#ifndef __CLANG_HIP_CMATH_H__
#define __CLANG_HIP_CMATH_H__
#if !defined(__HIP__) && !defined(__OPENMP_AMDGCN__)
#error "This file is for HIP and OpenMP AMDGCN device compilation only."
#endif
#if !defined(__HIPCC_RTC__)
#if defined(__cplusplus)
#include <limits>
#include <type_traits>
#include <utility>
#endif
#include <limits.h>
#include <stdint.h>
#endif
#pragma push_macro("__DEVICE__")
#pragma push_macro("__CONSTEXPR__")
#ifdef __OPENMP_AMDGCN__
#define __DEVICE__ static __attribute__((always_inline, nothrow))
#define __CONSTEXPR__ constexpr
#else
#define __DEVICE__ static __device__ inline __attribute__((always_inline))
#define __CONSTEXPR__
#endif
#if defined(__cplusplus)
#if defined __OPENMP_AMDGCN__
__DEVICE__ __CONSTEXPR__ float fabs(float __x) { return ::fabsf(__x); }
__DEVICE__ __CONSTEXPR__ float sin(float __x) { return ::sinf(__x); }
__DEVICE__ __CONSTEXPR__ float cos(float __x) { return ::cosf(__x); }
#endif
__DEVICE__ __CONSTEXPR__ double abs(double __x) { return ::fabs(__x); }
__DEVICE__ __CONSTEXPR__ float abs(float __x) { return ::fabsf(__x); }
__DEVICE__ __CONSTEXPR__ long long abs(long long __n) { return ::llabs(__n); }
__DEVICE__ __CONSTEXPR__ long abs(long __n) { return ::labs(__n); }
__DEVICE__ __CONSTEXPR__ float fma(float __x, float __y, float __z) {
return ::fmaf(__x, __y, __z);
}
#if !defined(__HIPCC_RTC__)
__DEVICE__ __CONSTEXPR__ int fpclassify(float __x) {
return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
FP_ZERO, __x);
}
__DEVICE__ __CONSTEXPR__ int fpclassify(double __x) {
return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
FP_ZERO, __x);
}
#endif
__DEVICE__ __CONSTEXPR__ float frexp(float __arg, int *__exp) {
return ::frexpf(__arg, __exp);
}
#if defined(__OPENMP_AMDGCN__)
#pragma omp begin declare variant match( \
implementation = {extension(disable_implicit_base)})
#pragma omp begin declare variant match(implementation = {vendor(llvm)})
__DEVICE__ __CONSTEXPR__ int isinf(float __x) { return ::__isinff(__x); }
__DEVICE__ __CONSTEXPR__ int isinf(double __x) { return ::__isinf(__x); }
__DEVICE__ __CONSTEXPR__ int isfinite(float __x) { return ::__finitef(__x); }
__DEVICE__ __CONSTEXPR__ int isfinite(double __x) { return ::__finite(__x); }
__DEVICE__ __CONSTEXPR__ int isnan(float __x) { return ::__isnanf(__x); }
__DEVICE__ __CONSTEXPR__ int isnan(double __x) { return ::__isnan(__x); }
#pragma omp end declare variant
#endif
__DEVICE__ __CONSTEXPR__ bool isinf(float __x) { return ::__isinff(__x); }
__DEVICE__ __CONSTEXPR__ bool isinf(double __x) { return ::__isinf(__x); }
__DEVICE__ __CONSTEXPR__ bool isfinite(float __x) { return ::__finitef(__x); }
__DEVICE__ __CONSTEXPR__ bool isfinite(double __x) { return ::__finite(__x); }
__DEVICE__ __CONSTEXPR__ bool isnan(float __x) { return ::__isnanf(__x); }
__DEVICE__ __CONSTEXPR__ bool isnan(double __x) { return ::__isnan(__x); }
#if defined(__OPENMP_AMDGCN__)
#pragma omp end declare variant
#endif
__DEVICE__ __CONSTEXPR__ bool isgreater(float __x, float __y) {
return __builtin_isgreater(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isgreater(double __x, double __y) {
return __builtin_isgreater(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isgreaterequal(float __x, float __y) {
return __builtin_isgreaterequal(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isgreaterequal(double __x, double __y) {
