/*
 * SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
 *
 * SPDX-License-Identifier: Apache-2.0
 */
/*
 * SPDX-FileCopyrightText: 2021-2024 Espressif Systems (Shanghai) CO LTD
 *
 * SPDX-License-Identifier: Apache-2.0
 */
/*

 * Automatically generated file. DO NOT EDIT.

 * Espressif IoT Development Framework (ESP-IDF) 5.3.1 Configuration Header

 */
       
/* List of deprecated options */
/* CPU instruction prefetch padding size for flash mmap scenario */
/*
 * PMP region granularity size
 * Software may determine the PMP granularity by writing zero to pmp0cfg, then writing all ones
 * to pmpaddr0, then reading back pmpaddr0. If G is the index of the least-significant bit set,
 * the PMP granularity is 2^G+2 bytes.
 */
/* CPU instruction prefetch padding size for memory protection scenario */
/* Memory alignment size for PMS */
    /* rtc timer data (s_rtc_timer_retain_mem, see esp_clk.c files). For rtc_timer_data_in_rtc_mem section. */
/* Default entry point */
ENTRY(call_start_cpu0);
SECTIONS
{
  /**
   * RTC fast memory holds RTC wake stub code,
   * including from any source file named rtc_wake_stub*.c
   */
  .rtc.text :
  {
    
 . = ALIGN(4); 
 _rtc_fast_start = ABSOLUTE(.);
    mapping[rtc_text]
    *rtc_wake_stub*.*(.text .text.*)
    *(.rtc_text_end_test)
    /* Padding for possible CPU prefetch + alignment for PMS split lines */
    . += 16;
    . = ALIGN(512);
    _rtc_text_end = ABSOLUTE(.);
  } > rtc_iram_seg
  /**
   * This section located in RTC FAST Memory area.
   * It holds data marked with RTC_FAST_ATTR attribute.
   * See the file "esp_attr.h" for more information.
   */
  .rtc.force_fast :
  {
    
 . = ALIGN(4); 
 _rtc_force_fast_start = ABSOLUTE(.);
    mapping[rtc_force_fast]
    *(.rtc.force_fast .rtc.force_fast.*)
    
 . = ALIGN(4); 
 _rtc_force_fast_end = ABSOLUTE(.);
  } > rtc_data_seg
  /**
   * RTC data section holds RTC wake stub
   * data/rodata, including from any source file
   * named rtc_wake_stub*.c and the data marked with
   * RTC_DATA_ATTR, RTC_RODATA_ATTR attributes.
   */
  .rtc.data :
  {
    _rtc_data_start = ABSOLUTE(.);
    mapping[rtc_data]
    *rtc_wake_stub*.*(.data .rodata .data.* .rodata.* .srodata.*)
    _rtc_data_end = ABSOLUTE(.);
  } > rtc_data_location
  /* RTC bss, from any source file named rtc_wake_stub*.c */
  .rtc.bss (NOLOAD) :
  {
    _rtc_bss_start = ABSOLUTE(.);
    *rtc_wake_stub*.*(.bss .bss.* .sbss .sbss.*)
    *rtc_wake_stub*.*(COMMON)
    mapping[rtc_bss]
    _rtc_bss_end = ABSOLUTE(.);
  } > rtc_data_location
  /**
   * This section holds data that should not be initialized at power up
   * and will be retained during deep sleep.
   * User data marked with RTC_NOINIT_ATTR will be placed
   * into this section. See the file "esp_attr.h" for more information.
   */
  .rtc_noinit (NOLOAD):
  {
    
 . = ALIGN(4); 
 _rtc_noinit_start = ABSOLUTE(.);
    *(.rtc_noinit .rtc_noinit.*)
    
 . = ALIGN(4); 
 _rtc_noinit_end = ABSOLUTE(.);
  } > rtc_data_location
  /**
   * This section located in RTC SLOW Memory area.
   * It holds data marked with RTC_SLOW_ATTR attribute.
   * See the file "esp_attr.h" for more information.
   */
  .rtc.force_slow :
  {
    
