; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt -passes=instcombine -S < %s | FileCheck %s ;; This tests that the instructions in the entry blocks are sunk into each ;; arm of the 'if'. define i32 @test1(i1 %C, i32 %A, i32 %B) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[C:%.*]], label [[THEN:%.*]], label [[ENDIF:%.*]] ; CHECK: then: ; CHECK-NEXT: [[TMP_9:%.*]] = add i32 [[B:%.*]], [[A:%.*]] ; CHECK-NEXT: ret i32 [[TMP_9]] ; CHECK: endif: ; CHECK-NEXT: [[TMP_2:%.*]] = sdiv i32 [[A]], [[B]] ; CHECK-NEXT: ret i32 [[TMP_2]] ; entry: %tmp.2 = sdiv i32 %A, %B ; <i32> [#uses=1] %tmp.9 = add i32 %B, %A ; <i32> [#uses=1] br i1 %C, label %then, label %endif then: ; preds = %entry ret i32 %tmp.9 endif: ; preds = %entry ret i32 %tmp.2 } ;; PHI use, sink divide before call. define i32 @test2(i32 %x) nounwind ssp { ; CHECK-LABEL: @test2( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[BB:%.*]] ; CHECK: bb: ; CHECK-NEXT: [[X_ADDR_17:%.*]] = phi i32 [ [[X:%.*]], [[ENTRY:%.*]] ], [ [[X_ADDR_0:%.*]], [[BB2:%.*]] ] ; CHECK-NEXT: [[I_06:%.*]] = phi i32 [ 0, [[ENTRY]] ], [ [[TMP4:%.*]], [[BB2]] ] ; CHECK-NEXT: [[TMP0:%.*]] = icmp eq i32 [[X_ADDR_17]], 0 ; CHECK-NEXT: br i1 [[TMP0]], label [[BB1:%.*]], label [[BB2]] ; CHECK: bb1: ; CHECK-NEXT: [[TMP1:%.*]] = add nsw i32 [[X_ADDR_17]], 1 ; CHECK-NEXT: [[TMP2:%.*]] = sdiv i32 [[TMP1]], [[X_ADDR_17]] ; CHECK-NEXT: [[TMP3:%.*]] = tail call i32 @bar() #[[ATTR1:[0-9]+]] ; CHECK-NEXT: br label [[BB2]] ; CHECK: bb2: ; CHECK-NEXT: [[X_ADDR_0]] = phi i32 [ [[TMP2]], [[BB1]] ], [ [[X_ADDR_17]], [[BB]] ] ; CHECK-NEXT: [[TMP4]] = add nuw nsw i32 [[I_06]], 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i32 [[TMP4]], 1000000 ; CHECK-NEXT: br i1 [[EXITCOND]], label [[BB4:%.*]], label [[BB]] ; CHECK: bb4: ; CHECK-NEXT: ret i32 [[X_ADDR_0]] ; entry: br label %bb bb: ; preds = %bb2, %entry %x_addr.17 = phi i32 [ %x, %entry ], [ %x_addr.0, %bb2 ] ; <i32> [#uses=4] %i.06 = phi i32 [ 0, %entry ], [ %4, %bb2 ] ; <i32> [#uses=1] %0 = add nsw i32 %x_addr.17, 1 ; <i32> [#uses=1] %1 = sdiv i32 %0, %x_addr.17 ; <i32> [#uses=1] %2 = icmp eq i32 %x_addr.17, 0 ; <i1> [#uses=1] br i1 %2, label %bb1, label %bb2 bb1: ; preds = %bb %3 = tail call i32 @bar() nounwind ; <i32> [#uses=0] br label %bb2 bb2: ; preds = %bb, %bb1 %x_addr.0 = phi i32 [ %1, %bb1 ], [ %x_addr.17, %bb ] ; <i32> [#uses=2] %4 = add nsw i32 %i.06, 1 ; <i32> [#uses=2] %exitcond = icmp eq i32 %4, 1000000 ; <i1> [#uses=1] br i1 %exitcond, label %bb4, label %bb bb4: ; preds = %bb2 ret i32 %x_addr.0 } declare i32 @bar() define i32 @test3(i32* nocapture readonly %P, i32 %i) { ; CHECK-LABEL: @test3( ; CHECK-NEXT: entry: ; CHECK-NEXT: switch i32 [[I:%.*]], label [[SW_EPILOG:%.*]] [ ; CHECK-NEXT: i32 5, label [[SW_BB:%.