return __builtin_isgreaterequal(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isless(float __x, float __y) {
return __builtin_isless(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isless(double __x, double __y) {
return __builtin_isless(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool islessequal(float __x, float __y) {
return __builtin_islessequal(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool islessequal(double __x, double __y) {
return __builtin_islessequal(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool islessgreater(float __x, float __y) {
return __builtin_islessgreater(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool islessgreater(double __x, double __y) {
return __builtin_islessgreater(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isnormal(float __x) {
return __builtin_isnormal(__x);
}
__DEVICE__ __CONSTEXPR__ bool isnormal(double __x) {
return __builtin_isnormal(__x);
}
__DEVICE__ __CONSTEXPR__ bool isunordered(float __x, float __y) {
return __builtin_isunordered(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isunordered(double __x, double __y) {
return __builtin_isunordered(__x, __y);
}
__DEVICE__ __CONSTEXPR__ float modf(float __x, float *__iptr) {
return ::modff(__x, __iptr);
}
__DEVICE__ __CONSTEXPR__ float pow(float __base, int __iexp) {
return ::powif(__base, __iexp);
}
__DEVICE__ __CONSTEXPR__ double pow(double __base, int __iexp) {
return ::powi(__base, __iexp);
}
__DEVICE__ __CONSTEXPR__ float remquo(float __x, float __y, int *__quo) {
return ::remquof(__x, __y, __quo);
}
__DEVICE__ __CONSTEXPR__ float scalbln(float __x, long int __n) {
return ::scalblnf(__x, __n);
}
__DEVICE__ __CONSTEXPR__ bool signbit(float __x) { return ::__signbitf(__x); }
__DEVICE__ __CONSTEXPR__ bool signbit(double __x) { return ::__signbit(__x); }
__DEVICE__ __CONSTEXPR__ _Float16 fma(_Float16 __x, _Float16 __y,
_Float16 __z) {
return __ocml_fma_f16(__x, __y, __z);
}
__DEVICE__ __CONSTEXPR__ _Float16 pow(_Float16 __base, int __iexp) {
return __ocml_pown_f16(__base, __iexp);
}
#ifndef __OPENMP_AMDGCN__
#pragma push_macro("__DEF_FUN1")
#pragma push_macro("__DEF_FUN2")
#pragma push_macro("__DEF_FUN2_FI")
#define __DEF_FUN1(__retty, __func) \
__DEVICE__ __CONSTEXPR__ __retty __func(float __x) { return __func##f(__x); }
#define __DEF_FUN2(__retty, __func) \
__DEVICE__ __CONSTEXPR__ __retty __func(float __x, float __y) { \
return __func##f(__x, __y); \
}
#define __DEF_FUN2_FI(__retty, __func) \
__DEVICE__ __CONSTEXPR__ __retty __func(float __x, int __y) { \
return __func##f(__x, __y); \
}
__DEF_FUN1(float, acos)
__DEF_FUN1(float, acosh)
__DEF_FUN1(float, asin)
__DEF_FUN1(float, asinh)
__DEF_FUN1(float, atan)
__DEF_FUN2(float, atan2)
__DEF_FUN1(float, atanh)
__DEF_FUN1(float, cbrt)
__DEF_FUN1(float, ceil)
__DEF_FUN2(float, copysign)
__DEF_FUN1(float, cos)
__DEF_FUN1(float, cosh)
__DEF_FUN1(float, erf)
__DEF_FUN1(float, erfc)
__DEF_FUN1(float, exp)
__DEF_FUN1(float, exp2)
__DEF_FUN1(float, expm1)
__DEF_FUN1(float, fabs)
__DEF_FUN2(float, fdim)
__DEF_FUN1(float, floor)
__DEF_FUN2(float, fmax)
__DEF_FUN2(float, fmin)
__DEF_FUN2(float, fmod)
__DEF_FUN2(float, hypot)
__DEF_FUN1(int, ilogb)
__DEF_FUN2_FI(float, ldexp)
__DEF_FUN1(float, lgamma)
__DEF_FUN1(float, log)
__DEF_FUN1(float, log10)
__DEF_FUN1(float, log1p)
__DEF_FUN1(float, log2)
__DEF_FUN1(float, logb)
__DEF_FUN1(long long, llrint)
__DEF_FUN1(long long, llround)
__DEF_FUN1(long, lrint)
__DEF_FUN1(long, lround)
__DEF_FUN1(float, nearbyint)
__DEF_FUN2(float, nextafter)
__DEF_FUN2(float, pow)
__DEF_FUN2(float, remainder)
__DEF_FUN1(float, rint)
__DEF_FUN1(float, round)
__DEF_FUN2_FI(float, scalbn)
__DEF_FUN1(float, sin)
__DEF_FUN1(float, sinh)
__DEF_FUN1(float, sqrt)
__DEF_FUN1(float, tan)
__DEF_FUN1(float, tanh)
__DEF_FUN1(float, tgamma)
__DEF_FUN1(float, trunc)
#pragma pop_macro("__DEF_FUN1")
