# 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. # # This file implements tests for the special processing associated # with INTEGER PRIMARY KEY columns. # # $Id: intpkey.test,v 1.24 2007/11/29 17:43:28 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Create a table with a primary key and a datatype other than # integer # do_test intpkey-1.0 { execsql { CREATE TABLE t1(a TEXT PRIMARY KEY, b, c); } } {} # There should be an index associated with the primary key # do_test intpkey-1.1 { execsql { SELECT name FROM sqlite_master WHERE type='index' AND tbl_name='t1'; } } {sqlite_autoindex_t1_1} # Now create a table with an integer primary key and verify that # there is no associated index. # do_test intpkey-1.2 { execsql { DROP TABLE t1; CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c); SELECT name FROM sqlite_master WHERE type='index' AND tbl_name='t1'; } } {} # Insert some records into the new table. Specify the primary key # and verify that the key is used as the record number. # do_test intpkey-1.3 { execsql { INSERT INTO t1 VALUES(5,'hello','world'); } db last_insert_rowid } {5} do_test intpkey-1.4 { execsql { SELECT * FROM t1; } } {5 hello world} do_test intpkey-1.5 { execsql { SELECT rowid, * FROM t1; } } {5 5 hello world} # Attempting to insert a duplicate primary key should give a constraint # failure. # do_test intpkey-1.6 { set r [catch {execsql { INSERT INTO t1 VALUES(5,'second','entry'); }} msg] lappend r $msg } {1 {UNIQUE constraint failed: t1.a}} do_test intpkey-1.7 { execsql { SELECT rowid, * FROM t1; } } {5 5 hello world} do_test intpkey-1.8 { set r [catch {execsql { INSERT INTO t1 VALUES(6,'second','entry'); }} msg] lappend r $msg } {0 {}} do_test intpkey-1.8.1 { db last_insert_rowid } {6} do_test intpkey-1.9 { execsql { SELECT rowid, * FROM t1; } } {5 5 hello world 6 6 second entry} # A ROWID is automatically generated for new records that do not specify # the integer primary key. # do_test intpkey-1.10 { execsql { INSERT INTO t1(b,c) VALUES('one','two'); SELECT b FROM t1 ORDER BY b; } } {hello one second} # Try to change the ROWID for the new entry. # do_test intpkey-1.11 { execsql { UPDATE t1 SET a=4 WHERE b='one'; SELECT * FROM t1; } } {4 one two 5 hello world 6 second entry} # Make sure SELECT statements are able to use the primary key column # as an index. # do_test intpkey-1.12.1 { execsql { SELECT * FROM t1 WHERE a==4; } } {4 one two} do_test intpkey-1.12.2 { execsql { EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a==4; } } {/SEARCH t1 /} # Try to insert a non-integer value into the primary key field. This # should result in a data type mismatch. # do_test intpkey-1.13.1 { set r [catch {execsql { INSERT INTO t1 VALUES('x','y','z'); }} msg] lappend r $msg } {1 {datatype mismatch}} do_test intpkey-1.13.2 { set r [catch {execsql { INSERT INTO t1 VALUES('','y','z'); }} msg] lappend r $msg } {1 {datatype mismatch}} do_test intpkey-1.14 { set r [catch {execsql { INSERT INTO t1 VALUES(3.4,'y','z'); }} msg] lappend r $msg } {1 {datatype mismatch}} do_test intpkey-1.15 { set r [catch {execsql { INSERT INTO t1 VALUES(-3,'y','z'); }} msg] lappend r $msg } {0 {}} do_test intpkey-1.16 { execsql {SELECT * FROM t1} } {-3 y z 4 one two 5 hello world 6 second entry} #### INDICES # Check to make sure indices work correctly with integer primary keys # do_test intpkey-2.1 { execsql { CREATE INDEX i1 ON t1(b); SELECT * FROM t1 WHERE b=='y' } } {-3 y z} do_test intpkey-2.1.1 { execsql { SELECT * FROM t1 WHERE b=='y' AND rowid<0 } } {-3 y z} do_test intpkey-2.1.2 { execsql { SELECT * FROM t1 WHERE b=='y' AND rowid<0 AND rowid>=-20 } } {-3 y z} do_test intpkey-2.1.3 { execsql { SELECT * FROM t1 WHERE b>='y' } } {-3 y z} do_test intpkey-2.1.4 { execsql { SELECT * FROM t1 WHERE b>='y' AND rowid<10 } } {-3 y z} do_test intpkey-2.2 { execsql { UPDATE t1 SET a=8 WHERE b=='y'; SELECT * FROM t1 WHERE b=='y'; } } {8 y z} do_test intpkey-2.3 { execsql { SELECT rowid, * FROM t1; } } {4 4 one two 5 5 hello world 6 6 second entry 8 8 y z} do_test intpkey-2.4 { execsql { SELECT rowid, * FROM t1 WHERE b<'second' } } {5 5 hello world 4 4 one two} do_test intpkey-2.4.1 { execsql { SELECT rowid, * FROM t1 WHERE 'second'>b } } {5 5 hello world 4 4 one two} do_test intpkey-2.4.2 { execsql { SELECT rowid, * FROM t1 WHERE 8>rowid AND 'second'>b } } {4 4 one two 5 5 hello world} do_test intpkey-2.4.3 { execsql { SELECT rowid, * FROM t1 WHERE 8>rowid AND 'second'>b AND 0<rowid } } {4 4 one two 5 5 hello world} do_test intpkey-2.5 { execsql { SELECT rowid, * FROM t1 WHERE b>'a' } } {5 5 hello world 4 4 one two 6 6 second entry 8 8 y z} do_test intpkey-2.6 { execsql { DELETE FROM t1 WHERE rowid=4; SELECT * FROM t1 WHERE b>'a'; } } {5 hello world 6 second entry 8 y z} do_test intpkey-2.7 { execsql { UPDATE t1 SET a=-4 WHERE rowid=8; SELECT * FROM t1 WHERE b>'a'; } } {5 hello world 6 second entry -4 y z} do_test intpkey-2.7 { execsql { SELECT * FROM t1 } } {-4 y z 5 hello world 6 second entry} # Do an SQL statement. Append the search count to the end of the result. # proc count sql { set ::sqlite_search_count 0 return [concat [execsql $sql] $::sqlite_search_count] } # Create indices that include the integer primary key as one of their # columns. # do_test intpkey-3.1 { execsql { CREATE INDEX i2 ON t1(a); } } {} do_test intpkey-3.2 { count { SELECT * FROM t1 WHERE a=5; } } {5 hello world 0} do_test intpkey-3.3 { count { SELECT * FROM t1 WHERE a>4 AND a<6; } } {5 hello world 2} do_test intpkey-3.4 { count { SELECT * FROM t1 WHERE b>='hello' AND b<'hello2'; } } {5 hello world 3} do_test intpkey-3.5 { execsql { CREATE INDEX i3 ON t1(c,a); } } {} do_test intpkey-3.6 { count { SELECT * FROM t1 WHERE c=='world'; } } {5 hello world 3} do_test intpkey-3.7 { execsql {INSERT INTO t1 VALUES(11,'hello','world')} count { SELECT * FROM t1 WHERE c=='world'; } } {5 hello world 11 hello world 5} do_test intpkey-3.8 { count { SELECT * FROM t1 WHERE c=='world' AND a>7; } } {11 hello world 3} do_test intpkey-3.9 { count { SELECT * FROM t1 WHERE 7<a; } } {11 hello world 1} # Test inequality constraints on integer primary keys and rowids # do_test intpkey-4.1 { count { SELECT * FROM t1 WHERE 11=rowid } } {11 hello world 0} do_test intpkey-4.2 { count { SELECT * FROM t1 WHERE 11=rowid AND b=='hello' } } {11 hello world 0} do_test intpkey-4.3 { count { SELECT * FROM t1 WHERE 11=rowid AND b=='hello' AND c IS NOT NULL; } } {11 hello world 0} do_test intpkey-4.4 { count { SELECT * FROM t1 WHERE rowid==11 } } {11 hello world 0} do_test intpkey-4.5 { count { SELECT * FROM t1 WHERE oid==11 AND b=='hello' } } {11 hello world 0} do_test intpkey-4.6 { count { SELECT * FROM t1 WHERE a==11 AND b=='hello' AND c IS NOT NULL; } } {11 