*]] ; CHECK-NEXT: i32 2, label [[SW_BB]] ; CHECK-NEXT: ] ; CHECK: sw.bb: ; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[I]] to i64 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, i32* [[P:%.*]], i64 [[IDXPROM]] ; CHECK-NEXT: [[TMP0:%.*]] = load i32, i32* [[ARRAYIDX]], align 4 ; CHECK-NEXT: [[ADD:%.*]] = add nsw i32 [[TMP0]], [[I]] ; CHECK-NEXT: br label [[SW_EPILOG]] ; CHECK: sw.epilog: ; CHECK-NEXT: [[SUM_0:%.*]] = phi i32 [ [[ADD]], [[SW_BB]] ], [ 0, [[ENTRY:%.*]] ] ; CHECK-NEXT: ret i32 [[SUM_0]] ; entry: %idxprom = sext i32 %i to i64 %arrayidx = getelementptr inbounds i32, i32* %P, i64 %idxprom %0 = load i32, i32* %arrayidx, align 4 switch i32 %i, label %sw.epilog [ i32 5, label %sw.bb i32 2, label %sw.bb ] sw.bb: ; preds = %entry, %entry %add = add nsw i32 %0, %i br label %sw.epilog sw.epilog: ; preds = %entry, %sw.bb %sum.0 = phi i32 [ %add, %sw.bb ], [ 0, %entry ] ret i32 %sum.0 } declare i32 @foo(i32, i32) ; Two uses in a single user. We can still sink the instruction (tmp.9). define i32 @test4(i32 %A, i32 %B, i1 %C) { ; CHECK-LABEL: @test4( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[C:%.*]], label [[THEN:%.*]], label [[ENDIF:%.*]] ; CHECK: then: ; CHECK-NEXT: [[TMP_9:%.*]] = add i32 [[B:%.*]], [[A:%.*]] ; CHECK-NEXT: [[RES:%.*]] = call i32 @foo(i32 [[TMP_9]], i32 [[TMP_9]]) ; CHECK-NEXT: ret i32 [[RES]] ; CHECK: endif: ; CHECK-NEXT: [[TMP_2:%.*]] = sdiv i32 [[A]], [[B]] ; CHECK-NEXT: ret i32 [[TMP_2]] ; entry: %tmp.2 = sdiv i32 %A, %B ; <i32> [#uses=1] %tmp.9 = add i32 %B, %A ; <i32> [#uses=1] br i1 %C, label %then, label %endif then: ; preds = %entry %res = call i32 @foo(i32 %tmp.9, i32 %tmp.9) ret i32 %res endif: ; preds = %entry ret i32 %tmp.2 } ; Two uses in a single user (phi node). We just bail out. define i32 @test5(i32* nocapture readonly %P, i32 %i, i1 %cond) { ; CHECK-LABEL: @test5( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[I:%.*]] to i64 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, i32* [[P:%.*]], i64 [[IDXPROM]] ; CHECK-NEXT: [[TMP0:%.*]] = load i32, i32* [[ARRAYIDX]], align 4 ; CHECK-NEXT: br i1 [[COND:%.*]], label [[DISPATCHBB:%.*]], label [[SW_EPILOG:%.*]] ; CHECK: dispatchBB: ; CHECK-NEXT: [[ADD:%.*]] = shl nsw i32 [[I]], 1 ; CHECK-NEXT: br label [[SW_EPILOG]] ; CHECK: sw.bb: ; CHECK-NEXT: br label [[SW_EPILOG]] ; CHECK: sw.epilog: ; CHECK-NEXT: [[SUM_0:%.*]] = phi i32 [ [[TMP0]], [[SW_BB:%.*]] ], [ [[ADD]], [[DISPATCHBB]] ], [ [[TMP0]], [[ENTRY:%.*]] ] ; CHECK-NEXT: ret i32 [[SUM_0]] ; entry: %idxprom = sext i32 %i to i64 %arrayidx = getelementptr inbounds i32, i32* %P, i64 %idxprom %0 = load i32, i32* %arrayidx, align 4 br i1 %cond, label %dispatchBB, label %sw.epilog dispatchBB: %add = add nsw i32 %i, %i br label %sw.epilog sw.bb: ; preds = %entry, %entry br label %sw.epilog sw.epilog: ; preds = %entry, %sw.bb %sum.0 = phi i32 [ %0, %sw.bb ], [ %add, %dispatchBB ], [ %0, %entry ] ret i32 %sum.0 } ; Multiple uses but from same BB. We can sink. define i32 @test6(i32* nocapture readonly %P, i32 %i, i1 %cond) { ; CHECK-LABEL: @test6( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[ADD:%.