#include "GCNSchedStrategy.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#define DEBUG_TYPE "machine-scheduler"
using namespace llvm;
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
const MachineSchedContext *C)
: GenericScheduler(C), TargetOccupancy(0), MF(nullptr),
HasClusteredNodes(false), HasExcessPressure(false) {}
void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
GenericScheduler::initialize(DAG);
MF = &DAG->MF;
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
const unsigned ErrorMargin = 3;
SGPRExcessLimit =
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass);
VGPRExcessLimit =
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass);
SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
TargetOccupancy = MFI.getOccupancy();
SGPRCriticalLimit =
std::min(ST.getMaxNumSGPRs(TargetOccupancy, true), SGPRExcessLimit);
VGPRCriticalLimit =
std::min(ST.getMaxNumVGPRs(TargetOccupancy), VGPRExcessLimit);
SGPRCriticalLimit =
std::min(SGPRCriticalLimit - ErrorMargin, SGPRCriticalLimit);
VGPRCriticalLimit =
std::min(VGPRCriticalLimit - ErrorMargin, VGPRCriticalLimit);
SGPRExcessLimit = std::min(SGPRExcessLimit - ErrorMargin, SGPRExcessLimit);
VGPRExcessLimit = std::min(VGPRExcessLimit - ErrorMargin, VGPRExcessLimit);
}
void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
bool AtTop, const RegPressureTracker &RPTracker,
const SIRegisterInfo *SRI,
unsigned SGPRPressure,
unsigned VGPRPressure) {
Cand.SU = SU;
Cand.AtTop = AtTop;
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
Pressure.clear();
MaxPressure.clear();
if (AtTop)
TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
else {
TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
}
unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
const unsigned MaxVGPRPressureInc = 16;
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
HasExcessPressure = true;
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
}
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
HasExcessPressure = true;
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
}
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
HasExcessPressure = true;
if (SGPRDelta > VGPRDelta) {
Cand.RPDelta.CriticalMax =
PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
} else {
Cand.RPDelta.CriticalMax =
PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
}
}
}
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
const CandPolicy &ZonePolicy,
const RegPressureTracker &RPTracker,
SchedCandidate &Cand) {
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
unsigned SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
unsigned VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
ReadyQueue &Q = Zone.Available;
for (SUnit *SU : Q) {
SchedCandidate TryCand(ZonePolicy);
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
SGPRPressure, VGPRPressure);
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
if (TryCand.Reason != NoCand) {
if (TryCand.ResDelta == SchedResourceDelta())
TryCand.initResourceDelta(Zone.DAG, SchedModel);
Cand.setBest(TryCand);
LLVM_DEBUG(traceCandidate(Cand));
}
}
}
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
if (SUnit *SU = Bot.pickOnlyChoice()) {
IsTopNode = false;
return SU;
}