 . = ALIGN(4); 
 _rtc_force_slow_start = ABSOLUTE(.);
    *(.rtc.force_slow .rtc.force_slow.*)
    
 . = ALIGN(4); 
 _rtc_force_slow_end = ABSOLUTE(.);
  } > rtc_slow_seg
  /**
   * This section holds RTC data that should have fixed addresses.
   * The data are not initialized at power-up and are retained during deep
   * sleep.
   */
  .rtc_reserved (NOLOAD):
  {
    
 . = ALIGN(4); 
 _rtc_reserved_start = ABSOLUTE(.);
    /**
     * New data can only be added here to ensure existing data are not moved.
     * Because data have adhered to the end of the segment and code is relied
     * on it.
     * >> put new data here <<
     */
    *(.rtc_timer_data_in_rtc_mem .rtc_timer_data_in_rtc_mem.*)
    KEEP(*(.bootloader_data_rtc_mem .bootloader_data_rtc_mem.*))
    _rtc_reserved_end = ABSOLUTE(.);
  } > rtc_reserved_seg
  _rtc_reserved_length = _rtc_reserved_end - _rtc_reserved_start;
  ASSERT((_rtc_reserved_length <= LENGTH(rtc_reserved_seg)),
          "RTC reserved segment data does not fit.")
  /* Get size of rtc slow data based on rtc_data_location alias */
  _rtc_slow_length = (ORIGIN(rtc_slow_seg) == ORIGIN(rtc_data_location))
                        ? (_rtc_force_slow_end - _rtc_data_start)
                        : (_rtc_force_slow_end - _rtc_force_slow_start);
  _rtc_fast_length = (ORIGIN(rtc_slow_seg) == ORIGIN(rtc_data_location))
                        ? (_rtc_force_fast_end - _rtc_fast_start)
                        : (_rtc_noinit_end - _rtc_fast_start);
  ASSERT((_rtc_slow_length <= LENGTH(rtc_slow_seg)),
          "RTC_SLOW segment data does not fit.")
  ASSERT((_rtc_fast_length <= LENGTH(rtc_data_seg)),
          "RTC_FAST segment data does not fit.")
  .iram0.text :
  {
    _iram_start = ABSOLUTE(.);
    /* Vectors go to start of IRAM */
    ASSERT(ABSOLUTE(.) % 0x100 == 0, "vector address must be 256 byte aligned");
    KEEP(*(.exception_vectors_table.text));
    KEEP(*(.exception_vectors.text));
    
 . = ALIGN(4); 
 _invalid_pc_placeholder = ABSOLUTE(.);
    /* Code marked as running out of IRAM */
    _iram_text_start = ABSOLUTE(.);
    mapping[iram0_text]
  } > iram0_0_seg
  /**
   * This section is required to skip .iram0.text area because iram0_0_seg and
   * dram0_0_seg reflect the same address space on different buses.
   */
  .dram0.dummy (NOLOAD):
  {
    . = ORIGIN(dram0_0_seg) + _iram_end - _iram_start;
  } > dram0_0_seg
  .dram0.data :
  {
    _data_start = ABSOLUTE(.);
    *(.gnu.linkonce.d.*)
    *(.data1)
    __global_pointer$ = . + 0x800;
    *(.sdata)
    *(.sdata.*)
    *(.gnu.linkonce.s.*)
    *(.gnu.linkonce.s2.*)
    *(.jcr)
    mapping[dram0_data]
    _data_end = ABSOLUTE(.);
  } > dram0_0_seg
  /**
   * This section holds data that should not be initialized at power up.
   * The section located in Internal SRAM memory region. The macro _NOINIT
   * can be used as attribute to place data into this section.
   * See the "esp_attr.h" file for more information.
   */
  .noinit (NOLOAD):
  {
    
 . = ALIGN(4); 
 _noinit_start = ABSOLUTE(.);
    *(.noinit .noinit.*)
    
 . = ALIGN(4); 
 _noinit_end = ABSOLUTE(.);
  } > dram0_0_seg
  /* Shared RAM */
  .dram0.bss (NOLOAD) :
  {
    
