; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py ; This is the loop in c++ being vectorize in this file with ;experimental.vector.reverse ; #pragma clang loop vectorize_width(4, scalable) ; for (int i = N-1; i >= 0; --i) ; a[i] = b[i] + 1.0; ; REQUIRES: asserts ; RUN: opt -loop-vectorize -dce -instcombine -mtriple riscv64-linux-gnu \ ; RUN: -mattr=+v -debug-only=loop-vectorize -scalable-vectorization=on \ ; RUN: -riscv-v-vector-bits-min=128 -disable-output < %s 2>&1 | FileCheck %s define void @vector_reverse_i64(ptr nocapture noundef writeonly %A, ptr nocapture noundef readonly %B, i32 noundef signext %n) { ; CHECK-LABEL: 'vector_reverse_i64' ; CHECK-NEXT: LV: Loop hints: force=enabled width=vscale x 4 interleave=0 ; CHECK-NEXT: LV: Found a loop: for.body ; CHECK-NEXT: LV: Found an induction variable. ; CHECK-NEXT: LV: Found an induction variable. ; CHECK-NEXT: LV: Did not find one integer induction var. ; CHECK-NEXT: LV: We can vectorize this loop (with a runtime bound check)! ; CHECK-NEXT: LV: Found trip count: 0 ; CHECK-NEXT: LV: Scalable vectorization is available ; CHECK-NEXT: LV: The max safe fixed VF is: 67108864. ; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295. ; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1 ; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom ; CHECK-NEXT: LV: Found uniform instruction: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom ; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64 ; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64 ; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ] ; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1 ; CHECK-NEXT: LV: Found uniform instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ] ; CHECK-NEXT: LV: Found uniform instruction: %i.0 = add nsw i32 %i.0.in8, -1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ] ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ] ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64 ; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom ; CHECK-NEXT: LV: Found an estimated cost of 7 for VF vscale x 4 For instruction: %1 = load i32, ptr %arrayidx, align 4 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %add9 = add i32 %1, 1 ; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom ; CHECK-NEXT: LV: Found an estimated cost of 7 for VF vscale x 4 For instruction: store i32 %add9, ptr %arrayidx3, align 4 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0 ; CHECK-NEXT: LV: Using user VF vscale x 4. ; CHECK-NEXT: LV: Scalarizing: %i.0 = add nsw i32 %i.0.in8, -1 ; CHECK-NEXT: LV: Scalarizing: %idxprom = zext i32 %i.0 to i64 ; CHECK-NEXT: LV: Scalarizing: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom ; CHECK-NEXT: LV: Scalarizing: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom ; CHECK-NEXT: LV: Scalarizing: %cmp = icmp ugt i64 %indvars.iv, 1 ; CHECK-NEXT: LV: Scalarizing: %indvars.iv.next = add nsw i64 %indvars.iv, -1 ; CHECK-NEXT: VPlan 'Initial VPlan for VF={vscale x 4},UF>=1' { ; CHECK-NEXT: Live-in vp<%2> = vector-trip-count ; CHECK: vector.ph: ; CHECK-NEXT: Successor(s): vector loop ; CHECK: <x1> vector loop: { ; CHECK-NEXT: vector.body: ; CHECK-NEXT: EMIT vp<%3> = CANONICAL-INDUCTION ; CHECK-NEXT: vp<%4> = SCALAR-STEPS vp<%3>, ir<%n>, ir<-1> ; CHECK-NEXT: CLONE ir<%i.0> = add vp<%4>, ir<-1> ; CHECK-NEXT: CLONE ir<%idxprom> = zext ir<%i.0> ; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr ir<%B>, ir<%idxprom> ; CHECK-NEXT: WIDEN ir<%1> = load ir<%arrayidx> ; CHECK-NEXT: WIDEN ir<%add9> = add ir<%1>, ir<1> ; CHECK-NEXT: CLONE ir<%arrayidx3> = getelementptr ir<%A>, ir<%idxprom> ; CHECK-NEXT: WIDEN store ir<%arrayidx3>, ir<%add9> ; CHECK-NEXT: EMIT vp<%11> = VF * UF +(nuw) vp<%3> ; CHECK-NEXT: EMIT branch-on-count vp<%11> vp<%2> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): middle.block ; CHECK: middle.block: ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ] ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ] ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64 ; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom ; CHECK-NEXT: LV: Found an estimated cost of 7 for VF vscale x 4 For instruction: %1 = load i32, ptr %arrayidx, align 4 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %add9 = add i32 %1, 1 ; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom ; CHECK-NEXT: LV: Found an estimated cost of 7 for VF vscale x 4 For instruction: store i32 %add9, ptr %arrayidx3, align 4 