if (SUnit *SU = Top.pickOnlyChoice()) {
IsTopNode = true;
return SU;
}
CandPolicy BotPolicy;
setPolicy(BotPolicy, false, Bot, &Top);
CandPolicy TopPolicy;
setPolicy(TopPolicy, false, Top, &Bot);
LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
BotCand.Policy != BotPolicy) {
BotCand.reset(CandPolicy());
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
} else {
LLVM_DEBUG(traceCandidate(BotCand));
#ifndef NDEBUG
if (VerifyScheduling) {
SchedCandidate TCand;
TCand.reset(CandPolicy());
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
assert(TCand.SU == BotCand.SU &&
"Last pick result should correspond to re-picking right now");
}
#endif
}
LLVM_DEBUG(dbgs() << "Picking from Top:\n");
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
TopCand.Policy != TopPolicy) {
TopCand.reset(CandPolicy());
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
} else {
LLVM_DEBUG(traceCandidate(TopCand));
#ifndef NDEBUG
if (VerifyScheduling) {
SchedCandidate TCand;
TCand.reset(CandPolicy());
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
assert(TCand.SU == TopCand.SU &&
"Last pick result should correspond to re-picking right now");
}
#endif
}
LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
dbgs() << "Bot Cand: "; traceCandidate(BotCand););
SchedCandidate Cand = BotCand;
TopCand.Reason = NoCand;
GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
if (TopCand.Reason != NoCand) {
Cand.setBest(TopCand);
}
LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
IsTopNode = Cand.AtTop;
return Cand.SU;
}
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
if (DAG->top() == DAG->bottom()) {
assert(Top.Available.empty() && Top.Pending.empty() &&
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
return nullptr;
}
SUnit *SU;
do {
if (RegionPolicy.OnlyTopDown) {
SU = Top.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
TopCand.reset(NoPolicy);
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
assert(TopCand.Reason != NoCand && "failed to find a candidate");
SU = TopCand.SU;
}
IsTopNode = true;
} else if (RegionPolicy.OnlyBottomUp) {
SU = Bot.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
BotCand.reset(NoPolicy);
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
assert(BotCand.Reason != NoCand && "failed to find a candidate");
SU = BotCand.SU;
}
IsTopNode = false;
} else {
SU = pickNodeBidirectional(IsTopNode);
}
} while (SU->isScheduled);
if (SU->isTopReady())
Top.removeReady(SU);
if (SU->isBottomReady())
Bot.removeReady(SU);
if (!HasClusteredNodes && SU->getInstr()->mayLoadOrStore()) {
for (SDep &Dep : SU->Preds) {
if (Dep.isCluster()) {
HasClusteredNodes = true;
break;
}
}
}
LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
<< *SU->getInstr());
return SU;
}
GCNScheduleDAGMILive::GCNScheduleDAGMILive(
MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S)
: ScheduleDAGMILive(C, std::move(S)), ST(MF.getSubtarget<GCNSubtarget>()),
MFI(*MF.getInfo<SIMachineFunctionInfo>()),
StartingOccupancy(MFI.getOccupancy()), MinOccupancy(StartingOccupancy) {
LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
}
void GCNScheduleDAGMILive::schedule() {
Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
}
GCNRegPressure
GCNScheduleDAGMILive::getRealRegPressure(unsigned RegionIdx) const {