 . = ALIGN(8); 
 _bss_start = ABSOLUTE(.);
    /**
     * ldgen places all bss-related data to mapping[dram0_bss]
     * (See components/esp_system/app.lf).
     */
    mapping[dram0_bss]
    
 . = ALIGN(8); 
 _bss_end = ABSOLUTE(.);
  } > dram0_0_seg
  ASSERT(((_bss_end - ORIGIN(dram0_0_seg)) <= LENGTH(dram0_0_seg)),
         "DRAM segment data does not fit.")
  .flash.text :
  {
    _stext = .;
    /**
     * Mark the start of flash.text.
     * This can be used by the MMU driver to maintain the virtual address.
     */
    _instruction_reserved_start = ABSOLUTE(.);
    _text_start = ABSOLUTE(.);
    mapping[flash_text]
    *(.stub)
    *(.gnu.linkonce.t.*)
    *(.gnu.warning)
    *(.irom0.text) /* catch stray ICACHE_RODATA_ATTR */
    /**
     * CPU will try to prefetch up to 16 bytes of of instructions.
     * This means that any configuration (e.g. MMU, PMS) must allow
     * safe access to up to 16 bytes after the last real instruction, add
     * dummy bytes to ensure this
     */
    . += 16;
    _text_end = ABSOLUTE(.);
    /**
     * Mark the flash.text end.
     * This can be used for MMU driver to maintain virtual address.
     */
    _instruction_reserved_end = ABSOLUTE(.);
    _etext = .;
    /**
     * Similar to _iram_start, this symbol goes here so it is
     * resolved by addr2line in preference to the first symbol in
     * the flash.text segment.
     */
    _flash_cache_start = ABSOLUTE(0);
  } > default_code_seg
  /**
   * Dummy section represents the .flash.text section but in default_rodata_seg.
   * Thus, it must have its alignment and (at least) its size.
   */
  .flash_rodata_dummy (NOLOAD):
  {
    _flash_rodata_dummy_start = .;
    . = ALIGN(ALIGNOF(.flash.text)) + SIZEOF(.flash.text);
    /* Add alignment of MMU page size + 0x20 bytes for the mapping header. */
    . = ALIGN(0x10000) + 0x20;
  } > default_rodata_seg
  .flash.appdesc : ALIGN(0x10)
  {
    /**
     * Mark flash.rodata start.
     * This can be used for mmu driver to maintain virtual address
     */
    _rodata_reserved_start = ABSOLUTE(.);
    _rodata_start = ABSOLUTE(.);
    /* !DO NOT PUT ANYTHING BEFORE THIS! */
    /* Should be the first.  App version info. */
    *(.rodata_desc .rodata_desc.*)
    /* Should be the second. Custom app version info. */
    *(.rodata_custom_desc .rodata_custom_desc.*)
    /**
     * Create an empty gap within this section. Thanks to this, the end of this
     * section will match .flash.rodata's begin address. Thus, both sections
     * will be merged when creating the final bin image.
     */
    . = ALIGN(ALIGNOF(.flash.rodata));
  } > default_rodata_seg
  ASSERT((ADDR(.flash.rodata) == ADDR(.flash.appdesc) + SIZEOF(.flash.appdesc)), "The gap between .flash.appdesc and .flash.rodata must not exist to produce the final bin image.")
  .flash.rodata : ALIGN(0x10)
  {
    _flash_rodata_start = ABSOLUTE(.);
    mapping[flash_rodata]
    *(.irom1.text) /* catch stray ICACHE_RODATA_ATTR */
    *(.gnu.linkonce.r.*)
    *(.rodata1)
    *(.gcc_except_table .gcc_except_table.*)
    *(.gnu.linkonce.e.*)
    /**
     * C++ constructor tables.
     *
     * Excluding crtbegin.o/crtend.o since IDF doesn't use the toolchain crt.
     *
     * RISC-V gcc is configured with --enable-initfini-array so it emits
     * .init_array section instead. But the init_priority sections will be
     * sorted for iteration in ascending order during startup.
     * The rest of the init_array sections is sorted for iteration in descending
     * order during startup, however. Hence a different section is generated for
     * the init_priority functions which is iterated in ascending order during
     * startup. The corresponding code can be found in startup.c.
     */
    
