-- moving crate without moving any other crates function plan_move_crate(y, x) local path = find_path_for_crate(level_state, player, crate_to_move, {y=y, x=x}) if path == nil then return end --? Real_print('--') --? vdump_path(path) pending_moves = unwind_steps_to_move_crate(path, {}) local src = level_state[player.y][player.x] local crate_cell = level_state[crate_to_move.y][crate_to_move.x] local dest = level_state[y][x] local u = { {x=player.x, y=player.y, cell=src}, {x=crate_to_move.x, y=crate_to_move.y, cell=crate_cell}, {x=x, y=y, cell=dest}} -- we also need to save the initial state of the final position of the player local fpy,fpx = compute_cell(y,x, opposite_dir(pending_moves[1])) table.insert(u, {x=fpx, y=fpy, cell=level_state[fpy][fpx]}) table.insert(undo_history, u) -- add to undo without making move yet next_pending_move = Current_time end function find_path_for_crate(level, player, crate, dst) local done = initialize_array(false, lh, lw) local cands = {} --? local i=0 table.insert(cands, {crate={x=crate.x, y=crate.y}, player={x=player.x, y=player.y}, path_length=0}) --? io.stdout:write('---\n') while #cands > 0 do local min_index = shortest_path(cands) local cand = table.remove(cands, min_index) local p, c = cand.player, cand.crate --? i = i+1 --? io.stdout:write(tostring(i)..' '..tostring(crate.x)..','..tostring(crate.y)..' '..tostring(crate.id)..' '..tostring(p.x)..','..tostring(p.y)..' '..tostring(c.x)..','..tostring(c.y)..' ') --? dump_path(cand) if c.x == dst.x and c.y == dst.y then return cand end if c.y >= 1 and c.y <= lh and c.x >= 1 and c.x <= lw and not done[c.y][c.x] then done[c.y][c.x] = true local curr = level[c.y][c.x] if curr ~= CELL_WALL and (curr ~= CELL_CRATE or (c.y == crate.y and c.x == crate.x)) and (curr ~= CELL_CRATE_ON_TARGET or (c.y == crate.y and c.x == crate.x)) then -- try to push crate left, by first getting to the right of it local moves = find_assumed_empty_path_to_empty_cell(level, p, {x=c.x+1, y=c.y}, --[[empty]] crate, --[[occupied]] c) if moves or (p.x == c.x+1 and p.y == c.y) then -- after the push, both player and crate have moved table.insert(cands, {player={x=c.x, y=c.y}, crate={x=c.x-1, y=c.y}, dir='left', moves=moves, prev=cand, path_length=cand.path_length+moves.path_length}) end -- try to push crate right moves = find_assumed_empty_path_to_empty_cell(level, p, {x=c.x-1, y=c.y}, crate, c) if moves or (p.x == c.x-1 and p.y == c.y) then table.insert(cands, {player={x=c.x, y=c.y}, crate={x=c.x+1, y=c.y}, dir='right', moves=moves, prev=cand, path_length=cand.path_length+moves.path_length}) end -- try to push crate up local moves = find_assumed_empty_path_to_empty_cell(level, p, {x=c.x, y=c.y+1}, crate, c) if moves or (p.x == c.x and p.y == c.y+1) then table.insert(cands, {player={x=c.x, y=c.y}, crate={x=c.x, y=c.y-1}, dir='up', moves=moves, prev=cand, path_length=cand.path_length+moves.path_length}) end -- try to push crate down moves = find_assumed_empty_path_to_empty_cell(level, p, {x=c.x, y=c.y-1}, crate, c) if moves or (p.x == c.x and p.y == c.y-1) then table.insert(cands, {player={x=c.x, y=c.y}, crate={x=c.x, y=c.y+1}, dir='down', moves=moves, prev=cand, path_length=cand.path_length+moves.path_length}) end end end end end -- like find_empty_path, but always allow going through empty_cell and never allow going through occupied_cell, regardless of what level says function find_assumed_empty_path_to_empty_cell(level, src, dst, empty_cell, occupied_cell) if not is_assumed_empty(level, dst.x, dst.y, empty_cell, occupied_cell) then return end local done = initialize_array(false, lh, lw) local cands = {} --? Real_print('find', src.x, src.y, '-', dst.x, dst.y, '-', empty_cell.x, empty_cell.y, '-', occupied_cell.x, occupied_cell.y) table.insert(cands, {x=src.x, y=src.y, path_length=0}) while #cands > 0 do local cand = table.remove(cands, 1) local x,y, p = cand.x, cand.y, cand.path_length if x == dst.x and y == dst.y then return cand end if y >= 1 and y <= lh and x >= 1 and x <= lw and not done[y][x] then done[y][x] = true if is_assumed_empty(level, x,y, empty_cell, occupied_cell) then table.insert(cands, {x=x-1, y=y, dir='left', prev=cand, path_length=p+1}) table.insert(cands, {x=x+1, y=y, dir='right', prev=cand, path_length=p+1}) table.insert(cands, {x=x, y=y-1, dir='up', prev=cand, path_length=p+1}) table.insert(cands, {x=x, y=y+1, dir='down', prev=cand, path_length=p+1}) end end end end function is_assumed_empty(level, x,y, empty, occupied) if empty.y ~= occupied.y or empty.x ~= occupied.x then if x == empty.x and y == empty.y then return true end end if x == occupied.x and y == occupied.y then return false end return is_empty(level, x,y) end function unwind_steps_to_move_crate(c, out) -- insert steps in reverse order while c do table.insert(out, c.dir) unwind_steps(c.moves, out) c = c.prev end return out end function shortest_path(cands) --? Real_print('', #cands) local min, minscore = 1, cands[1].path_length for i=2,#cands do local iscore = cands[i].path_length --? Real_print('', i, iscore, '<=>', min,minscore) if iscore < minscore then min, minscore = i, iscore end end return min end function compute_cell(y, x, dir) if dir == 'up' then return y-1, x elseif dir == 'down' then return y+1, x elseif dir == 'left' then return y, x-1 elseif dir == 'right' then return y, x+1 end end function opposite_dir(dir) if dir == 'up' then return 'down' elseif dir == 'down' then return 'up' elseif dir == 'left' then return 'right' elseif dir == 'right' then return 'left' end end