DQY4AYX5WM3WHSUVXI5QC
P5TRGRH7XMQSPCZKM5IEEO34TY6WMLGHHX7BU6Y453JFRXLUR2VQC
7K5P2GRF6QUXTMERG2R3BB6DZFQYJQ6V2KNPMBPFDLOP36NQILPAC
MCBXXIV6GICTZB56APSXMJEI63FVQWVZR3H2DRNMMFDH2XCGK4JAC
// This class can be used to fill the entire surroundings (los_range)
// of a monster or other position with seen/unseen values, so as to be able
// to compare several positions within this range.
class monster_los
{
public:
monster_los();
virtual ~monster_los();
// public methods
void set_monster(monsters *mon);
void set_los_centre(int x, int y);
void fill_los_field(void);
bool in_sight(int x, int y);
protected:
// protected methods
coord_def pos_to_index(coord_def &p);
coord_def index_to_pos(coord_def &i);
void set_los_value(int x, int y, bool blocked, bool override = false);
int get_los_value(int x, int y);
bool is_blocked(int x, int y);
bool is_unknown(int x, int y);
void check_los_beam(int dx, int dy);
// The (fixed) size of the array.
static const int LSIZE = 2 * LOS_RADIUS + 1;
static const int L_VISIBLE = 1;
static const int L_UNKNOWN = 0;
static const int L_BLOCKED = -1;
// The centre of our los field.
int gridx, gridy;
// Habitat checks etc. should be done for this monster.
// Usually the monster whose LOS we're trying to calculate
// (if mon->x == gridx, mon->y == gridy).
// Else, any monster trying to move around within this los field.
monsters *mons;
// The array to store the LOS values.
int los_field[LSIZE][LSIZE];
};
}
/////////////////////////////////////////////////////////////////////////////
// monster_los
monster_los::monster_los()
: gridx(0), gridy(0), mons(), los_field()
{
}
monster_los::~monster_los()
{
}
coord_def monster_los::pos_to_index(coord_def &p)
{
int ix = LOS_RADIUS + p.x - gridx;
int iy = LOS_RADIUS + p.y - gridy;
ASSERT(ix >= 0 && ix < LSIZE);
ASSERT(iy >= 0 && iy < LSIZE);
return (coord_def(ix, iy));
}
coord_def monster_los::index_to_pos(coord_def &i)
{
int px = i.x + gridx - LOS_RADIUS;
int py = i.y + gridy - LOS_RADIUS;
ASSERT(in_bounds(px, py));
return (coord_def(px, py));
}
void monster_los::set_los_value(int x, int y, bool blocked, bool override)
{
if (!override && !is_unknown(x,y))
return;
coord_def c(x,y);
coord_def lpos = pos_to_index(c);
int value = (blocked ? L_BLOCKED : L_VISIBLE);
if (value != los_field[lpos.x][lpos.y])
los_field[lpos.x][lpos.y] = value;
}
int monster_los::get_los_value(int x, int y)
{
// Too far away -> definitely out of sight!
if (distance(x, y, gridx, gridy) > LOS_RADIUS * LOS_RADIUS)
return (L_BLOCKED);
coord_def c(x,y);
coord_def lpos = pos_to_index(c);
return (los_field[lpos.x][lpos.y]);
}
bool monster_los::in_sight(int x, int y)
{
// Is the path to (x,y) clear?
return (get_los_value(x,y) == L_VISIBLE);
}
bool monster_los::is_blocked(int x, int y)
{
// Is the path to (x,y) blocked?
return (get_los_value(x, y) == L_BLOCKED);
}
bool monster_los::is_unknown(int x, int y)
{
return (get_los_value(x, y) == L_UNKNOWN);
}
static bool _blocks_movement_sight(monsters *mon, dungeon_feature_type feat)
{
if (feat < DNGN_MINMOVE)
return (true);
if (!mon) // No monster defined?
return (false);
if (!mon->can_pass_through_feat(feat))
return (true);
return (false);
}
void monster_los::set_monster(monsters *mon)
{
mons = mon;
if (gridx != mons->x)
gridx = mons->x;
if (gridy != mons->y)
gridy = mons->y;
void monster_los::set_los_centre(int x, int y)
{
if (!in_bounds(x, y))
return;
gridx = x;
gridy = y;
}
void monster_los::fill_los_field()
{
int pos_x, pos_y;
for (int k = 1; k <= LOS_RADIUS; k++)
for (int i = -1; i <= 1; i++)
for (int j = -1; j <= 1; j++)
{
if (i == 0 && j == 0) // Ignore centre grid.
continue;
pos_x = gridx + k*i;
pos_y = gridy + k*j;
if (!in_bounds(pos_x, pos_y))
continue;
if (!_blocks_movement_sight(mons, grd[pos_x][pos_y]))
set_los_value(pos_x, pos_y, false);
else
{
set_los_value(pos_x, pos_y, true);
// Check all beam potentially going through a blocked grid.
check_los_beam(pos_x, pos_y);
}
}
}
// (cx, cy) is the centre point
// (dx, dy) is the target we're aiming *through*
// target1 and target2 are targets we'll be aiming *at* to fire through (dx,dy)
static bool _set_beam_target(int cx, int cy, int dx, int dy,
int &target1_x, int &target1_y,
int &target2_x, int &target2_y)
{
const int xdist = dx - cx;
const int ydist = dy - cy;
if (xdist == 0 && ydist == 0)
return (false); // Nothing to be done.
if (xdist <= -LOS_RADIUS || xdist >= LOS_RADIUS
|| ydist <= -LOS_RADIUS || ydist >= LOS_RADIUS)
{
// Grids on the edge of a monster's LOS don't block sight any further.
return (false);
}
/*
* The following code divides the field into eights of different directions.
