/* Rotated table headers, borrowed from http://jimmybonney.com/articles/column_header_rotation_css */
.tab-content {
margin-right: 5em;
overflow: visible;
}
td.centered {
text-align: center;
}
.table-header-rotated th.rotate-45 {
height: 80px;
width: 40px;
min-width: 40px;
max-width: 40px;
position: relative;
vertical-align: bottom;
padding: 0;
font-size: 100%;
line-height: 0.9;
}
.table-header-rotated th.rotate-45 > div {
position: relative;
top: 0px;
left: 40px; /* 80 * tan(45) / 2 = 40 where 80 is the height on the cell and 45 is the transform angle*/
height: 100%;
-ms-transform:skew(-45deg,0deg);
-moz-transform:skew(-45deg,0deg);
-webkit-transform:skew(-45deg,0deg);
-o-transform:skew(-45deg,0deg);
transform:skew(-45deg,0deg);
overflow: hidden;
border-left: 1px solid #dddddd;
z-index: 1;
}
.table-header-rotated th.rotate-45 span {
-ms-transform:skew(45deg,0deg) rotate(315deg);
-moz-transform:skew(45deg,0deg) rotate(315deg);
-webkit-transform:skew(45deg,0deg) rotate(315deg);
-o-transform:skew(45deg,0deg) rotate(315deg);
transform:skew(45deg,0deg) rotate(315deg);
position: absolute;
bottom: 30px; /* 40 cos(45) = 28 with an additional 2px margin*/
left: -25px; /*Because it looked good, but there is probably a mathematical link here as well*/
display: inline-block;
// width: 100%;
width: 85px; /* 80 / cos(45) - 40 cos (45) = 85 where 80 is the height of the cell, 40 the width of the cell and 45 the transform angle*/
text-align: left;
// white-space: nowrap; /*whether to display in one line or not*/
}