 . = ALIGN(4); 
 __init_priority_array_start = ABSOLUTE(.);
    KEEP (*(EXCLUDE_FILE (*crtend.* *crtbegin.*) .init_array.*))
    __init_priority_array_end = ABSOLUTE(.);
    
 . = ALIGN(4); 
 __init_array_start = ABSOLUTE(.);
    KEEP (*(EXCLUDE_FILE (*crtend.* *crtbegin.*) .init_array))
    __init_array_end = ABSOLUTE(.);
    /* Addresses of memory regions reserved via SOC_RESERVE_MEMORY_REGION() */
    
 . = ALIGN(4); 
 soc_reserved_memory_region_start = ABSOLUTE(.);
    KEEP (*(.reserved_memory_address))
    soc_reserved_memory_region_end = ABSOLUTE(.);
    /* System init functions registered via ESP_SYSTEM_INIT_FN */
    
 . = ALIGN(4); 
 _esp_system_init_fn_array_start = ABSOLUTE(.);
    KEEP (*(SORT_BY_INIT_PRIORITY(.esp_system_init_fn.*)))
    _esp_system_init_fn_array_end = ABSOLUTE(.);
    _rodata_end = ABSOLUTE(.);
    . = ALIGN(ALIGNOF(.eh_frame_hdr));
  } > default_rodata_seg
  ASSERT((ADDR(.eh_frame_hdr) == ADDR(.flash.rodata) + SIZEOF(.flash.rodata)), "The gap between .flash.rodata and .eh_frame_hdr must not exist to produce the final bin image.")
  .eh_frame_hdr :
  {
    . = ALIGN(ALIGNOF(.eh_frame));
  } > default_rodata_seg
  ASSERT((ADDR(.eh_frame) == ADDR(.eh_frame_hdr) + SIZEOF(.eh_frame_hdr)), "The gap between .eh_frame_hdr and .eh_frame must not exist to produce the final bin image.")
  .eh_frame :
  {
    . = ALIGN(ALIGNOF(.flash.tdata));
  } > default_rodata_seg
  ASSERT((ADDR(.flash.tdata) == ADDR(.eh_frame) + SIZEOF(.eh_frame)), "The gap between .eh_frame and .flash.tdata must not exist to produce the final bin image.")
  .flash.tdata :
  {
    _thread_local_data_start = ABSOLUTE(.);
    *(.tdata .tdata.* .gnu.linkonce.td.*)
    . = ALIGN(ALIGNOF(.flash.tbss));
    _thread_local_data_end = ABSOLUTE(.);
  } > default_rodata_seg
  ASSERT((ADDR(.flash.tbss) == ADDR(.flash.tdata) + SIZEOF(.flash.tdata)), "The gap between .flash.tdata and .flash.tbss must not exist to produce the final bin image.")
  .flash.tbss (NOLOAD) :
  {
    _thread_local_bss_start = ABSOLUTE(.);
    *(.tbss .tbss.* .gnu.linkonce.tb.*)
    *(.tcommon .tcommon.*)
    _thread_local_bss_end = ABSOLUTE(.);
  } > default_rodata_seg
  /**
   * This section contains all the rodata that is not used
   * at runtime, helping to avoid an increase in binary size.
   */
  .flash.rodata_noload (NOLOAD) :
  {
    /**
     * This symbol marks the end of flash.rodata. It can be utilized by the MMU
     * driver to maintain the virtual address.
     * NOLOAD rodata may not be included in this section.
     */
    _rodata_reserved_end = ADDR(.flash.tbss);
    mapping[rodata_noload]
  } > default_rodata_seg
  /* Marks the end of IRAM code segment */
  .iram0.text_end (NOLOAD) :
  {
    /* Padding for possible CPU prefetch + alignment for PMS split lines */
    . += 16;
    . = ALIGN(512);
    /* iram_end_test section exists for use by memprot unit tests only */
    *(.iram_end_test)
    _iram_text_end = ABSOLUTE(.);
  } > iram0_0_seg
  .iram0.data :
  {
    