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0 ; CHECK-NEXT: LV(REG): Calculating max register usage: ; CHECK-NEXT: LV(REG): At #0 Interval # 0 ; CHECK-NEXT: LV(REG): At #1 Interval # 1 ; CHECK-NEXT: LV(REG): At #2 Interval # 2 ; CHECK-NEXT: LV(REG): At #3 Interval # 2 ; CHECK-NEXT: LV(REG): At #4 Interval # 2 ; CHECK-NEXT: LV(REG): At #5 Interval # 3 ; CHECK-NEXT: LV(REG): At #6 Interval # 3 ; CHECK-NEXT: LV(REG): At #7 Interval # 3 ; CHECK-NEXT: LV(REG): At #9 Interval # 1 ; CHECK-NEXT: LV(REG): At #10 Interval # 2 ; CHECK-NEXT: LV(REG): VF = vscale x 4 ; CHECK-NEXT: LV(REG): Found max usage: 2 item ; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 3 registers ; CHECK-NEXT: LV(REG): RegisterClass: RISCV::VRRC, 2 registers ; CHECK-NEXT: LV(REG): Found invariant usage: 1 item ; CHECK-NEXT: LV(REG): RegisterClass: RISCV::VRRC, 4 registers ; CHECK-NEXT: LV: The target has 31 registers of RISCV::GPRRC register class ; CHECK-NEXT: LV: The target has 32 registers of RISCV::VRRC register class ; CHECK-NEXT: LV: Loop cost is 22 ; CHECK-NEXT: LV: IC is 2 ; CHECK-NEXT: LV: VF is vscale x 4 ; CHECK-NEXT: LV: Not Interleaving. ; CHECK-NEXT: LV: Interleaving is not beneficial. ; CHECK-NEXT: LV: Found a vectorizable loop (vscale x 4) in <stdin> ; CHECK-NEXT: LEV: Epilogue vectorization is not profitable for this loop ; CHECK-NEXT: Executing best plan with VF=vscale x 4, UF=1 ; CHECK-NEXT: LV: Interleaving disabled by the pass manager ; entry: %cmp7 = icmp sgt i32 %n, 0 br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup for.body.preheader: ; preds = %entry %0 = zext i32 %n to i64 br label %for.body for.cond.cleanup: ; preds = %for.body, %entry ret void for.body: ; preds = %for.body.preheader, %for.body %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ] %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ] %i.0 = add nsw i32 %i.0.in8, -1 %idxprom = zext i32 %i.0 to i64 %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom %1 = load i32, ptr %arrayidx, align 4 %add9 = add i32 %1, 1 %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom store i32 %add9, ptr %arrayidx3, align 4 %cmp = icmp ugt i64 %indvars.iv, 1 %indvars.iv.next = add nsw i64 %indvars.iv, -1 br i1 %cmp, label %for.body, label %for.cond.cleanup, !llvm.loop !0 } define void @vector_reverse_f32(ptr nocapture noundef writeonly %A, ptr nocapture noundef readonly %B, i32 noundef signext %n) { ; CHECK-LABEL: 'vector_reverse_f32' ; CHECK-NEXT: LV: Loop hints: force=enabled width=vscale x 4 interleave=0 ; CHECK-NEXT: LV: Found a loop: for.body ; CHECK-NEXT: LV: Found an induction variable. ; CHECK-NEXT: LV: Found an induction variable. ; CHECK-NEXT: LV: Found FP op with unsafe algebra. ; CHECK-NEXT: LV: Did not find one integer induction var. ; CHECK-NEXT: LV: We can vectorize this loop (with a runtime bound check)! ; CHECK-NEXT: LV: Found trip count: 0 ; CHECK-NEXT: LV: Scalable vectorization is available ; CHECK-NEXT: LV: The max safe fixed VF is: 67108864. ; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295. ; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1 ; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom ; CHECK-NEXT: LV: Found uniform instruction: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom ; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64 ; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64 ; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ] ; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1 ; CHECK-NEXT: LV: Found uniform instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ] ; CHECK-NEXT: LV: Found uniform instruction: %i.0 = add nsw i32 %i.0.in8, -1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ] ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ] ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64 ; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom ; CHECK-NEXT: LV: Found an estimated cost of 7 for VF vscale x 4 For instruction: %1 = load float, ptr %arrayidx, align 4 ; CHECK-NEXT: LV: Found an estimated cost of 2 for VF vscale x 4 For instruction: %conv1 = fadd float %1, 1.000000e+00 ; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom ; CHECK-NEXT: LV: Found an estimated cost of 7 for VF vscale x 4 For instruction: store float %conv1, ptr %arrayidx3, align 4 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0 ; CHECK-NEXT: LV: Using user VF vscale x 4. ; CHECK-NEXT: LV: Scalarizing: %i.0 = add nsw i32 %i.0.in8, -1 ; CHECK-NEXT: LV: Scalarizing: %idxprom = zext