/* Rotated table headers, borrowed from http://jimmybonney.com/articles/column_header_rotation_css */

.tab-content {
    margin-right: 5em;
    overflow: visible;
}

td.centered {
    text-align: center;
}

.table-header-rotated th.rotate-45 {
    height: 80px;
    width: 40px;
    min-width: 40px;
    max-width: 40px;
    position: relative;
    vertical-align: bottom;
    padding: 0;
    font-size: 100%;
    line-height: 0.9;
}

.table-header-rotated th.rotate-45 > div {
    position: relative;
    top: 0px;
    left: 40px; /* 80 * tan(45) / 2 = 40 where 80 is the height on the cell and 45 is the transform angle*/
    height: 100%;
    -ms-transform:skew(-45deg,0deg);
    -moz-transform:skew(-45deg,0deg);
    -webkit-transform:skew(-45deg,0deg);
    -o-transform:skew(-45deg,0deg);
    transform:skew(-45deg,0deg);
    overflow: hidden;
    border-left: 1px solid #dddddd;
    z-index: 1;
}

.table-header-rotated th.rotate-45 span {
    -ms-transform:skew(45deg,0deg) rotate(315deg);
    -moz-transform:skew(45deg,0deg) rotate(315deg);
    -webkit-transform:skew(45deg,0deg) rotate(315deg);
    -o-transform:skew(45deg,0deg) rotate(315deg);
    transform:skew(45deg,0deg) rotate(315deg);
    position: absolute;
    bottom: 30px; /* 40 cos(45) = 28 with an additional 2px margin*/
    left: -25px; /*Because it looked good, but there is probably a mathematical link here as well*/
    display: inline-block;
    // width: 100%;
    width: 85px; /* 80 / cos(45) - 40 cos (45) = 85 where 80 is the height of the cell, 40 the width of the cell and 45 the transform angle*/
    text-align: left;
    // white-space: nowrap; /*whether to display in one line or not*/
}