//===--------------------- InstructionInfoView.cpp --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements the InstructionInfoView API.
///
//===----------------------------------------------------------------------===//
#include "Views/InstructionInfoView.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/JSON.h"
namespace llvm {
namespace mca {
void InstructionInfoView::printView(raw_ostream &OS) const {
std::string Buffer;
raw_string_ostream TempStream(Buffer);
ArrayRef<llvm::MCInst> Source = getSource();
if (!Source.size())
return;
IIVDVec IIVD(Source.size());
collectData(IIVD);
TempStream << "\n\nInstruction Info:\n";
TempStream << "[1]: #uOps\n[2]: Latency\n[3]: RThroughput\n"
<< "[4]: MayLoad\n[5]: MayStore\n[6]: HasSideEffects (U)\n";
if (PrintBarriers) {
TempStream << "[7]: LoadBarrier\n[8]: StoreBarrier\n";
}
if (PrintEncodings) {
if (PrintBarriers) {
TempStream << "[9]: Encoding Size\n";
TempStream << "\n[1] [2] [3] [4] [5] [6] [7] [8] "
<< "[9] Encodings: Instructions:\n";
} else {
TempStream << "[7]: Encoding Size\n";
TempStream << "\n[1] [2] [3] [4] [5] [6] [7] "
<< "Encodings: Instructions:\n";
}
} else {
if (PrintBarriers) {
TempStream << "\n[1] [2] [3] [4] [5] [6] [7] [8] "
<< "Instructions:\n";
} else {
TempStream << "\n[1] [2] [3] [4] [5] [6] "
<< "Instructions:\n";
}
}
int Index = 0;
for (const auto &I : enumerate(zip(IIVD, Source))) {
const InstructionInfoViewData &IIVDEntry = std::get<0>(I.value());
TempStream << ' ' << IIVDEntry.NumMicroOpcodes << " ";
if (IIVDEntry.NumMicroOpcodes < 10)
TempStream << " ";
else if (IIVDEntry.NumMicroOpcodes < 100)
TempStream << ' ';
TempStream << IIVDEntry.Latency << " ";
if (IIVDEntry.Latency < 10)
TempStream << " ";
else if (IIVDEntry.Latency < 100)
TempStream << ' ';
if (IIVDEntry.RThroughput) {
double RT = IIVDEntry.RThroughput.value();
TempStream << format("%.2f", RT) << ' ';
if (RT < 10.0)
TempStream << " ";
else if (RT < 100.0)
TempStream << ' ';
} else {
TempStream << " - ";
}
TempStream << (IIVDEntry.mayLoad ? " * " : " ");
TempStream << (IIVDEntry.mayStore ? " * " : " ");
TempStream << (IIVDEntry.hasUnmodeledSideEffects ? " U " : " ");
if (PrintBarriers) {
TempStream << (LoweredInsts[Index]->isALoadBarrier() ? " * "
: " ");
TempStream << (LoweredInsts[Index]->isAStoreBarrier() ? " * "
: " ");
}
if (PrintEncodings) {
StringRef Encoding(CE.getEncoding(I.index()));
unsigned EncodingSize = Encoding.size();
TempStream << " " << EncodingSize
<< (EncodingSize < 10 ? " " : " ");
TempStream.flush();
formatted_raw_ostream FOS(TempStream);
for (unsigned i = 0, e = Encoding.size(); i != e; ++i)
FOS << format("%02x ", (uint8_t)Encoding[i]);
FOS.PadToColumn(30);
FOS.flush();
}
const MCInst &Inst = std::get<1>(I.value());
TempStream << printInstructionString(Inst) << '\n';
++Index;
}
TempStream.flush();
OS << Buffer;
}
void InstructionInfoView::collectData(
MutableArrayRef<InstructionInfoViewData> IIVD) const {
const llvm::MCSubtargetInfo &STI = getSubTargetInfo();
const MCSchedModel &SM = STI.getSchedModel();
for (const auto I : zip(getSource(), IIVD)) {
const MCInst &Inst = std::get<0>(I);
InstructionInfoViewData &IIVDEntry = std::get<1>(I);
const MCInstrDesc &MCDesc = MCII.get(Inst.getOpcode());
// Obtain the scheduling class information from the instruction.
unsigned SchedClassID = MCDesc.getSchedClass();
unsigned CPUID = SM.getProcessorID();
// Try to solve variant scheduling classes.
while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
SchedClassID =
STI.resolveVariantSchedClass(SchedClassID, &Inst, &MCII, CPUID);
const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
IIVDEntry.NumMicroOpcodes = SCDesc.NumMicroOps;
IIVDEntry.Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
// Add extra latency due to delays in the forwarding data paths.
IIVDEntry.Latency += MCSchedModel::getForwardingDelayCycles(
STI.getReadAdvanceEntries(SCDesc));
IIVDEntry.RThroughput = MCSchedModel::getReciprocalThroughput(STI, SCDesc);
IIVDEntry.mayLoad = MCDesc.mayLoad();
IIVDEntry.mayStore = MCDesc.mayStore();
IIVDEntry.hasUnmodeledSideEffects = MCDesc.hasUnmodeledSideEffects();
}
}
// Construct a JSON object from a single InstructionInfoViewData object.
json::Object
InstructionInfoView::toJSON(const InstructionInfoViewData &IIVD) const {
json::Object JO({{"NumMicroOpcodes", IIVD.NumMicroOpcodes},
{"Latency", IIVD.Latency},
{"mayLoad", IIVD.mayLoad},
{"mayStore", IIVD.mayStore},
{"hasUnmodeledSideEffects", IIVD.hasUnmodeledSideEffects}});
JO.try_emplace("RThroughput", IIVD.RThroughput.value_or(0.0));
return JO;
}
json::Value InstructionInfoView::toJSON() const {
ArrayRef<llvm::MCInst> Source = getSource();
if (!Source.size())
return json::Value(0);
IIVDVec IIVD(Source.size());
collectData(IIVD);
json::Array InstInfo;
for (const auto &I : enumerate(IIVD)) {
const InstructionInfoViewData &IIVDEntry = I.value();
json::Object JO = toJSON(IIVDEntry);
JO.try_emplace("Instruction", (unsigned)I.index());
InstInfo.push_back(std::move(JO));
}
return json::Object({{"InstructionList", json::Value(std::move(InstInfo))}});
}
} // namespace mca.
} // namespace llvm