GCNDownwardRPTracker RPTracker(*LIS);
RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
return RPTracker.moveMaxPressure();
}
void GCNScheduleDAGMILive::computeBlockPressure(unsigned RegionIdx,
const MachineBasicBlock *MBB) {
GCNDownwardRPTracker RPTracker(*LIS);
const MachineBasicBlock *OnlySucc = nullptr;
if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
SlotIndexes *Ind = LIS->getSlotIndexes();
if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
OnlySucc = *MBB->succ_begin();
}
size_t CurRegion = RegionIdx;
for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
if (Regions[CurRegion].first->getParent() != MBB)
break;
--CurRegion;
auto I = MBB->begin();
auto LiveInIt = MBBLiveIns.find(MBB);
auto &Rgn = Regions[CurRegion];
auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
if (LiveInIt != MBBLiveIns.end()) {
auto LiveIn = std::move(LiveInIt->second);
RPTracker.reset(*MBB->begin(), &LiveIn);
MBBLiveIns.erase(LiveInIt);
} else {
I = Rgn.first;
auto LRS = BBLiveInMap.lookup(NonDbgMI);
#ifdef EXPENSIVE_CHECKS
assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
#endif
RPTracker.reset(*I, &LRS);
}
for (;;) {
I = RPTracker.getNext();
if (Regions[CurRegion].first == I || NonDbgMI == I) {
LiveIns[CurRegion] = RPTracker.getLiveRegs();
RPTracker.clearMaxPressure();
}
if (Regions[CurRegion].second == I) {
Pressure[CurRegion] = RPTracker.moveMaxPressure();
if (CurRegion-- == RegionIdx)
break;
}
RPTracker.advanceToNext();
RPTracker.advanceBeforeNext();
}
if (OnlySucc) {
if (I != MBB->end()) {
RPTracker.advanceToNext();
RPTracker.advance(MBB->end());
}
RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
RPTracker.advanceBeforeNext();
MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
}
}
DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
GCNScheduleDAGMILive::getBBLiveInMap() const {
assert(!Regions.empty());
std::vector<MachineInstr *> BBStarters;
BBStarters.reserve(Regions.size());
auto I = Regions.rbegin(), E = Regions.rend();
auto *BB = I->first->getParent();
do {
auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
BBStarters.push_back(MI);
do {
++I;
} while (I != E && I->first->getParent() == BB);
} while (I != E);
return getLiveRegMap(BBStarters, false , *LIS);
}
void GCNScheduleDAGMILive::finalizeSchedule() {
LiveIns.resize(Regions.size());
Pressure.resize(Regions.size());
RescheduleRegions.resize(Regions.size());
RegionsWithClusters.resize(Regions.size());
RegionsWithHighRP.resize(Regions.size());
RegionsWithMinOcc.resize(Regions.size());
RescheduleRegions.set();
RegionsWithClusters.reset();
RegionsWithHighRP.reset();
RegionsWithMinOcc.reset();
runSchedStages();
}
void GCNScheduleDAGMILive::runSchedStages() {
LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
InitialScheduleStage S0(GCNSchedStageID::InitialSchedule, *this);
UnclusteredRescheduleStage S1(GCNSchedStageID::UnclusteredReschedule, *this);
ClusteredLowOccStage S2(GCNSchedStageID::ClusteredLowOccupancyReschedule,
*this);
PreRARematStage S3(GCNSchedStageID::PreRARematerialize, *this);
GCNSchedStage *SchedStages[] = {&S0, &S1, &S2, &S3};
if (!Regions.empty())
BBLiveInMap = getBBLiveInMap();
for (auto *Stage : SchedStages) {
if (!Stage->initGCNSchedStage())
continue;
for (auto Region : Regions) {
