"""
An OrderedSet is a custom MutableSet that remembers its order, so that every
entry has an index that can be looked up.
Based on a recipe originally posted to ActiveState Recipes by Raymond Hettiger,
and released under the MIT license.
"""
# Python 3
# Python 2.7
=
=
"""
Are we being asked to look up a list of things, instead of a single thing?
We check for the `__iter__` attribute so that this can cover types that
don't have to be known by this module, such as NumPy arrays.
Strings, however, should be considered as atomic values to look up, not
iterables. The same goes for tuples, since they are immutable and therefore
valid entries.
We don't need to check for the Python 2 `unicode` type, because it doesn't
have an `__iter__` attribute anyway.
"""
return
"""
An OrderedSet is a custom MutableSet that remembers its order, so that
every entry has an index that can be looked up.
Example:
>>> OrderedSet([1, 1, 2, 3, 2])
OrderedSet([1, 2, 3])
"""
=
=
|=
"""
Returns the number of unique elements in the ordered set
Example:
>>> len(OrderedSet([]))
0
>>> len(OrderedSet([1, 2]))
2
"""
return
"""
Get the item at a given index.
If `index` is a slice, you will get back that slice of items, as a
new OrderedSet.
If `index` is a list or a similar iterable, you'll get a list of
items corresponding to those indices. This is similar to NumPy's
"fancy indexing". The result is not an OrderedSet because you may ask
for duplicate indices, and the number of elements returned should be
the number of elements asked for.
Example:
>>> oset = OrderedSet([1, 2, 3])
>>> oset[1]
2
"""
return
:
return
or :
=
return
return
"""
Return a shallow copy of this object.
Example:
>>> this = OrderedSet([1, 2, 3])
>>> other = this.copy()
>>> this == other
True
>>> this is other
False
"""
return
# The state can't be an empty list.
# We need to return a truthy value, or else __setstate__ won't be run.
#
# This could have been done more gracefully by always putting the state
# in a tuple, but this way is backwards- and forwards- compatible with
# previous versions of OrderedSet.
return
return
"""
Test if the item is in this ordered set
Example:
>>> 1 in OrderedSet([1, 3, 2])
True
>>> 5 in OrderedSet([1, 3, 2])
False
"""
return in
"""
Add `key` as an item to this OrderedSet, then return its index.
If `key` is already in the OrderedSet, return the index it already
had.
Example:
>>> oset = OrderedSet()
>>> oset.append(3)
0
>>> print(oset)
OrderedSet([3])
"""
=
return
=
"""
Update the set with the given iterable sequence, then return the index
of the last element inserted.
Example:
>>> oset = OrderedSet([1, 2, 3])
>>> oset.update([3, 1, 5, 1, 4])
4
>>> print(oset)
OrderedSet([1, 2, 3, 5, 4])
"""
= None
=
return
"""
Get the index of a given entry, raising an IndexError if it's not
present.
`key` can be an iterable of entries that is not a string, in which case
this returns a list of indices.
Example:
>>> oset = OrderedSet([1, 2, 3])
>>> oset.index(2)
1
"""
return
return
# Provide some compatibility with pd.Index
=
=
"""
Remove and return the last element from the set.
Raises KeyError if the set is empty.
Example:
>>> oset = OrderedSet([1, 2, 3])
>>> oset.pop()
3
"""
=
del
del
return
"""
Remove an element. Do not raise an exception if absent.
The MutableSet mixin uses this to implement the .remove() method, which
*does* raise an error when asked to remove a non-existent item.
Example:
>>> oset = OrderedSet([1, 2, 3])
>>> oset.discard(2)
>>> print(oset)
OrderedSet([1, 3])
>>> oset.discard(2)
>>> print(oset)
OrderedSet([1, 3])
"""
=
del
del
= - 1
"""
Remove all items from this OrderedSet.
"""
del
"""
Example:
>>> list(iter(OrderedSet([1, 2, 3])))
[1, 2, 3]
"""
return
"""
Example:
>>> list(reversed(OrderedSet([1, 2, 3])))
[3, 2, 1]
"""
return
return %
return %
"""
Returns true if the containers have the same items. If `other` is a
Sequence, then order is checked, otherwise it is ignored.