#pragma pop_macro("__DEF_FUN2")
#pragma pop_macro("__DEF_FUN2_FI")
#pragma push_macro("__HIP_OVERLOAD1")
#pragma push_macro("__HIP_OVERLOAD2")
template <bool __B, class __T = void> struct __hip_enable_if {};
template <class __T> struct __hip_enable_if<true, __T> { typedef __T type; };
namespace __hip {
template <class _Tp> struct is_integral {
enum { value = 0 };
};
template <> struct is_integral<bool> {
enum { value = 1 };
};
template <> struct is_integral<char> {
enum { value = 1 };
};
template <> struct is_integral<signed char> {
enum { value = 1 };
};
template <> struct is_integral<unsigned char> {
enum { value = 1 };
};
template <> struct is_integral<wchar_t> {
enum { value = 1 };
};
template <> struct is_integral<short> {
enum { value = 1 };
};
template <> struct is_integral<unsigned short> {
enum { value = 1 };
};
template <> struct is_integral<int> {
enum { value = 1 };
};
template <> struct is_integral<unsigned int> {
enum { value = 1 };
};
template <> struct is_integral<long> {
enum { value = 1 };
};
template <> struct is_integral<unsigned long> {
enum { value = 1 };
};
template <> struct is_integral<long long> {
enum { value = 1 };
};
template <> struct is_integral<unsigned long long> {
enum { value = 1 };
};
template <class _Tp> struct is_arithmetic {
enum { value = 0 };
};
template <> struct is_arithmetic<bool> {
enum { value = 1 };
};
template <> struct is_arithmetic<char> {
enum { value = 1 };
};
template <> struct is_arithmetic<signed char> {
enum { value = 1 };
};
template <> struct is_arithmetic<unsigned char> {
enum { value = 1 };
};
template <> struct is_arithmetic<wchar_t> {
enum { value = 1 };
};
template <> struct is_arithmetic<short> {
enum { value = 1 };
};
template <> struct is_arithmetic<unsigned short> {
enum { value = 1 };
};
template <> struct is_arithmetic<int> {
enum { value = 1 };
};
template <> struct is_arithmetic<unsigned int> {
enum { value = 1 };
};
template <> struct is_arithmetic<long> {
enum { value = 1 };
};
template <> struct is_arithmetic<unsigned long> {
enum { value = 1 };
};
template <> struct is_arithmetic<long long> {
enum { value = 1 };
};
template <> struct is_arithmetic<unsigned long long> {
enum { value = 1 };
};
template <> struct is_arithmetic<float> {
enum { value = 1 };
};
template <> struct is_arithmetic<double> {
enum { value = 1 };
};
struct true_type {
static const __constant__ bool value = true;
};
struct false_type {
static const __constant__ bool value = false;
};
template <typename __T, typename __U> struct is_same : public false_type {};
template <typename __T> struct is_same<__T, __T> : public true_type {};
template <typename __T> struct add_rvalue_reference { typedef __T &&type; };
template <typename __T> typename add_rvalue_reference<__T>::type declval();
#if __cplusplus >= 201103L
template <class _Tp> struct __numeric_type {
static void __test(...);
static _Float16 __test(_Float16);
static float __test(float);
static double __test(char);