RegionBegin = Region.first;
RegionEnd = Region.second;
if (!Stage->initGCNRegion()) {
Stage->advanceRegion();
exitRegion();
continue;
}
ScheduleDAGMILive::schedule();
Stage->finalizeGCNRegion();
}
Stage->finalizeGCNSchedStage();
}
}
#ifndef NDEBUG
raw_ostream &llvm::operator<<(raw_ostream &OS, const GCNSchedStageID &StageID) {
switch (StageID) {
case GCNSchedStageID::InitialSchedule:
OS << "Initial Schedule";
break;
case GCNSchedStageID::UnclusteredReschedule:
OS << "Unclustered Reschedule";
break;
case GCNSchedStageID::ClusteredLowOccupancyReschedule:
OS << "Clustered Low Occupancy Reschedule";
break;
case GCNSchedStageID::PreRARematerialize:
OS << "Pre-RA Rematerialize";
break;
}
return OS;
}
#endif
GCNSchedStage::GCNSchedStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG)
: DAG(DAG), S(static_cast<GCNMaxOccupancySchedStrategy &>(*DAG.SchedImpl)),
MF(DAG.MF), MFI(DAG.MFI), ST(DAG.ST), StageID(StageID) {}
bool GCNSchedStage::initGCNSchedStage() {
if (!DAG.LIS)
return false;
LLVM_DEBUG(dbgs() << "Starting scheduling stage: " << StageID << "\n");
return true;
}
bool UnclusteredRescheduleStage::initGCNSchedStage() {
if (!GCNSchedStage::initGCNSchedStage())
return false;
if (DAG.RescheduleRegions.none())
return false;
SavedMutations.swap(DAG.Mutations);
LLVM_DEBUG(dbgs() << "Retrying function scheduling without clustering.\n");
return true;
}
bool ClusteredLowOccStage::initGCNSchedStage() {
if (!GCNSchedStage::initGCNSchedStage())
return false;
if (DAG.StartingOccupancy <= DAG.MinOccupancy)
return false;
LLVM_DEBUG(
dbgs() << "Retrying function scheduling with lowest recorded occupancy "
<< DAG.MinOccupancy << ".\n");
return true;
}
bool PreRARematStage::initGCNSchedStage() {
if (!GCNSchedStage::initGCNSchedStage())
return false;
if (DAG.RegionsWithMinOcc.none() || DAG.Regions.size() == 1)
return false;
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
if (ST.computeOccupancy(MF.getFunction(), MFI.getLDSSize()) ==
DAG.MinOccupancy)
return false;
collectRematerializableInstructions();
if (RematerializableInsts.empty() || !sinkTriviallyRematInsts(ST, TII))
return false;
LLVM_DEBUG(
dbgs() << "Retrying function scheduling with improved occupancy of "
<< DAG.MinOccupancy << " from rematerializing\n");
return true;
}
void GCNSchedStage::finalizeGCNSchedStage() {
DAG.finishBlock();
LLVM_DEBUG(dbgs() << "Ending scheduling stage: " << StageID << "\n");
}
void UnclusteredRescheduleStage::finalizeGCNSchedStage() {
SavedMutations.swap(DAG.Mutations);
GCNSchedStage::finalizeGCNSchedStage();
}
bool GCNSchedStage::initGCNRegion() {
if (DAG.RegionBegin->getParent() != CurrentMBB)
setupNewBlock();
unsigned NumRegionInstrs = std::distance(DAG.begin(), DAG.end());
DAG.enterRegion(CurrentMBB, DAG.begin(), DAG.end(), NumRegionInstrs);
if (DAG.begin() == DAG.end() || DAG.begin() == std::prev(DAG.end()))
return false;
LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*CurrentMBB)
<< " " << CurrentMBB->getName()
<< "\n From: " << *DAG.begin() << " To: ";
if (DAG.RegionEnd != CurrentMBB->end()) dbgs() << *DAG.RegionEnd;
else dbgs() << "End";
dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
Unsched.clear();
Unsched.reserve(DAG.NumRegionInstrs);
for (auto &I : DAG)
Unsched.push_back(&I);