Example:
>>> oset = OrderedSet([1, 3, 2])
>>> oset == [1, 3, 2]
True
>>> oset == [1, 2, 3]
False
>>> oset == [2, 3]
False
>>> oset == OrderedSet([3, 2, 1])
False
"""
# In Python 2 deque is not a Sequence, so treat it as one for
# consistent behavior with Python 3.
# Check that this OrderedSet contains the same elements, in the
# same order, as the other object.
return ==
=
# If `other` can't be converted into a set, it's not equal.
return False
return ==
"""
Combines all unique items.
Each items order is defined by its first appearance.
Example:
>>> oset = OrderedSet.union(OrderedSet([3, 1, 4, 1, 5]), [1, 3], [2, 0])
>>> print(oset)
OrderedSet([3, 1, 4, 5, 2, 0])
>>> oset.union([8, 9])
OrderedSet([3, 1, 4, 5, 2, 0, 8, 9])
>>> oset | {10}
OrderedSet([3, 1, 4, 5, 2, 0, 10])
"""
=
=
=
return
# the parent implementation of this is backwards
return
"""
Returns elements in common between all sets. Order is defined only
by the first set.
Example:
>>> oset = OrderedSet.intersection(OrderedSet([0, 1, 2, 3]), [1, 2, 3])
>>> print(oset)
OrderedSet([1, 2, 3])
>>> oset.intersection([2, 4, 5], [1, 2, 3, 4])
OrderedSet([2])
>>> oset.intersection()
OrderedSet([1, 2, 3])
"""
=
=
=
=
return
"""
Returns all elements that are in this set but not the others.
Example:
>>> OrderedSet([1, 2, 3]).difference(OrderedSet([2]))
OrderedSet([1, 3])
>>> OrderedSet([1, 2, 3]).difference(OrderedSet([2]), OrderedSet([3]))
OrderedSet([1])
>>> OrderedSet([1, 2, 3]) - OrderedSet([2])
OrderedSet([1, 3])
>>> OrderedSet([1, 2, 3]).difference()
OrderedSet([1, 2, 3])
"""
=
=
=
=
return
"""
Report whether another set contains this set.
Example:
>>> OrderedSet([1, 2, 3]).issubset({1, 2})
False
>>> OrderedSet([1, 2, 3]).issubset({1, 2, 3, 4})
True
>>> OrderedSet([1, 2, 3]).issubset({1, 4, 3, 5})
False
"""
# Fast check for obvious cases
return False
return
"""
Report whether this set contains another set.
Example:
>>> OrderedSet([1, 2]).issuperset([1, 2, 3])
False
>>> OrderedSet([1, 2, 3, 4]).issuperset({1, 2, 3})
True
>>> OrderedSet([1, 4, 3, 5]).issuperset({1, 2, 3})
False
"""
# Fast check for obvious cases
return False
return
"""
Return the symmetric difference of two OrderedSets as a new set.
That is, the new set will contain all elements that are in exactly
one of the sets.
Their order will be preserved, with elements from `self` preceding
elements from `other`.
Example:
>>> this = OrderedSet([1, 4, 3, 5, 7])
>>> other = OrderedSet([9, 7, 1, 3, 2])
>>> this.symmetric_difference(other)
OrderedSet([4, 5, 9, 2])
"""
=
=
=
return
"""
Replace the 'items' list of this OrderedSet with a new one, updating
self.map accordingly.
"""
=
=
"""
Update this OrderedSet to remove items from one or more other sets.
Example:
>>> this = OrderedSet([1, 2, 3])
>>> this.difference_update(OrderedSet([2, 4]))
>>> print(this)
OrderedSet([1, 3])
>>> this = OrderedSet([1, 2, 3, 4, 5])
>>> this.difference_update(OrderedSet([2, 4]), OrderedSet([1, 4, 6]))
>>> print(this)
OrderedSet([3, 5])
"""
=
|=
"""
Update this OrderedSet to keep only items in another set, preserving
their order in this set.
Example:
>>> this = OrderedSet([1, 4, 3, 5, 7])
>>> other = OrderedSet([9, 7, 1, 3, 2])
>>> this.intersection_update(other)
>>> print(this)
OrderedSet([1, 3, 7])
"""
=
"""
Update this OrderedSet to remove items from another set, then
add items from the other set that were not present in this set.
Example:
>>> this = OrderedSet([1, 4, 3, 5, 7])
>>> other = OrderedSet([9, 7, 1, 3, 2])
>>> this.symmetric_difference_update(other)
>>> print(this)
OrderedSet([4, 5, 9, 2])
"""
=
=