static double __test(int);
static double __test(unsigned);
static double __test(long);
static double __test(unsigned long);
static double __test(long long);
static double __test(unsigned long long);
static double __test(double);
static double __test(long double);
typedef decltype(__test(declval<_Tp>())) type;
static const bool value = !is_same<type, void>::value;
};
template <> struct __numeric_type<void> { static const bool value = true; };
template <class _A1, class _A2 = void, class _A3 = void,
bool = __numeric_type<_A1>::value &&__numeric_type<_A2>::value
&&__numeric_type<_A3>::value>
class __promote_imp {
public:
static const bool value = false;
};
template <class _A1, class _A2, class _A3>
class __promote_imp<_A1, _A2, _A3, true> {
private:
typedef typename __promote_imp<_A1>::type __type1;
typedef typename __promote_imp<_A2>::type __type2;
typedef typename __promote_imp<_A3>::type __type3;
public:
typedef decltype(__type1() + __type2() + __type3()) type;
static const bool value = true;
};
template <class _A1, class _A2> class __promote_imp<_A1, _A2, void, true> {
private:
typedef typename __promote_imp<_A1>::type __type1;
typedef typename __promote_imp<_A2>::type __type2;
public:
typedef decltype(__type1() + __type2()) type;
static const bool value = true;
};
template <class _A1> class __promote_imp<_A1, void, void, true> {
public:
typedef typename __numeric_type<_A1>::type type;
static const bool value = true;
};
template <class _A1, class _A2 = void, class _A3 = void>
class __promote : public __promote_imp<_A1, _A2, _A3> {};
#endif }
#define __HIP_OVERLOAD1(__retty, __fn) \
template <typename __T> \
__DEVICE__ __CONSTEXPR__ \
typename __hip_enable_if<__hip::is_integral<__T>::value, __retty>::type \
__fn(__T __x) { \
return ::__fn((double)__x); \
}
#if __cplusplus >= 201103L
#define __HIP_OVERLOAD2(__retty, __fn) \
template <typename __T1, typename __T2> \
__DEVICE__ __CONSTEXPR__ typename __hip_enable_if< \
__hip::is_arithmetic<__T1>::value && __hip::is_arithmetic<__T2>::value, \
typename __hip::__promote<__T1, __T2>::type>::type \
__fn(__T1 __x, __T2 __y) { \
typedef typename __hip::__promote<__T1, __T2>::type __result_type; \
return __fn((__result_type)__x, (__result_type)__y); \
}
#else
#define __HIP_OVERLOAD2(__retty, __fn) \
template <typename __T1, typename __T2> \
__DEVICE__ __CONSTEXPR__ \
typename __hip_enable_if<__hip::is_arithmetic<__T1>::value && \
__hip::is_arithmetic<__T2>::value, \
__retty>::type \
__fn(__T1 __x, __T2 __y) { \
return __fn((double)__x, (double)__y); \
}
#endif
__HIP_OVERLOAD1(double, acos)
__HIP_OVERLOAD1(double, acosh)
__HIP_OVERLOAD1(double, asin)
__HIP_OVERLOAD1(double, asinh)
__HIP_OVERLOAD1(double, atan)
__HIP_OVERLOAD2(double, atan2)
__HIP_OVERLOAD1(double, atanh)
__HIP_OVERLOAD1(double, cbrt)
__HIP_OVERLOAD1(double, ceil)
__HIP_OVERLOAD2(double, copysign)
__HIP_OVERLOAD1(double, cos)
__HIP_OVERLOAD1(double, cosh)
__HIP_OVERLOAD1(double, erf)
__HIP_OVERLOAD1(double, erfc)
__HIP_OVERLOAD1(double, exp)
__HIP_OVERLOAD1(double, exp2)
__HIP_OVERLOAD1(double, expm1)
__HIP_OVERLOAD1(double, fabs)
__HIP_OVERLOAD2(double, fdim)
__HIP_OVERLOAD1(double, floor)
__HIP_OVERLOAD2(double, fmax)
__HIP_OVERLOAD2(double, fmin)
__HIP_OVERLOAD2(double, fmod)
#if !defined(__HIPCC_RTC__)
__HIP_OVERLOAD1(int, fpclassify)
#endif __HIP_OVERLOAD2(double, hypot)
