BuildOutputs: index path with HASH

Looking at AWS' Performance Insights for a Hydra instance, I found the hydra-queue-runner's query:

select id, buildStatus, releaseName, closureSize, size
from Builds b
join BuildOutputs o on b.id = o.build
where
  finished = ?
  and (buildStatus = ? or buildStatus = ?)
  and path = $1

was the slowest query by at least 10x. Running an explain on this showed why:

hydra=> explain select id, buildStatus, releaseName, closureSize, size from Builds b join BuildOutputs o on b.id = o.build where finished = 1 and (buildStatus = 0 or buildStatus = 6) and path = '/nix/store/s93khs2dncf2cy273mbyr4fb4ns3db20-MIDIVisualizer-5.1';

                                                 QUERY PLAN
------------------------------------------------------------------------
 Gather  (cost=1000.43..33718.98 rows=2 width=56)
   Workers Planned: 2
   ->  Nested Loop  (cost=0.43..32718.78 rows=1 width=56)
         ->  Parallel Seq Scan on buildoutputs o  (cost=0.00..32710.32
                                                   rows=1
                                                    width=4)
               Filter: (path = '/nix/store/s93kh...snip...'::text)
         ->  Index Scan using indexbuildsonjobsetidfinishedid on builds b
                                        (cost=0.43..8.45 rows=1 width=56)
               Index Cond: ((id = o.build) AND (finished = 1))
               Filter: ((buildstatus = 0) OR (buildstatus = 6))
(8 rows)

A paralell sequential scan is definitely better than a sequential scan, but the cost ranging from 0 to 32710 is not great. Looking at the table, I saw the path column is completely unindex:

hydra=> \d buildoutputs
            Table "public.buildoutputs"
Column |  Type   | Collation | Nullable | Default
--------+---------+-----------+----------+---------
build  | integer |           | not null |
name   | text    |           | not null |
path   | text    |           | not null |
Indexes:
    "buildoutputs_pkey" PRIMARY KEY, btree (build, name)
Foreign-key constraints:
    "buildoutputs_build_fkey" FOREIGN KEY (build) REFERENCES builds(id)
        ON DELETE CASCADE

Since we always do exact matches on the path and don't care about ordering, and since the path column is very high cardinality a hash index is a good candidate. Note that I did test a btree index and it performed similarly well, but slightly worse.

After creating the index (this took about 10 seconds) on a test database:

create index IndexBuildOutputsPath on BuildOutputs using hash(path);

We get a significantly reduced cost:

hydra=> explain select id, buildStatus, releaseName, closureSize, size
hydra->     from Builds b join BuildOutputs o on b.id = o.build where
hydra->     finished = 1 and (buildStatus = 0 or buildStatus = 6) and
hydra->     path = '/nix/store/s93khs2dncf2cy273mbyr4fb4ns3db20-MIDIVisualizer-5.1';
                                            QUERY PLAN
-------------------------------------------------------------------------------------------------------
Nested Loop  (cost=0.43..41.41 rows=2 width=56)
->  Index Scan using buildoutputs_path_hash on buildoutputs o  (cost=0.00..16.05 rows=3 width=4)
        Index Cond: (path = '/nix/store/s93khs2dncf2cy273mbyr4fb4ns3db20-MIDIVisualizer-5.1'::text)
->  Index Scan using indexbuildsonjobsetidfinishedid on builds b  (cost=0.43..8.45 rows=1 width=56)
        Index Cond: ((id = o.build) AND (finished = 1))
        Filter: ((buildstatus = 0) OR (buildstatus = 6))
(6 rows)

For direct comparison, the overall query plan was changed:

From: Gather      (cost=1000.43..33718.98 rows=2 width=56)
To:   Nested Loop (cost=   0.43.....41.41 rows=2 width=56)

and the query plan for buildoutputs changed from a maximum cost of 32,710 down to 16.

In practical terms, the query's planning and execution time was reduced:

Before (ms) | Try 1 | Try 2 | Try 3 ————+———+———+–––– Planning | 0.898 | 0.416 | 0.383 Execution | 138.644 | 172.331 | 375.585

After (ms) | Try 1 | Try 2 | Try 3 ————+———+———+–––– Planning | 0.298 | 0.290 | 0.296 Execution | 219.625 | 0.035 | 0.034

Created by  Graham Christensen  on January 18, 2021
6LUIB26PF5NO4HY7OYE7RUJLUUMJGAFAPNRXJI4BNZZJJN7UPEAQC
Change contents