PressureBefore = DAG.Pressure[RegionIdx];
LLVM_DEBUG(
dbgs() << "Pressure before scheduling:\nRegion live-ins:";
GCNRPTracker::printLiveRegs(dbgs(), DAG.LiveIns[RegionIdx], DAG.MRI);
dbgs() << "Region live-in pressure: ";
llvm::getRegPressure(DAG.MRI, DAG.LiveIns[RegionIdx]).print(dbgs());
dbgs() << "Region register pressure: "; PressureBefore.print(dbgs()));
S.HasClusteredNodes = StageID > GCNSchedStageID::InitialSchedule;
S.HasExcessPressure = false;
return true;
}
bool UnclusteredRescheduleStage::initGCNRegion() {
if (!DAG.RescheduleRegions[RegionIdx])
return false;
return GCNSchedStage::initGCNRegion();
}
bool ClusteredLowOccStage::initGCNRegion() {
if (!DAG.RegionsWithClusters[RegionIdx] && !DAG.RegionsWithHighRP[RegionIdx])
return false;
return GCNSchedStage::initGCNRegion();
}
bool PreRARematStage::initGCNRegion() {
if (!DAG.RescheduleRegions[RegionIdx])
return false;
return GCNSchedStage::initGCNRegion();
}
void GCNSchedStage::setupNewBlock() {
if (CurrentMBB)
DAG.finishBlock();
CurrentMBB = DAG.RegionBegin->getParent();
DAG.startBlock(CurrentMBB);
if (StageID == GCNSchedStageID::InitialSchedule)
DAG.computeBlockPressure(RegionIdx, CurrentMBB);
}
void GCNSchedStage::finalizeGCNRegion() {
DAG.Regions[RegionIdx] = std::make_pair(DAG.RegionBegin, DAG.RegionEnd);
DAG.RescheduleRegions[RegionIdx] = false;
if (S.HasExcessPressure)
DAG.RegionsWithHighRP[RegionIdx] = true;
checkScheduling();
DAG.exitRegion();
RegionIdx++;
}
void InitialScheduleStage::finalizeGCNRegion() {
assert(nextStage(StageID) == GCNSchedStageID::UnclusteredReschedule);
if (S.HasClusteredNodes)
DAG.RegionsWithClusters[RegionIdx] = true;
GCNSchedStage::finalizeGCNRegion();
}
void GCNSchedStage::checkScheduling() {
PressureAfter = DAG.getRealRegPressure(RegionIdx);
LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
PressureAfter.print(dbgs()));
if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) <= S.VGPRCriticalLimit) {
DAG.Pressure[RegionIdx] = PressureAfter;
DAG.RegionsWithMinOcc[RegionIdx] =
PressureAfter.getOccupancy(ST) == DAG.MinOccupancy;
LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
return;
}
unsigned WavesAfter =
std::min(S.getTargetOccupancy(), PressureAfter.getOccupancy(ST));
unsigned WavesBefore =
std::min(S.getTargetOccupancy(), PressureBefore.getOccupancy(ST));
LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
<< ", after " << WavesAfter << ".\n");
unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
if (WavesAfter < WavesBefore && WavesAfter < DAG.MinOccupancy &&
WavesAfter >= MFI.getMinAllowedOccupancy()) {
LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
<< MFI.getMinAllowedOccupancy() << " waves\n");
NewOccupancy = WavesAfter;
}
if (NewOccupancy < DAG.MinOccupancy) {
DAG.MinOccupancy = NewOccupancy;
MFI.limitOccupancy(DAG.MinOccupancy);
DAG.RegionsWithMinOcc.reset();
LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
<< DAG.MinOccupancy << ".\n");
}
unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF);
unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF);
if (PressureAfter.getVGPRNum(false) > MaxVGPRs ||
PressureAfter.getAGPRNum() > MaxVGPRs ||
PressureAfter.getSGPRNum() > MaxSGPRs) {
DAG.RescheduleRegions[RegionIdx] = true;
DAG.RegionsWithHighRP[RegionIdx] = true;
}