__HIP_OVERLOAD1(int, ilogb)
__HIP_OVERLOAD1(bool, isfinite)
__HIP_OVERLOAD2(bool, isgreater)
__HIP_OVERLOAD2(bool, isgreaterequal)
__HIP_OVERLOAD1(bool, isinf)
__HIP_OVERLOAD2(bool, isless)
__HIP_OVERLOAD2(bool, islessequal)
__HIP_OVERLOAD2(bool, islessgreater)
__HIP_OVERLOAD1(bool, isnan)
__HIP_OVERLOAD1(bool, isnormal)
__HIP_OVERLOAD2(bool, isunordered)
__HIP_OVERLOAD1(double, lgamma)
__HIP_OVERLOAD1(double, log)
__HIP_OVERLOAD1(double, log10)
__HIP_OVERLOAD1(double, log1p)
__HIP_OVERLOAD1(double, log2)
__HIP_OVERLOAD1(double, logb)
__HIP_OVERLOAD1(long long, llrint)
__HIP_OVERLOAD1(long long, llround)
__HIP_OVERLOAD1(long, lrint)
__HIP_OVERLOAD1(long, lround)
__HIP_OVERLOAD1(double, nearbyint)
__HIP_OVERLOAD2(double, nextafter)
__HIP_OVERLOAD2(double, pow)
__HIP_OVERLOAD2(double, remainder)
__HIP_OVERLOAD1(double, rint)
__HIP_OVERLOAD1(double, round)
__HIP_OVERLOAD1(bool, signbit)
__HIP_OVERLOAD1(double, sin)
__HIP_OVERLOAD1(double, sinh)
__HIP_OVERLOAD1(double, sqrt)
__HIP_OVERLOAD1(double, tan)
__HIP_OVERLOAD1(double, tanh)
__HIP_OVERLOAD1(double, tgamma)
__HIP_OVERLOAD1(double, trunc)
__HIP_OVERLOAD2(double, max)
__HIP_OVERLOAD2(double, min)
#if __cplusplus >= 201103L
template <typename __T1, typename __T2, typename __T3>
__DEVICE__ __CONSTEXPR__ typename __hip_enable_if<
__hip::is_arithmetic<__T1>::value && __hip::is_arithmetic<__T2>::value &&
__hip::is_arithmetic<__T3>::value,
typename __hip::__promote<__T1, __T2, __T3>::type>::type
fma(__T1 __x, __T2 __y, __T3 __z) {
typedef typename __hip::__promote<__T1, __T2, __T3>::type __result_type;
return ::fma((__result_type)__x, (__result_type)__y, (__result_type)__z);
}
#else
template <typename __T1, typename __T2, typename __T3>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_arithmetic<__T1>::value &&
__hip::is_arithmetic<__T2>::value &&
__hip::is_arithmetic<__T3>::value,
double>::type
fma(__T1 __x, __T2 __y, __T3 __z) {
return ::fma((double)__x, (double)__y, (double)__z);
}
#endif
template <typename __T>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_integral<__T>::value, double>::type
frexp(__T __x, int *__exp) {
return ::frexp((double)__x, __exp);
}
template <typename __T>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_integral<__T>::value, double>::type
ldexp(__T __x, int __exp) {
return ::ldexp((double)__x, __exp);
}
template <typename __T>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_integral<__T>::value, double>::type
modf(__T __x, double *__exp) {
return ::modf((double)__x, __exp);
}
#if __cplusplus >= 201103L
template <typename __T1, typename __T2>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_arithmetic<__T1>::value &&
__hip::is_arithmetic<__T2>::value,
typename __hip::__promote<__T1, __T2>::type>::type
remquo(__T1 __x, __T2 __y, int *__quo) {
typedef typename __hip::__promote<__T1, __T2>::type __result_type;
return ::remquo((__result_type)__x, (__result_type)__y, __quo);
}
#else
template <typename __T1, typename __T2>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_arithmetic<__T1>::value &&
__hip::is_arithmetic<__T2>::value,
double>::type
remquo(__T1 __x, __T2 __y, int *__quo) {
return ::remquo((double)__x, (double)__y, __quo);
}
#endif
template <typename __T>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_integral<__T>::value, double>::type
scalbln(__T __x, long int __exp) {
return ::scalbln((double)__x, __exp);
}
template <typename __T>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_integral<__T>::value, double>::type