i32 %i.0 to i64 ; CHECK-NEXT: LV: Scalarizing: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom ; CHECK-NEXT: LV: Scalarizing: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom ; CHECK-NEXT: LV: Scalarizing: %cmp = icmp ugt i64 %indvars.iv, 1 ; CHECK-NEXT: LV: Scalarizing: %indvars.iv.next = add nsw i64 %indvars.iv, -1 ; CHECK-NEXT: VPlan 'Initial VPlan for VF={vscale x 4},UF>=1' { ; CHECK-NEXT: Live-in vp<%2> = vector-trip-count ; CHECK: vector.ph: ; CHECK-NEXT: Successor(s): vector loop ; CHECK: <x1> vector loop: { ; CHECK-NEXT: vector.body: ; CHECK-NEXT: EMIT vp<%3> = CANONICAL-INDUCTION ; CHECK-NEXT: vp<%4> = SCALAR-STEPS vp<%3>, ir<%n>, ir<-1> ; CHECK-NEXT: CLONE ir<%i.0> = add vp<%4>, ir<-1> ; CHECK-NEXT: CLONE ir<%idxprom> = zext ir<%i.0> ; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr ir<%B>, ir<%idxprom> ; CHECK-NEXT: WIDEN ir<%1> = load ir<%arrayidx> ; CHECK-NEXT: WIDEN ir<%conv1> = fadd ir<%1>, ir<1.000000e+00> ; CHECK-NEXT: CLONE ir<%arrayidx3> = getelementptr ir<%A>, ir<%idxprom> ; CHECK-NEXT: WIDEN store ir<%arrayidx3>, ir<%conv1> ; CHECK-NEXT: EMIT vp<%11> = VF * UF +(nuw) vp<%3> ; CHECK-NEXT: EMIT branch-on-count vp<%11> vp<%2> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): middle.block ; CHECK: middle.block: ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ] ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ] ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64 ; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom ; CHECK-NEXT: LV: Found an estimated cost of 7 for VF vscale x 4 For instruction: %1 = load float, ptr %arrayidx, align 4 ; CHECK-NEXT: LV: Found an estimated cost of 2 for VF vscale x 4 For instruction: %conv1 = fadd float %1, 1.000000e+00 ; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom ; CHECK-NEXT: LV: Found an estimated cost of 7 for VF vscale x 4 For instruction: store float %conv1, ptr %arrayidx3, align 4 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1 ; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0 ; CHECK-NEXT: LV(REG): Calculating max register usage: ; CHECK-NEXT: LV(REG): At #0 Interval # 0 ; CHECK-NEXT: LV(REG): At #1 Interval # 1 ; CHECK-NEXT: LV(REG): At #2 Interval # 2 ; CHECK-NEXT: LV(REG): At #3 Interval # 2 ; CHECK-NEXT: LV(REG): At #4 Interval # 2 ; CHECK-NEXT: LV(REG): At #5 Interval # 3 ; CHECK-NEXT: LV(REG): At #6 Interval # 3 ; CHECK-NEXT: LV(REG): At #7 Interval # 3 ; CHECK-NEXT: LV(REG): At #9 Interval # 1 ; CHECK-NEXT: LV(REG): At #10 Interval # 2 ; CHECK-NEXT: LV(REG): VF = vscale x 4 ; CHECK-NEXT: LV(REG): Found max usage: 2 item ; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 3 registers ; CHECK-NEXT: LV(REG): RegisterClass: RISCV::VRRC, 2 registers ; CHECK-NEXT: LV(REG): Found invariant usage: 1 item ; CHECK-NEXT: LV(REG): RegisterClass: RISCV::VRRC, 4 registers ; CHECK-NEXT: LV: The target has 31 registers of RISCV::GPRRC register class ; CHECK-NEXT: LV: The target has 32 registers of RISCV::VRRC register class ; CHECK-NEXT: LV: Loop cost is 23 ; CHECK-NEXT: LV: IC is 2 ; CHECK-NEXT: LV: VF is vscale x 4 ; CHECK-NEXT: LV: Not Interleaving. ; CHECK-NEXT: LV: Interleaving is not beneficial. ; CHECK-NEXT: LV: Found a vectorizable loop (vscale x 4) in <stdin> ; CHECK-NEXT: LEV: Epilogue vectorization is not profitable for this loop ; CHECK-NEXT: Executing best plan with VF=vscale x 4, UF=1 ; CHECK-NEXT: LV: Interleaving disabled by the pass manager ; entry: %cmp7 = icmp sgt i32 %n, 0 br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup for.body.preheader: ; preds = %entry %0 = zext i32 %n to i64 br label %for.body for.cond.cleanup: ; preds = %for.body, %entry ret void for.body: ; preds = %for.body.preheader, %for.body %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ] %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ] %i.0 = add nsw i32 %i.0.in8, -1 %idxprom = zext i32 %i.0 to i64 %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom %1 = load float, ptr %arrayidx, align 4 %conv1 = fadd float %1, 1.000000e+00 %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom store float %conv1, ptr %arrayidx3, align 4 %cmp = icmp ugt i64 %indvars.iv, 1 %indvars.iv.next = add nsw i64 %indvars.iv, -1 br i1 %cmp, label %for.body, label %for.cond.cleanup, !llvm.loop !0 } !0 = distinct !{!0, !1, !2, !3, !4} !1 = !{!"llvm.loop.mustprogress"} !2 = !{!"llvm.loop.vectorize.width", i32 4} !3 = !{!"llvm.loop.vectorize.scalable.enable", i1 true} !4 = !{!"llvm.loop.vectorize.enable", i1 true}