//===-- ARMCallingConv.td - Calling Conventions for ARM ----*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // This describes the calling conventions for ARM architecture. //===----------------------------------------------------------------------===// /// CCIfAlign - Match of the original alignment of the arg class CCIfAlign<string Align, CCAction A>: CCIf<!strconcat("ArgFlags.getNonZeroOrigAlign() == ", Align), A>; //===----------------------------------------------------------------------===// // ARM APCS Calling Convention //===----------------------------------------------------------------------===// let Entry = 1 in def CC_ARM_APCS : CallingConv<[ // Handles byval parameters. CCIfByVal<CCPassByVal<4, 4>>, CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, // Pass SwiftSelf in a callee saved register. CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[R10]>>>, // A SwiftError is passed in R8. CCIfSwiftError<CCIfType<[i32], CCAssignToReg<[R8]>>>, // Handle all vector types as either f64 or v2f64. CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>, CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>, // f64 and v2f64 are passed in adjacent GPRs, possibly split onto the stack CCIfType<[f64, v2f64], CCCustom<"CC_ARM_APCS_Custom_f64">>, CCIfType<[f32], CCBitConvertToType<i32>>, CCIfType<[i32], CCAssignToReg<[R0, R1, R2, R3]>>, CCIfType<[i32], CCAssignToStack<4, 4>>, CCIfType<[f64], CCAssignToStack<8, 4>>, CCIfType<[v2f64], CCAssignToStack<16, 4>> ]>; let Entry = 1 in def RetCC_ARM_APCS : CallingConv<[ CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, CCIfType<[f32], CCBitConvertToType<i32>>, // Pass SwiftSelf in a callee saved register. CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[R10]>>>, // A SwiftError is returned in R8. CCIfSwiftError<CCIfType<[i32], CCAssignToReg<[R8]>>>, // Handle all vector types as either f64 or v2f64. CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>, CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>, CCIfType<[f64, v2f64], CCCustom<"RetCC_ARM_APCS_Custom_f64">>, CCIfType<[i32], CCAssignToReg<[R0, R1, R2, R3]>>, CCIfType<[i64], CCAssignToRegWithShadow<[R0, R2], [R1, R3]>> ]>; //===----------------------------------------------------------------------===// // ARM APCS Calling Convention for FastCC (when VFP2 or later is available) //===----------------------------------------------------------------------===// let Entry = 1 in def FastCC_ARM_APCS : CallingConv<[ // Handle all vector types as either f64 or v2f64. CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>, CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>, CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>, CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15]>>, // CPRCs may be allocated to co-processor registers or the stack - they // may never be allocated to core registers. CCIfType<[f32], CCAssignToStackWithShadow<4, 4, [Q0, Q1, Q2, Q3]>>, CCIfType<[f64], CCAssignToStackWithShadow<8, 4, [Q0, Q1, Q2, Q3]>>, CCIfType<[v2f64], CCAssignToStackWithShadow<16, 4, [Q0, Q1, Q2, Q3]>>, CCDelegateTo<CC_ARM_APCS> ]>; let Entry = 1 in def RetFastCC_ARM_APCS : CallingConv<[ // Handle all vector types as either f64 or v2f64. CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>, CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>, CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>, CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15]>>, CCDelegateTo<RetCC_ARM_APCS> ]>; //===----------------------------------------------------------------------===// // ARM APCS Calling Convention for GHC //===----------------------------------------------------------------------===// let Entry = 1 in def CC_ARM_APCS_GHC : CallingConv<[ // Handle all vector types as either f64 or v2f64. CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>, CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>, CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>, CCIfType<[f64], CCAssignToReg<[D8, D9, D10, D11]>>, CCIfType<[f32], CCAssignToReg<[S16, S17, S18, S19, S20, S21, S22, S23]>>, // Promote i8/i16 arguments to i32. CCIfType<[i8, i16], CCPromoteToType<i32>>, // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, SpLim CCIfType<[i32], CCAssignToReg<[R4, R5, R6, R7, R8, R9, R10, R11]>> ]>; //===----------------------------------------------------------------------===// // ARM AAPCS (EABI) Calling Convention, common parts //===----------------------------------------------------------------------===// def CC_ARM_AAPCS_Common : CallingConv<[ CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, // i64/f64 is passed in even pairs of GPRs // i64 is 8-aligned i32 here, so we may need to eat R1 as a pad register // (and the same is true for f64 if VFP is not enabled) CCIfType<[i32], CCIfAlign<"8", CCAssignToRegWithShadow<[R0, R2], [R0, R1]>>>, CCIfType<[i32], CCIf<"ArgFlags.getNonZeroOrigAlign() != Align(8)", CCAssignToReg<[R0, R1, R2, R3]>>>, CCIfType<[i32], CCIfAlign<"8", CCAssignToStackWithShadow<4, 8, [R0, R1, R2, R3]>>>, CCIfType<[i32], CCAssignToStackWithShadow<4, 4, [R0, R1, R2, R3]>>, CCIfType<[f16, bf16, f32], CCAssignToStackWithShadow<4, 4, [Q0, Q1, Q2, Q3]>>, CCIfType<[f64], CCAssignToStackWithShadow<8, 8, [Q0, Q1, Q2, Q3]>>, CCIfType<[v2f64], CCIfAlign<"16", CCAssignToStackWithShadow<16, 16, [Q0, Q1, Q2, Q3]>>>, CCIfType<[v2f64], CCAssignToStackWithShadow<16, 8, [Q0, Q1, Q2, Q3]>> ]>; def RetCC_ARM_AAPCS_Common : CallingConv<[ CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, CCIfType<[i32], CCAssignToReg<[R0, R1, R2, R3]>>, CCIfType<[i64], CCAssignToRegWithShadow<[R0, R2], [R1, R3]>> ]>; //===----------------------------------------------------------------------===// // ARM AAPCS (EABI) Calling Convention //===----------------------------------------------------------------------===// let Entry = 1 in def CC_ARM_AAPCS : CallingConv<[ // Handles byval parameters. CCIfByVal<CCPassByVal<4, 4>>, // The 'nest' parameter, if any, is passed in R12. CCIfNest<CCAssignToReg<[R12]>>, // Handle all vector types as either f64 or v2f64. CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>, CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>, // Pass SwiftSelf in a callee saved register. CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[R10]>>>, // A SwiftError is passed in R8. CCIfSwiftError<CCIfType<[i32], CCAssignToReg<[R8]>>>, CCIfType<[f64, v2f64], CCCustom<"CC_ARM_AAPCS_Custom_f64">>, CCIfType<[f32], CCBitConvertToType<i32>>, CCIfType<[f16, bf16], CCCustom<"CC_ARM_AAPCS_Custom_f16">>, CCDelegateTo<CC_ARM_AAPCS_Common> ]>; let Entry = 1 in def RetCC_ARM_AAPCS : CallingConv<[ // Handle all vector types as either f64 or v2f64. CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>, CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>, // Pass SwiftSelf in a callee saved register. CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[R10]>>>, // A SwiftError is returned in R8. CCIfSwiftError<CCIfType<[i32], CCAssignToReg<[R8]>>>, CCIfType<[f64, v2f64], CCCustom<"RetCC_ARM_AAPCS_Custom_f64">>, CCIfType<[f32], CCBitConvertToType<i32>>, CCIfType<[f16, bf16], CCCustom<"CC_ARM_AAPCS_Custom_f16">>, CCDelegateTo<RetCC_ARM_AAPCS_Common> ]>; //===----------------------------------------------------------------------===// // ARM AAPCS-VFP (EABI) Calling Convention // Also used for FastCC (when VFP2 or later is available) //===----------------------------------------------------------------------===// let Entry = 1 in def CC_ARM_AAPCS_VFP : CallingConv<[ // Handles byval parameters. CCIfByVal<CCPassByVal<4, 4>>, // Handle all vector types as either f64 or v2f64. CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>, CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>, // Pass SwiftSelf in a callee saved register. CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[R10]>>>, // A SwiftError is passed in R8. CCIfSwiftError<CCIfType<[i32], CCAssignToReg<[R8]>>>, // HFAs are passed in a contiguous block of registers, or on the stack CCIfConsecutiveRegs<CCCustom<"CC_ARM_AAPCS_Custom_Aggregate">>, CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>, CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15]>>, CCIfType<[f16, bf16], CCCustom<"CC_ARM_AAPCS_VFP_Custom_f16">>, CCDelegateTo<CC_ARM_AAPCS_Common> ]>; let Entry = 1 in def RetCC_ARM_AAPCS_VFP : CallingConv<[ // Handle all vector types as either f64 or v2f64. CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>, CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>, // Pass SwiftSelf in a callee saved register. CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[R10]>>>, // A SwiftError is returned in R8. CCIfSwiftError<CCIfType<[i32], CCAssignToReg<[R8]>>>, CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>, CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15]>>, CCIfType<[f16, bf16], CCCustom<"CC_ARM_AAPCS_VFP_Custom_f16">>, CCDelegateTo<RetCC_ARM_AAPCS_Common> ]>; // Windows Control Flow Guard checks take a single argument (the target function // address) and have no return value. let Entry = 1 in def CC_ARM_Win32_CFGuard_Check : CallingConv<[ CCIfType<[i32], CCAssignToReg<[R0]>> ]>; //===----------------------------------------------------------------------===// // Callee-saved register lists. //===----------------------------------------------------------------------===// def CSR_NoRegs : CalleeSavedRegs<(add)>; def CSR_FPRegs : CalleeSavedRegs<(add (sequence "D%u", 0, 31))>; def CSR_AAPCS : CalleeSavedRegs<(add LR, R11, R10, R9, R8, R7, R6, R5, R4, (sequence "D%u", 15, 8))>; // The Windows Control Flow Guard Check function preserves the same registers as // AAPCS, and also preserves all floating point registers. def CSR_Win_AAPCS_CFGuard_Check : CalleeSavedRegs<(add LR, R11, R10, R9, R8, R7, R6, R5, R4, (sequence "D%u", 15, 0))>; // R8 is used to pass swifterror, remove it from CSR. def CSR_AAPCS_SwiftError : CalleeSavedRegs<(sub CSR_AAPCS, R8)>; // R10 is used to pass swiftself, remove it from CSR. def CSR_AAPCS_SwiftTail : CalleeSavedRegs<(sub CSR_AAPCS, R10)>; // The order of callee-saved registers needs to match the order we actually push // them in FrameLowering, because this order is what's used by // PrologEpilogInserter to allocate frame index slots. So when R7 is the frame // pointer, we use this ATPCS alternative. def CSR_ATPCS_SplitPush : CalleeSavedRegs<(add LR, R7, R6, R5, R4, R11, R10, R9, R8, (sequence "D%u", 15, 8))>; def CSR_Win_SplitFP : CalleeSavedRegs<(add R10, R9, R8, R7, R6, R5, R4, (sequence "D%u", 15, 8), LR, R11)>; // R8 is used to pass swifterror, remove it from CSR. def CSR_ATPCS_SplitPush_SwiftError : CalleeSavedRegs<(sub CSR_ATPCS_SplitPush, R8)>; // R10 is used to pass swifterror, remove it from CSR. def CSR_ATPCS_SplitPush_SwiftTail : CalleeSavedRegs<(sub CSR_ATPCS_SplitPush, R10)>; // When enforcing an AAPCS compliant frame chain, R11 is used as the frame // pointer even for Thumb targets, where split pushes are necessary. // This AAPCS alternative makes sure the frame index slots match the push // order in that case. def CSR_AAPCS_SplitPush : CalleeSavedRegs<(add LR, R11, R7, R6, R5, R4, R10, R9, R8, (sequence "D%u", 15, 8))>; // Constructors and destructors return 'this' in the ARM C++ ABI; since 'this' // and the pointer return value are both passed in R0 in these cases, this can // be partially modelled by treating R0 as a callee-saved register // Only the resulting RegMask is used; the SaveList is ignored def CSR_AAPCS_ThisReturn : CalleeSavedRegs<(add LR, R11, R10, R9, R8, R7, R6, R5, R4, (sequence "D%u", 15, 8), R0)>; // iOS ABI deviates from ARM standard ABI. R9 is not a callee-saved register. // Also save R7-R4 first to match the stack frame fixed spill areas. def CSR_iOS : CalleeSavedRegs<(add LR, R7, R6, R5, R4, (sub CSR_AAPCS, R9))>; // R8 is used to pass swifterror, remove it from CSR. def CSR_iOS_SwiftError : CalleeSavedRegs<(sub CSR_iOS, R8)>; // R10 is used to pass swiftself, remove it from CSR. def CSR_iOS_SwiftTail : CalleeSavedRegs<(sub CSR_iOS, R10)>; def CSR_iOS_ThisReturn : CalleeSavedRegs<(add LR, R7, R6, R5, R4, (sub CSR_AAPCS_ThisReturn, R9))>; def CSR_iOS_TLSCall : CalleeSavedRegs<(add LR, SP, (sub(sequence "R%u", 12, 1), R9, R12), (sequence "D%u", 31, 0))>; // C++ TLS access function saves all registers except SP. Try to match // the order of CSRs in CSR_iOS. def CSR_iOS_CXX_TLS : CalleeSavedRegs<(add CSR_iOS, (sequence "R%u", 12, 1), (sequence "D%u", 31, 0))>; // CSRs that are handled by prologue, epilogue. def CSR_iOS_CXX_TLS_PE : CalleeSavedRegs<(add LR, R12, R11, R7, R5, R4)>; // CSRs that are handled explicitly via copies. def CSR_iOS_CXX_TLS_ViaCopy : CalleeSavedRegs<(sub CSR_iOS_CXX_TLS, CSR_iOS_CXX_TLS_PE)>; // The "interrupt" attribute is used to generate code that is acceptable in // exception-handlers of various kinds. It makes us use a different return // instruction (handled elsewhere) and affects which registers we must return to // our "caller" in the same state as we receive them. // For most interrupts, all registers except SP and LR are shared with // user-space. We mark LR to be saved anyway, since this is what the ARM backend // generally does rather than tracking its liveness as a normal register. def CSR_GenericInt : CalleeSavedRegs<(add LR, (sequence "R%u", 12, 0))>; // The fast interrupt handlers have more private state and get their own copies // of R8-R12, in addition to SP and LR. As before, mark LR for saving too. // FIXME: we mark R11 as callee-saved since it's often the frame-pointer, and // current frame lowering expects to encounter it while processing callee-saved // registers. def CSR_FIQ : CalleeSavedRegs<(add LR, R11, (sequence "R%u", 7, 0))>;