*
* \ NW | NE /
* \ | /
* WN \ | / EN
* ----------------
* WS / | \ ES
* / | \
* / SW | SE \
*
* target1_x and target1_y mark the base line target, so the base beam ends
* on the diagonal line closest to the target (or one of the straight line
* if cx == dx or dx == dy).
*
* target2_x and target2_y then mark the second target our beam finder should
* cycle through. It'll always be target2_x = dx or target2_y = dy, the other
* being 0 or 2*LOS_RADIUS depending on the quadrant.
*
* The beam finder can then cycle from the nearest corner (target1) to the
* second edge target closest to (dx,dy).
*/
if (xdist == 0)
{
target1_x = cx;
target1_y = (ydist > 0 ? cy + LOS_RADIUS
: cy - LOS_RADIUS);
target2_x = target1_x;
target2_y = target1_y;
}
else if (ydist == 0)
{
target1_x = (xdist > 0 ? cx + LOS_RADIUS
: cx - LOS_RADIUS);
target1_y = cy;
target2_x = target1_x;
target2_y = target1_y;
}
else if (xdist < 0 && ydist < 0 || xdist > 0 && ydist > 0)
{
if (xdist < 0)
{
target1_x = cx - LOS_RADIUS;
target1_y = cy - LOS_RADIUS;
}
else
{
target1_x = cx + LOS_RADIUS;
target1_y = cy + LOS_RADIUS;
}
if (xdist == ydist)
{
target2_x = target1_x;
target2_y = target1_y;
}
else
{
if (xdist < 0) // both are negative (upper left corner)
{
if (dx > dy)
{
target2_x = dx;
target2_y = cy - LOS_RADIUS;
}
else
{
target2_x = cx - LOS_RADIUS;
target2_y = dy;
}
}
else // both are positive (lower right corner)
{
if (dx > dy)
{
target2_x = cx + LOS_RADIUS;
target2_y = dy;
}
else
{
target2_x = dx;
target2_y = cy + LOS_RADIUS;
}
}
}
}
else if (xdist < 0 && ydist > 0 || xdist > 0 && ydist < 0)
{
if (xdist < 0) // lower left corner
{
target1_x = cx - LOS_RADIUS;
target1_y = cy + LOS_RADIUS;
}
else // upper right corner
{
target1_x = cx + LOS_RADIUS;
target1_y = cy - LOS_RADIUS;
}
if (xdist == -ydist)
{
target2_x = target1_x;
target2_y = target1_y;
}
else
{
if (xdist < 0) // ydist > 0
{
if (-xdist > ydist)
{
target2_x = cx - LOS_RADIUS;
target2_y = dy;
}
else
{
target2_x = dx;
target2_y = cy + LOS_RADIUS;
}
}
else // xdist > 0, ydist < 0
{
if (-xdist > ydist)
{
target2_x = dx;
target2_y = cy - LOS_RADIUS;
}
else
{
target2_x = cx + LOS_RADIUS;
target2_y = dy;
}
}
}
}
else
{
// Everything should have been handled above.
ASSERT(false);
}
return (true);
}
void monster_los::check_los_beam(int dx, int dy)
{
ray_def ray;
int target1_x = 0, target1_y = 0, target2_x = 0, target2_y = 0;
if (!_set_beam_target(gridx, gridy, dx, dy, target1_x, target1_y,
target2_x, target2_y))
{
// Nothing to be done.
return;
}
const int max_dist = LOS_RADIUS;
int dist;
bool blocked = false;
for (int tx = target1_x; tx <= target2_x; tx++)
for (int ty = target1_y; ty <= target2_y; ty++)
{
// Already calculated a beam to (tx, ty), don't do so again.
if (!is_unknown(tx, ty))
continue;
dist = 0;
ray.fullray_idx = -1; // to quiet valgrind
find_ray( gridx, gridy, tx, ty, true, ray, 0, true, true );
ASSERT(in_bounds(ray.x(), ray.y()));
if (ray.x() == gridx && ray.y() == gridy)
ray.advance(true);
while (dist++ <= max_dist)
{
ASSERT(in_bounds(ray.x(), ray.y()));
if (blocked)
{
// Earlier grid blocks this beam, set to blocked if
// unknown, but don't overwrite visible grids.
set_los_value(ray.x(), ray.y(), true);
}
else if (_blocks_movement_sight(mons, grd[ray.x()][ray.y()]))
{
set_los_value(ray.x(), ray.y(), true);
// The rest of the beam will now be blocked.
blocked = true;
}
else
{
// Allow overriding in case another beam has marked this
// field as blocked, because we've found a solution where
// that isn't the case.
set_los_value(ray.x(), ray.y(), false, true);
}
if (ray.x() == tx && ray.y() == ty)
break;
ray.advance(true);
}
}
}
dungeon_feature_type habitat = habitat2grid(
mons_habitat_by_type(mon->type) );
monster_los lm;
lm.set_monster(mon);
lm.fill_los_field();
bool patrol_seen = lm.in_sight(patrol_x, patrol_y);
monster_los patrol;
// Set monster to make monster_los respect habitat restrictions.
patrol.set_monster(mon);
patrol.set_los_centre(patrol_x, patrol_y);
patrol.fill_los_field();
formatted_string::parse_string(
"<cyan>So, do you wish to inscribe this item? "
"('a' to autoinscribe) ").display();
}
else
{
formatted_string::parse_string(
"<cyan>So, do you wish to inscribe this item? ").display();
if (allow_autoinscribe)
{
formatted_string::parse_string(
"<cyan>So, do you wish to inscribe this item? "
"('a' to autoinscribe) ").display();
}
else
{
formatted_string::parse_string(
"<cyan>So, do you wish to inscribe this item? ").display();
}