if (shouldRevertScheduling(WavesAfter)) {
revertScheduling();
} else {
DAG.Pressure[RegionIdx] = PressureAfter;
DAG.RegionsWithMinOcc[RegionIdx] =
PressureAfter.getOccupancy(ST) == DAG.MinOccupancy;
}
}
bool GCNSchedStage::shouldRevertScheduling(unsigned WavesAfter) {
if (WavesAfter < DAG.MinOccupancy)
return true;
return false;
}
bool InitialScheduleStage::shouldRevertScheduling(unsigned WavesAfter) {
if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
return true;
if (mayCauseSpilling(WavesAfter))
return true;
assert(nextStage(StageID) == GCNSchedStageID::UnclusteredReschedule);
if (!DAG.RegionsWithClusters[RegionIdx])
DAG.RescheduleRegions[RegionIdx] = false;
return false;
}
bool UnclusteredRescheduleStage::shouldRevertScheduling(unsigned WavesAfter) {
if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
return true;
if (!PressureAfter.less(ST, PressureBefore)) {
LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n");
return true;
}
return false;
}
bool ClusteredLowOccStage::shouldRevertScheduling(unsigned WavesAfter) {
if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
return true;
if (mayCauseSpilling(WavesAfter))
return true;
return false;
}
bool PreRARematStage::shouldRevertScheduling(unsigned WavesAfter) {
if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
return true;
if (mayCauseSpilling(WavesAfter))
return true;
return false;
}
bool GCNSchedStage::mayCauseSpilling(unsigned WavesAfter) {
if (WavesAfter <= MFI.getMinWavesPerEU() &&
!PressureAfter.less(ST, PressureBefore) &&
DAG.RescheduleRegions[RegionIdx]) {
LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n");
return true;
}
return false;
}
void GCNSchedStage::revertScheduling() {
DAG.RegionsWithMinOcc[RegionIdx] =
PressureBefore.getOccupancy(ST) == DAG.MinOccupancy;
LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
DAG.RescheduleRegions[RegionIdx] =
DAG.RegionsWithClusters[RegionIdx] ||
(nextStage(StageID)) != GCNSchedStageID::UnclusteredReschedule;
DAG.RegionEnd = DAG.RegionBegin;
int SkippedDebugInstr = 0;
for (MachineInstr *MI : Unsched) {
if (MI->isDebugInstr()) {
++SkippedDebugInstr;
continue;
}
if (MI->getIterator() != DAG.RegionEnd) {
DAG.BB->remove(MI);
DAG.BB->insert(DAG.RegionEnd, MI);
if (!MI->isDebugInstr())
DAG.LIS->handleMove(*MI, true);
}
for (auto &Op : MI->operands())
if (Op.isReg() && Op.isDef())
Op.setIsUndef(false);
RegisterOperands RegOpers;
RegOpers.collect(*MI, *DAG.TRI, DAG.MRI, DAG.ShouldTrackLaneMasks, false);
if (!MI->isDebugInstr()) {
if (DAG.ShouldTrackLaneMasks) {
SlotIndex SlotIdx = DAG.LIS->getInstructionIndex(*MI).getRegSlot();
RegOpers.adjustLaneLiveness(*DAG.LIS, DAG.MRI, SlotIdx, MI);
} else {
RegOpers.detectDeadDefs(*MI, *DAG.LIS);
}
}
DAG.RegionEnd = MI->getIterator();
++DAG.RegionEnd;
LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
}
while (SkippedDebugInstr-- > 0)
++DAG.RegionEnd;
DAG.RegionBegin = Unsched.front()->getIterator();
if (DAG.RegionBegin->isDebugInstr()) {
for (MachineInstr *MI : Unsched) {
if (MI->isDebugInstr())
continue;
DAG.RegionBegin = MI->getIterator();
break;
}
}
DAG.placeDebugValues();
DAG.Regions[RegionIdx] = std::make_pair(DAG.RegionBegin, DAG.RegionEnd);
}
void PreRARematStage::collectRematerializableInstructions() {