*]] = shl nsw i32 [[I]], 1 ; CHECK-NEXT: br label [[DISPATCHBB:%.*]] ; CHECK: dispatchBB: ; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[I:%.*]] to i64 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, i32* [[P:%.*]], i64 [[IDXPROM]] ; CHECK-NEXT: [[TMP0:%.*]] = load i32, i32* [[ARRAYIDX]], align 4 ; CHECK-NEXT: switch i32 [[I]], label [[SW_BB:%.*]] [ ; CHECK-NEXT: i32 5, label [[SW_EPILOG:%.*]] ; CHECK-NEXT: i32 2, label [[SW_EPILOG]] ; CHECK-NEXT: ] ; CHECK: sw.bb: ; CHECK-NEXT: br label [[SW_EPILOG]] ; CHECK: sw.epilog: ; CHECK-NEXT: [[SUM_0:%.*]] = phi i32 [ [[ADD]], [[SW_BB]] ], [ [[TMP0]], [[DISPATCHBB]] ], [ [[TMP0]], [[DISPATCHBB]] ] ; CHECK-NEXT: ret i32 [[SUM_0]] ; entry: %idxprom = sext i32 %i to i64 %arrayidx = getelementptr inbounds i32, i32* %P, i64 %idxprom %0 = load i32, i32* %arrayidx, align 4 %add = add nsw i32 %i, %i br label %dispatchBB dispatchBB: switch i32 %i, label %sw.bb [ i32 5, label %sw.epilog i32 2, label %sw.epilog ] sw.bb: ; preds = %entry, %entry br label %sw.epilog sw.epilog: ; preds = %entry, %sw.bb %sum.0 = phi i32 [ %add, %sw.bb ], [ %0, %dispatchBB ], [ %0, %dispatchBB ] ret i32 %sum.0 } declare void @checkd(double) declare double @log(double) willreturn nounwind readnone define void @test7(i1 %cond, double %d) { ; CHECK-LABEL: @test7( ; CHECK-NEXT: br i1 [[COND:%.*]], label [[IF:%.*]], label [[ELSE:%.*]] ; CHECK: if: ; CHECK-NEXT: [[A:%.*]] = call double @log(double [[D:%.*]]) ; CHECK-NEXT: call void @checkd(double [[A]]) ; CHECK-NEXT: ret void ; CHECK: else: ; CHECK-NEXT: ret void ; %A = call double @log(double %d) br i1 %cond, label %if, label %else if: call void @checkd(double %A) ret void else: ret void } declare void @abort() declare { i64, i1 } @llvm.umul.with.overflow.i64(i64, i64) declare void @dummy(i64) ; Two uses in two different users of a single successor block. We can sink. define i64 @test8(i64 %c) { ; CHECK-LABEL: @test8( ; CHECK-NEXT: bb1: ; CHECK-NEXT: [[OVERFLOW:%.*]] = icmp ugt i64 [[C:%.*]], 2305843009213693951 ; CHECK-NEXT: br i1 [[OVERFLOW]], label [[ABORT:%.*]], label [[BB2:%.*]] ; CHECK: bb2: ; CHECK-NEXT: call void @dummy(i64 8) ; CHECK-NEXT: ret i64 8 ; CHECK: abort: ; CHECK-NEXT: call void @abort() ; CHECK-NEXT: unreachable ; bb1: %mul = tail call { i64, i1 } @llvm.umul.with.overflow.i64(i64 %c, i64 8) %overflow = extractvalue { i64, i1 } %mul, 1 %select = select i1 %overflow, i64 0, i64 8 br i1 %overflow, label %abort, label %bb2 bb2: call void @dummy(i64 %select) ret i64 %select abort: call void @abort() unreachable }