scalbn(__T __x, int __exp) {
return ::scalbn((double)__x, __exp);
}
#pragma pop_macro("__HIP_OVERLOAD1")
#pragma pop_macro("__HIP_OVERLOAD2")
#endif #endif
#ifndef __OPENMP_AMDGCN__
#if !defined(__HIPCC_RTC__)
#ifdef _LIBCPP_BEGIN_NAMESPACE_STD
_LIBCPP_BEGIN_NAMESPACE_STD
#else
namespace std {
#ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_VERSION
#endif #endif
using ::acos;
using ::acosh;
using ::asin;
using ::asinh;
using ::atan;
using ::atan2;
using ::atanh;
using ::cbrt;
using ::ceil;
using ::copysign;
using ::cos;
using ::cosh;
using ::erf;
using ::erfc;
using ::exp;
using ::exp2;
using ::expm1;
using ::fabs;
using ::fdim;
using ::floor;
using ::fma;
using ::fmax;
using ::fmin;
using ::fmod;
using ::fpclassify;
using ::frexp;
using ::hypot;
using ::ilogb;
using ::isfinite;
using ::isgreater;
using ::isgreaterequal;
using ::isless;
using ::islessequal;
using ::islessgreater;
using ::isnormal;
using ::isunordered;
using ::ldexp;
using ::lgamma;
using ::llrint;
using ::llround;
using ::log;
using ::log10;
using ::log1p;
using ::log2;
using ::logb;
using ::lrint;
using ::lround;
using ::modf;
using ::nearbyint;
using ::nextafter;
using ::pow;
using ::remainder;
using ::remquo;
using ::rint;
using ::round;
using ::scalbln;
using ::scalbn;
using ::signbit;
using ::sin;
using ::sinh;
using ::sqrt;
using ::tan;
using ::tanh;
using ::tgamma;
using ::trunc;
#ifndef __GLIBCXX__
using ::isinf;
using ::isnan;
#endif
using ::acosf;
using ::acoshf;
using ::asinf;
using ::asinhf;
using ::atan2f;
using ::atanf;
using ::atanhf;
using ::cbrtf;
using ::ceilf;
using ::copysignf;
using ::cosf;
using ::coshf;
using ::erfcf;
using ::erff;
using ::exp2f;
using ::expf;
using ::expm1f;
using ::fabsf;
using ::fdimf;
using ::floorf;
using ::fmaf;
using ::fmaxf;
using ::fminf;
using ::fmodf;
using ::frexpf;
using ::hypotf;
using ::ilogbf;
using ::ldexpf;
using ::lgammaf;
using ::llrintf;
using ::llroundf;
using ::log10f;
using ::log1pf;
using ::log2f;
using ::logbf;
using ::logf;
using ::lrintf;
using ::lroundf;
using ::modff;
using ::nearbyintf;
using ::nextafterf;
using ::powf;
using ::remainderf;
using ::remquof;
using ::rintf;
using ::roundf;
using ::scalblnf;
using ::scalbnf;
using ::sinf;
using ::sinhf;
using ::sqrtf;
using ::tanf;
using ::tanhf;
using ::tgammaf;
using ::truncf;
#ifdef _LIBCPP_END_NAMESPACE_STD
_LIBCPP_END_NAMESPACE_STD
#else
#ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_END_NAMESPACE_VERSION
#endif } #endif #endif
#if !defined(__HIPCC_RTC__)
#if defined(_MSC_VER)
#include <ymath.h>
#if defined(__cplusplus)
extern "C" {
#endif __DEVICE__ __CONSTEXPR__ __attribute__((overloadable)) double _Cosh(double x,
double y) {
return cosh(x) * y;
}
__DEVICE__ __CONSTEXPR__ __attribute__((overloadable)) float _FCosh(float x,
float y) {
return coshf(x) * y;
}
__DEVICE__ __CONSTEXPR__ __attribute__((overloadable)) short _Dtest(double *p) {
return fpclassify(*p);
}
__DEVICE__ __CONSTEXPR__ __attribute__((overloadable)) short _FDtest(float *p) {
return fpclassify(*p);
}
__DEVICE__ __CONSTEXPR__ __attribute__((overloadable)) double _Sinh(double x,
double y) {
return sinh(x) * y;
}
__DEVICE__ __CONSTEXPR__ __attribute__((overloadable)) float _FSinh(float x,
float y) {
return sinhf(x) * y;
}
#if defined(__cplusplus)
}
#endif #endif #endif #endif
#pragma pop_macro("__DEVICE__")
#pragma pop_macro("__CONSTEXPR__")
#endif