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo *>(DAG.TRI);
for (unsigned I = 0, E = DAG.MRI.getNumVirtRegs(); I != E; ++I) {
Register Reg = Register::index2VirtReg(I);
if (!DAG.LIS->hasInterval(Reg))
continue;
if (!SRI->isVGPRClass(DAG.MRI.getRegClass(Reg)) ||
!DAG.MRI.hasOneDef(Reg) || !DAG.MRI.hasOneNonDBGUse(Reg))
continue;
MachineOperand *Op = DAG.MRI.getOneDef(Reg);
MachineInstr *Def = Op->getParent();
if (Op->getSubReg() != 0 || !isTriviallyReMaterializable(*Def))
continue;
MachineInstr *UseI = &*DAG.MRI.use_instr_nodbg_begin(Reg);
if (Def->getParent() == UseI->getParent())
continue;
bool AddedToRematList = false;
for (unsigned I = 0, E = DAG.Regions.size(); I != E; ++I) {
auto It = DAG.LiveIns[I].find(Reg);
if (It != DAG.LiveIns[I].end() && !It->second.none()) {
if (DAG.RegionsWithMinOcc[I]) {
RematerializableInsts[I][Def] = UseI;
AddedToRematList = true;
}
RematDefToLiveInRegions[Def].push_back(I);
}
}
if (!AddedToRematList)
RematDefToLiveInRegions.erase(Def);
}
}
bool PreRARematStage::sinkTriviallyRematInsts(const GCNSubtarget &ST,
const TargetInstrInfo *TII) {
SmallVector<
std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>, 32>
NewRegions;
DenseMap<unsigned, GCNRPTracker::LiveRegSet> NewLiveIns;
DenseMap<unsigned, GCNRegPressure> NewPressure;
BitVector NewRescheduleRegions;
LiveIntervals *LIS = DAG.LIS;
NewRegions.resize(DAG.Regions.size());
NewRescheduleRegions.resize(DAG.Regions.size());
SmallSet<unsigned, 16> ImpactedRegions;
for (const auto &It : RematDefToLiveInRegions)
ImpactedRegions.insert(It.second.begin(), It.second.end());
for (auto Idx : ImpactedRegions) {
NewPressure[Idx] = DAG.Pressure[Idx];
NewLiveIns[Idx] = DAG.LiveIns[Idx];
}
NewRegions = DAG.Regions;
NewRescheduleRegions.reset();
DenseMap<MachineInstr *, MachineInstr *> InsertedMIToOldDef;
bool Improved = false;
for (auto I : ImpactedRegions) {
if (!DAG.RegionsWithMinOcc[I])
continue;
Improved = false;
int VGPRUsage = NewPressure[I].getVGPRNum(ST.hasGFX90AInsts());
int SGPRUsage = NewPressure[I].getSGPRNum();
if (ST.getOccupancyWithNumSGPRs(SGPRUsage) == DAG.MinOccupancy)
break;
if (NewPressure[I].getOccupancy(ST) > DAG.MinOccupancy) {
NewRescheduleRegions[I] = true;
Improved = true;
continue;
}
int TotalSinkableRegs = 0;
for (const auto &It : RematerializableInsts[I]) {
MachineInstr *Def = It.first;
Register DefReg = Def->getOperand(0).getReg();
TotalSinkableRegs +=
SIRegisterInfo::getNumCoveredRegs(NewLiveIns[I][DefReg]);
}
int VGPRsAfterSink = VGPRUsage - TotalSinkableRegs;
unsigned OptimisticOccupancy = ST.getOccupancyWithNumVGPRs(VGPRsAfterSink);
if (OptimisticOccupancy <= DAG.MinOccupancy)
break;
unsigned ImproveOccupancy = 0;
SmallVector<MachineInstr *, 4> SinkedDefs;
for (auto &It : RematerializableInsts[I]) {
MachineInstr *Def = It.first;
MachineBasicBlock::iterator InsertPos =
MachineBasicBlock::iterator(It.second);
Register Reg = Def->getOperand(0).getReg();
TII->reMaterialize(*InsertPos->getParent(), InsertPos, Reg,
Def->getOperand(0).getSubReg(), *Def, *DAG.TRI);
MachineInstr *NewMI = &*(--InsertPos);
LIS->InsertMachineInstrInMaps(*NewMI);
LIS->removeInterval(Reg);
LIS->createAndComputeVirtRegInterval(Reg);
InsertedMIToOldDef[NewMI] = Def;
DAG.updateRegionBoundaries(NewRegions, Def, nullptr,
true);
