=
"""
Compose any number of unary functions into a single unary function.
>>> import textwrap
>>> expected = str.strip(textwrap.dedent(compose.__doc__))
>>> strip_and_dedent = compose(str.strip, textwrap.dedent)
>>> strip_and_dedent(compose.__doc__) == expected
True
Compose also allows the innermost function to take arbitrary arguments.
>>> round_three = lambda x: round(x, ndigits=3)
>>> f = compose(round_three, int.__truediv__)
>>> [f(3*x, x+1) for x in range(1,10)]
[1.5, 2.0, 2.25, 2.4, 2.5, 2.571, 2.625, 2.667, 2.7]
"""
return
return
"""
Return a function that will call a named method on the
target object with optional positional and keyword
arguments.
>>> lower = method_caller('lower')
>>> lower('MyString')
'mystring'
"""
=
return
return
"""
Decorate func so it's only ever called the first time.
This decorator can ensure that an expensive or non-idempotent function
will not be expensive on subsequent calls and is idempotent.
>>> add_three = once(lambda a: a+3)
>>> add_three(3)
6
>>> add_three(9)
6
>>> add_three('12')
6
To reset the stored value, simply clear the property ``saved_result``.
>>> del add_three.saved_result
>>> add_three(9)
12
>>> add_three(8)
12
Or invoke 'reset()' on it.
>>> add_three.reset()
>>> add_three(-3)
0
>>> add_three(0)
0
"""
=
return
=
return
"""
Wrap lru_cache to support storing the cache data in the object instances.
Abstracts the common paradigm where the method explicitly saves an
underscore-prefixed protected property on first call and returns that
subsequently.
>>> class MyClass:
... calls = 0
...
... @method_cache
... def method(self, value):
... self.calls += 1
... return value
>>> a = MyClass()
>>> a.method(3)
3
>>> for x in range(75):
... res = a.method(x)
>>> a.calls
75
Note that the apparent behavior will be exactly like that of lru_cache
except that the cache is stored on each instance, so values in one
instance will not flush values from another, and when an instance is
deleted, so are the cached values for that instance.
>>> b = MyClass()
>>> for x in range(35):
... res = b.method(x)
>>> b.calls
35
>>> a.method(0)
0
>>> a.calls
75
Note that if method had been decorated with ``functools.lru_cache()``,
a.calls would have been 76 (due to the cached value of 0 having been
flushed by the 'b' instance).
Clear the cache with ``.cache_clear()``
>>> a.method.cache_clear()
Same for a method that hasn't yet been called.
>>> c = MyClass()
>>> c.method.cache_clear()
Another cache wrapper may be supplied:
>>> cache = functools.lru_cache(maxsize=2)
>>> MyClass.method2 = method_cache(lambda self: 3, cache_wrapper=cache)
>>> a = MyClass()
>>> a.method2()
3
Caution - do not subsequently wrap the method with another decorator, such
as ``@property``, which changes the semantics of the function.
See also
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods/
for another implementation and additional justification.
"""
# it's the first call, replace the method with a cached, bound method
: =
=
return
# Support cache clear even before cache has been created.
= None # type: ignore[attr-defined]
return
"""
Because Python treats special methods differently, it's not
possible to use instance attributes to implement the cached
methods.
Instead, install the wrapper method under a different name
and return a simple proxy to that wrapper.
https://github.com/jaraco/jaraco.functools/issues/5
"""
=
= ,
return
= +
=
=
=
return
return
"""
Decorate a function with a transform function that is
invoked on results returned from the decorated function.
>>> @apply(reversed)
... def get_numbers(start):
... "doc for get_numbers"
... return range(start, start+3)
>>> list(get_numbers(4))
[6, 5, 4]
>>> get_numbers.__doc__
'doc for get_numbers'
"""
return
return
r"""
Decorate a function with an action function that is
invoked on the results returned from the decorated
function (for its side-effect), then return the original
result.
>>> @result_invoke(print)
... def add_two(a, b):
... return a + b
>>> x = add_two(2, 3)
5
>>> x
5
"""
=
return
return
return
"""
Call a function for its side effect after initialization.
>>> @call_aside
... def func(): print("called")
called
>>> func()
called
Use functools.partial to pass parameters to the initial call
>>> @functools.partial(call_aside, name='bingo')
... def func(name): print("called with", name)
called with bingo
"""
return
"""
Rate-limit a function (or other callable)
"""
=
=
=
= 0
return
= -
= 1 / -
=
return
"""
Return a function that when invoked will invoke func1 without
any parameters (for its side-effect) and then invoke func2
with whatever parameters were passed, returning its result.
"""
return
return
"""
Given a callable func, trap the indicated exceptions
for up to 'retries' times, invoking cleanup on the
exception. On the final attempt, allow any exceptions
to propagate.
"""
=
return
return
"""
Decorator wrapper for retry_call. Accepts arguments to retry_call
except func and then returns a decorator for the decorated function.
Ex:
>>> @retry(retries=3)
... def my_func(a, b):
... "this is my funk"
... print(a, b)
>>> my_func.__doc__
'this is my funk'
"""
=
return
return
return
"""
Convert a generator into a function that prints all yielded elements
>>> @print_yielded
... def x():
... yield 3; yield None
>>> x()
3
None
"""
=
=
return
"""
Wrap func so it's not called if its first param is None
>>> print_text = pass_none(print)
>>> print_text('text')
text
>>> print_text(None)
"""
return
return
"""
Assign parameters from namespace where func solicits.
>>> def func(x, y=3):
... print(x, y)
>>> assigned = assign_params(func, dict(x=2, z=4))
>>> assigned()
2 3
The usual errors are raised if a function doesn't receive
its required parameters:
>>> assigned = assign_params(func, dict(y=3, z=4))
>>> assigned()
Traceback (most recent call last):
TypeError: func() ...argument...
It even works on methods:
>>> class Handler:
... def meth(self, arg):
... print(arg)
>>> assign_params(Handler().meth, dict(arg='crystal', foo='clear'))()
crystal
"""
=
=
=
return
"""
Wrap a method such that when it is called, the args and kwargs are
saved on the method.
>>> class MyClass:
... @save_method_args
... def method(self, a, b):
... print(a, b)
>>> my_ob = MyClass()
>>> my_ob.method(1, 2)
1 2
>>> my_ob._saved_method.args
(1, 2)
>>> my_ob._saved_method.kwargs
{}
>>> my_ob.method(a=3, b='foo')
3 foo
>>> my_ob._saved_method.args
()
>>> my_ob._saved_method.kwargs == dict(a=3, b='foo')
True
The arguments are stored on the instance, allowing for
different instance to save different args.
>>> your_ob = MyClass()
>>> your_ob.method({str('x'): 3}, b=[4])
{'x': 3} [4]
>>> your_ob._saved_method.args
({'x': 3},)
>>> my_ob._saved_method.args
()
"""
=
= +
=
return
return
"""
Replace the indicated exceptions, if raised, with the indicated
literal replacement or evaluated expression (if present).
>>> safe_int = except_(ValueError)(int)
>>> safe_int('five')
>>> safe_int('5')
5
Specify a literal replacement with ``replace``.
>>> safe_int_r = except_(ValueError, replace=0)(int)
>>> safe_int_r('five')
0
Provide an expression to ``use`` to pass through particular parameters.
>>> safe_int_pt = except_(ValueError, use='args[0]')(int)
>>> safe_int_pt('five')
'five'
"""
return
return
return
return
return