 . = ALIGN(16); 
 _iram_data_start = ABSOLUTE(.);
    mapping[iram0_data]
    _iram_data_end = ABSOLUTE(.);
  } > iram0_0_seg
  .iram0.bss (NOLOAD) :
  {
    
 . = ALIGN(16); 
 _iram_bss_start = ABSOLUTE(.);
    mapping[iram0_bss]
    _iram_bss_end = ABSOLUTE(.);
    
 . = ALIGN(16); 
 _iram_end = ABSOLUTE(.);
  } > iram0_0_seg
  /* Marks the end of data, bss and possibly rodata */
  .dram0.heap_start (NOLOAD) :
  {
    
 . = ALIGN(16); 
 _heap_start = ABSOLUTE(.);
  } > dram0_0_seg
  /* DWARF 1 */
  .debug 0 : { *(.debug) }
  .line 0 : { *(.line) }
  /* GNU DWARF 1 extensions */
  .debug_srcinfo 0 : { *(.debug_srcinfo) }
  .debug_sfnames 0 : { *(.debug_sfnames) }
  /* DWARF 1.1 and DWARF 2 */
  .debug_aranges 0 : { *(.debug_aranges) }
  .debug_pubnames 0 : { *(.debug_pubnames) }
  /* DWARF 2 */
  .debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
  .debug_abbrev 0 : { *(.debug_abbrev) }
  .debug_line 0 : { *(.debug_line) }
  .debug_frame 0 : { *(.debug_frame) }
  .debug_str 0 : { *(.debug_str) }
  .debug_loc 0 : { *(.debug_loc) }
  .debug_macinfo 0 : { *(.debug_macinfo) }
  .debug_pubtypes 0 : { *(.debug_pubtypes) }
  /* DWARF 3 */
  .debug_ranges 0 : { *(.debug_ranges) }
  /* SGI/MIPS DWARF 2 extensions */
  .debug_weaknames 0 : { *(.debug_weaknames) }
  .debug_funcnames 0 : { *(.debug_funcnames) }
  .debug_typenames 0 : { *(.debug_typenames) }
  .debug_varnames 0 : { *(.debug_varnames) }
  /* GNU DWARF 2 extensions */
  .debug_gnu_pubnames 0 : { *(.debug_gnu_pubnames) }
  .debug_gnu_pubtypes 0 : { *(.debug_gnu_pubtypes) }
  /* DWARF 4 */
  .debug_types 0 : { *(.debug_types) }
  /* DWARF 5 */
  .debug_addr 0 : { *(.debug_addr) }
  .debug_line_str 0 : { *(.debug_line_str) }
  .debug_loclists 0 : { *(.debug_loclists) }
  .debug_macro 0 : { *(.debug_macro) }
  .debug_names 0 : { *(.debug_names) }
  .debug_rnglists 0 : { *(.debug_rnglists) }
  .debug_str_offsets 0 : { *(.debug_str_offsets) }
  .comment 0 : { *(.comment) }
  .note.GNU-stack 0: { *(.note.GNU-stack) }
  .riscv.attributes 0: { *(.riscv.attributes) }
  /DISCARD/ :
  {
   /**
    * Discarding .rela.* sections results in the following mapping:
    * .rela.text.* -> .text.*
    * .rela.data.* -> .data.*
    * And so forth...
    */
   *(.rela.*)
   *(.eh_frame_hdr)
   *(.eh_frame)
  }
}
ASSERT(((_iram_end - ORIGIN(iram0_0_seg)) <= LENGTH(iram0_0_seg)),
          "IRAM0 segment data does not fit.")
ASSERT(((_heap_start - ORIGIN(dram0_0_seg)) <= LENGTH(dram0_0_seg)),
          "DRAM segment data does not fit.")