DAG.updateRegionBoundaries(NewRegions, InsertPos, NewMI);
LaneBitmask PrevMask = NewLiveIns[I][Reg];
for (auto Idx : RematDefToLiveInRegions[Def]) {
NewLiveIns[Idx].erase(Reg);
if (InsertPos->getParent() != DAG.Regions[Idx].first->getParent()) {
NewPressure[Idx].inc(Reg, PrevMask, LaneBitmask::getNone(), DAG.MRI);
} else {
GCNDownwardRPTracker RPT(*LIS);
auto *NonDbgMI = &*skipDebugInstructionsForward(
NewRegions[Idx].first, NewRegions[Idx].second);
RPT.reset(*NonDbgMI, &NewLiveIns[Idx]);
RPT.advance(NewRegions[Idx].second);
NewPressure[Idx] = RPT.moveMaxPressure();
}
}
SinkedDefs.push_back(Def);
ImproveOccupancy = NewPressure[I].getOccupancy(ST);
if (ImproveOccupancy > DAG.MinOccupancy)
break;
}
for (auto &Def : SinkedDefs)
for (auto TrackedIdx : RematDefToLiveInRegions[Def])
RematerializableInsts[TrackedIdx].erase(Def);
if (ImproveOccupancy <= DAG.MinOccupancy)
break;
NewRescheduleRegions[I] = true;
Improved = true;
}
if (!Improved) {
for (auto &Entry : InsertedMIToOldDef) {
MachineInstr *MI = Entry.first;
MachineInstr *OldMI = Entry.second;
Register Reg = MI->getOperand(0).getReg();
LIS->RemoveMachineInstrFromMaps(*MI);
MI->eraseFromParent();
OldMI->clearRegisterDeads(Reg);
LIS->removeInterval(Reg);
LIS->createAndComputeVirtRegInterval(Reg);
}
return false;
}
for (auto &Entry : InsertedMIToOldDef) {
MachineInstr *MI = Entry.first;
MachineInstr *OldMI = Entry.second;
DAG.BBLiveInMap.erase(OldMI);
Register Reg = MI->getOperand(0).getReg();
LIS->RemoveMachineInstrFromMaps(*OldMI);
OldMI->eraseFromParent();
LIS->removeInterval(Reg);
LIS->createAndComputeVirtRegInterval(Reg);
}
for (auto Idx : ImpactedRegions) {
DAG.LiveIns[Idx] = NewLiveIns[Idx];
DAG.Pressure[Idx] = NewPressure[Idx];
DAG.MBBLiveIns.erase(DAG.Regions[Idx].first->getParent());
}
DAG.Regions = NewRegions;
DAG.RescheduleRegions = NewRescheduleRegions;
SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
MFI.increaseOccupancy(MF, ++DAG.MinOccupancy);
return true;
}
bool PreRARematStage::isTriviallyReMaterializable(const MachineInstr &MI) {
if (!DAG.TII->isTriviallyReMaterializable(MI))
return false;
for (const MachineOperand &MO : MI.operands())
if (MO.isReg() && MO.isUse() && MO.getReg().isVirtual())
return false;
return true;
}
void GCNScheduleDAGMILive::updateRegionBoundaries(
SmallVectorImpl<std::pair<MachineBasicBlock::iterator,
MachineBasicBlock::iterator>> &RegionBoundaries,
MachineBasicBlock::iterator MI, MachineInstr *NewMI, bool Removing) {
unsigned I = 0, E = RegionBoundaries.size();
while (I != E && MI->getParent() != RegionBoundaries[I].first->getParent())
++I;
for (; I != E; ++I) {
if (MI->getParent() != RegionBoundaries[I].first->getParent())
return;
if (Removing && MI == RegionBoundaries[I].first &&
MI == RegionBoundaries[I].second) {
RegionBoundaries[I] =
std::make_pair(MI->getParent()->end(), MI->getParent()->end());
return;
}
if (MI == RegionBoundaries[I].first) {
if (Removing)
RegionBoundaries[I] =
std::make_pair(std::next(MI), RegionBoundaries[I].second);
else
RegionBoundaries[I] = std::make_pair(MachineBasicBlock::iterator(NewMI),
RegionBoundaries[I].second);
return;
}
if (Removing && MI == RegionBoundaries[I].second) {
RegionBoundaries[I] =
std::make_pair(RegionBoundaries[I].first, std::prev(MI));
return;
}
}
}