∅:D[
2.349] → [
3.725:1312]
B:BD[
3.725] → [
3.725:1312]
layer8 = keras.layers.Dense(20, activation=tf.math.asinh)(keras.layers.concatenate([layer3,layer5,layer7]))
layer9 = keras.layers.Dense(20, activation=tf.math.asinh)(keras.layers.concatenate([layer4,layer6,layer7]))
layer10 = keras.layers.Dense(20, activation=tf.math.asinh)(keras.layers.concatenate([layer7,layer8,layer9]))
layer11 = keras.layers.Dense(20, activation=tf.math.asinh)(keras.layers.concatenate([layer1,layer3,layer8,layer10]))
layer12 = keras.layers.Dense(20, activation=tf.math.asinh)(keras.layers.concatenate([layer1,layer4,layer9,layer10,layer11]))
layer8 = keras.layers.Dense(20, activation=keras.activations.softplus)(keras.layers.concatenate([layer3,layer5,layer7]))
layer9 = keras.layers.Dense(20, activation=keras.activations.softplus)(keras.layers.concatenate([layer4,layer6,layer7]))
layer10 = keras.layers.Dense(20, activation=keras.activations.softplus)(keras.layers.concatenate([layer7,layer8,layer9]))
layer11 = keras.layers.Dense(20, activation=keras.activations.softplus)(keras.layers.concatenate([layer1,layer3,layer8,layer10]))
layer12 = keras.layers.Dense(20, activation=keras.activations.softplus)(keras.layers.concatenate([layer1,layer4,layer9,layer10,layer11]))