hello world 0} do_test intpkey-4.7 { count { SELECT * FROM t1 WHERE 8<rowid; } } {11 hello world 1} do_test intpkey-4.8 { count { SELECT * FROM t1 WHERE 8<rowid AND 11>=oid; } } {11 hello world 1} do_test intpkey-4.9 { count { SELECT * FROM t1 WHERE 11<=_rowid_ AND 12>=a; } } {11 hello world 1} do_test intpkey-4.10 { count { SELECT * FROM t1 WHERE 0>=_rowid_; } } {-4 y z 1} do_test intpkey-4.11 { count { SELECT * FROM t1 WHERE a<0; } } {-4 y z 1} do_test intpkey-4.12 { count { SELECT * FROM t1 WHERE a<0 AND a>10; } } {1} # Make sure it is OK to insert a rowid of 0 # do_test intpkey-5.1 { execsql { INSERT INTO t1 VALUES(0,'zero','entry'); } count { SELECT * FROM t1 WHERE a=0; } } {0 zero entry 0} do_test intpkey-5.2 { execsql { SELECT rowid, a FROM t1 ORDER BY rowid } } {-4 -4 0 0 5 5 6 6 11 11} # Test the ability of the COPY command to put data into a # table that contains an integer primary key. # # COPY command has been removed. But we retain these tests so # that the tables will contain the right data for tests that follow. # do_test intpkey-6.1 { execsql { BEGIN; INSERT INTO t1 VALUES(20,'b-20','c-20'); INSERT INTO t1 VALUES(21,'b-21','c-21'); INSERT INTO t1 VALUES(22,'b-22','c-22'); COMMIT; SELECT * FROM t1 WHERE a>=20; } } {20 b-20 c-20 21 b-21 c-21 22 b-22 c-22} do_test intpkey-6.2 { execsql { SELECT * FROM t1 WHERE b=='hello' } } {5 hello world 11 hello world} do_test intpkey-6.3 { execsql { DELETE FROM t1 WHERE b='b-21'; SELECT * FROM t1 WHERE b=='b-21'; } } {} do_test intpkey-6.4 { execsql { SELECT * FROM t1 WHERE a>=20 } } {20 b-20 c-20 22 b-22 c-22} # Do an insert of values with the columns specified out of order. # do_test intpkey-7.1 { execsql { INSERT INTO t1(c,b,a) VALUES('row','new',30); SELECT * FROM t1 WHERE rowid>=30; } } {30 new row} do_test intpkey-7.2 { execsql { SELECT * FROM t1 WHERE rowid>20; } } {22 b-22 c-22 30 new row} # Do an insert from a select statement. # do_test intpkey-8.1 { execsql { CREATE TABLE t2(x INTEGER PRIMARY KEY, y, z); INSERT INTO t2 SELECT * FROM t1; SELECT rowid FROM t2; } } {-4 0 5 6 11 20 22 30} do_test intpkey-8.2 { execsql { SELECT x FROM t2; } } {-4 0 5 6 11 20 22 30} do_test intpkey-9.1 { execsql { UPDATE t1 SET c='www' WHERE c='world'; SELECT rowid, a, c FROM t1 WHERE c=='www'; } } {5 5 www 11 11 www} # Check insert of NULL for primary key # do_test intpkey-10.1 { execsql { DROP TABLE t2; CREATE TABLE t2(x INTEGER PRIMARY KEY, y, z); INSERT INTO t2 VALUES(NULL, 1, 2); SELECT * from t2; } } {1 1 2} do_test intpkey-10.2 { execsql { INSERT INTO t2 VALUES(NULL, 2, 3); SELECT * from t2 WHERE x=2; } } {2 2 3} do_test intpkey-10.3 { execsql { INSERT INTO t2 SELECT NULL, z, y FROM t2; SELECT * FROM t2; } } {1 1 2 2 2 3 3 2 1 4 3 2} # This tests checks to see if a floating point number can be used # to reference an integer primary key. # do_test intpkey-11.1 { execsql { SELECT b FROM t1 WHERE a=2.0+3.0; } } {hello} do_test intpkey-11.1 { execsql { SELECT b FROM t1 WHERE a=2.0+3.5; } } {} integrity_check intpkey-12.1 # Try to use a string that looks like a floating point number as # an integer primary key. This should actually work when the floating # point value can be rounded to an integer without loss of data. # do_test intpkey-13.1 { execsql { SELECT * FROM t1 WHERE a=1; } } {} do_test intpkey-13.2 { execsql { INSERT INTO t1 VALUES('1.0',2,3); SELECT * FROM t1 WHERE a=1; } } {1 2 3} do_test intpkey-13.3 { catchsql { INSERT INTO t1 VALUES('1.5',3,4); } } {1 {datatype mismatch}} ifcapable {bloblit} { do_test intpkey-13.4 { catchsql { INSERT INTO t1 VALUES(x'123456',3,4); } } {1 {datatype mismatch}} } do_test intpkey-13.5 { catchsql { INSERT INTO t1 VALUES('+1234567890',3,4); } } {0 {}} # Compare an INTEGER PRIMARY KEY against a TEXT expression. The INTEGER # affinity should be applied to the text value before the comparison # takes place. # do_test intpkey-14.1 { execsql { CREATE TABLE t3(a INTEGER PRIMARY KEY, b INTEGER, c TEXT); INSERT INTO t3 VALUES(1, 1, 'one'); INSERT INTO t3 VALUES(2, 2, '2'); INSERT INTO t3 VALUES(3, 3, 3); } } {} do_test intpkey-14.2 { execsql { SELECT * FROM t3 WHERE a>2; } } {3 3 3} do_test intpkey-14.3 { execsql { SELECT * FROM t3 WHERE a>'2'; } } {3 3 3} do_test intpkey-14.4 { execsql { SELECT * FROM t3 WHERE a<'2'; } } {1 1 one} do_test intpkey-14.5 { execsql { SELECT * FROM t3 WHERE a<c; } } {1 1 one} do_test intpkey-14.6 { execsql { SELECT * FROM t3 WHERE a=c; } } {2 2 2 3 3 3} # Check for proper handling of primary keys greater than 2^31. # Ticket #1188 # do_test intpkey-15.1 { execsql { INSERT INTO t1 VALUES(2147483647, 'big-1', 123); SELECT * FROM t1 WHERE a>2147483648; } } {} do_test intpkey-15.2 { execsql { INSERT INTO t1 VALUES(NULL, 'big-2', 234); SELECT b FROM t1 WHERE a>=2147483648; } } {big-2} do_test intpkey-15.3 { execsql { SELECT b FROM t1 WHERE a>2147483648; } } {} do_test intpkey-15.4 { execsql { SELECT b FROM t1 WHERE a>=2147483647; } } {big-1 big-2} do_test intpkey-15.5 { execsql { SELECT b FROM t1 WHERE a<2147483648; } } {y zero 2 hello second hello b-20 b-22 new 3 big-1} do_test intpkey-15.6 { execsql { SELECT b FROM t1 WHERE a<12345678901; } } {y zero 2 hello second hello b-20 b-22 new 3 big-1 big-2} do_test intpkey-15.7 { execsql { SELECT b FROM t1 WHERE a>12345678901; } } {} # 2016-04-18 ticket https://www.sqlite.org/src/tktview/7d7525cb01b68712495d3a # Be sure to escape quoted typenames. # do_execsql_test intpkey-16.0 { CREATE TABLE t16a(id "INTEGER" PRIMARY KEY AUTOINCREMENT, b [TEXT], c `INT`); } {} do_execsql_test intpkey-16.1 { PRAGMA table_info=t16a; } {0 id INTEGER 0 {} 1 1 b TEXT 0 {} 0 2 c INT 0 {} 0} # 2016-05-06 ticket https://www.sqlite.org/src/tktview/16c9801ceba4923939085 # When the schema contains an index on the IPK and no other index # and a WHERE clause on a delete uses an OR where both sides referencing # the IPK, then it is possible that the OP_Delete will fail because there # deferred seek of the OP_Seek is not resolved prior to reaching the OP_Delete. # do_execsql_test intpkey-17.0 { CREATE TABLE t17(x INTEGER PRIMARY KEY, y TEXT); INSERT INTO t17(x,y) VALUES(123,'elephant'),(248,'giraffe'); CREATE INDEX t17x ON t17(x); DELETE FROM t17 WHERE x=99 OR x<130; SELECT * FROM t17; } {248 giraffe} do_execsql_test intpkey-17.1 { DROP INDEX t17x; DELETE FROM t17; INSERT INTO t17(x,y) VALUES(123,'elephant'),(248,'giraffe'); CREATE UNIQUE INDEX t17x ON t17(abs(x)); DELETE FROM t17 WHERE abs(x) IS NULL OR abs(x)<130; SELECT * FROM t17; } {248 giraffe} do_execsql_test intpkey-17.2 { DELETE FROM t17; INSERT INTO t17(x,y) VALUES(123,'elephant'),(248,'giraffe'); UPDATE t17 SET y='ostrich' WHERE abs(x)=248; SELECT * FROM t17 ORDER BY +x; } {123 elephant 248 ostrich} finish_test