; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -basic-aa -slp-vectorizer -S | FileCheck %s target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" target triple = "x86_64-apple-macosx10.9.0" @A = common global [2000 x double] zeroinitializer, align 16 @B = common global [2000 x double] zeroinitializer, align 16 @C = common global [2000 x float] zeroinitializer, align 16 @D = common global [2000 x float] zeroinitializer, align 16 ; Function Attrs: nounwind ssp uwtable define void @foo_3double(i32 %u) #0 { ; CHECK-LABEL: @foo_3double( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[U_ADDR:%.*]] = alloca i32, align 4 ; CHECK-NEXT: store i32 [[U:%.*]], i32* [[U_ADDR]], align 4 ; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[U]], 3 ; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[MUL]] to i64 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM]] ; CHECK-NEXT: [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM]] ; CHECK-NEXT: [[TMP0:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>* ; CHECK-NEXT: [[TMP1:%.*]] = load <2 x double>, <2 x double>* [[TMP0]], align 8 ; CHECK-NEXT: [[TMP2:%.*]] = bitcast double* [[ARRAYIDX4]] to <2 x double>* ; CHECK-NEXT: [[TMP3:%.*]] = load <2 x double>, <2 x double>* [[TMP2]], align 8 ; CHECK-NEXT: [[TMP4:%.*]] = fadd <2 x double> [[TMP1]], [[TMP3]] ; CHECK-NEXT: [[TMP5:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>* ; CHECK-NEXT: store <2 x double> [[TMP4]], <2 x double>* [[TMP5]], align 8 ; CHECK-NEXT: [[ADD24:%.*]] = add nsw i32 [[MUL]], 2 ; CHECK-NEXT: [[IDXPROM25:%.*]] = sext i32 [[ADD24]] to i64 ; CHECK-NEXT: [[ARRAYIDX26:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM25]] ; CHECK-NEXT: [[TMP6:%.*]] = load double, double* [[ARRAYIDX26]], align 8 ; CHECK-NEXT: [[ARRAYIDX30:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM25]] ; CHECK-NEXT: [[TMP7:%.*]] = load double, double* [[ARRAYIDX30]], align 8 ; CHECK-NEXT: [[ADD31:%.*]] = fadd double [[TMP6]], [[TMP7]] ; CHECK-NEXT: store double [[ADD31]], double* [[ARRAYIDX26]], align 8 ; CHECK-NEXT: ret void ; entry: %u.addr = alloca i32, align 4 store i32 %u, i32* %u.addr, align 4 %mul = mul nsw i32 %u, 3 %idxprom = sext i32 %mul to i64 %arrayidx = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom %0 = load double, double* %arrayidx, align 8 %arrayidx4 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom %1 = load double, double* %arrayidx4, align 8 %add5 = fadd double %0, %1 store double %add5, double* %arrayidx, align 8 %add11 = add nsw i32 %mul, 1 %idxprom12 = sext i32 %add11 to i64 %arrayidx13 = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom12 %2 = load double, double* %arrayidx13, align 8 %arrayidx17 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom12 %3 = load double, double* %arrayidx17, align 8 %add18 = fadd double %2, %3 store double %add18, double* %arrayidx13, align 8 %add24 = add nsw i32 %mul, 2 %idxprom25 = sext i32 %add24 to i64 %arrayidx26 = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom25 %4 = load double, double* %arrayidx26, align 8 %arrayidx30 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom25 %5 = load double, double* %arrayidx30, align 8 %add31 = fadd double %4, %5 store double %add31, double* %arrayidx26, align 8 ret void } ; SCEV should be able to tell that accesses A[C1 + C2*i], A[C1 + C2*i], ... ; A[C1 + C2*i] are consecutive, if C2 is a power of 2, and C2 > C1 > 0. ; Thus, the following code should be vectorized. ; Function Attrs: nounwind ssp uwtable define void @foo_2double(i32 %u) #0 { ; CHECK-LABEL: @foo_2double( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[U_ADDR:%.*]] = alloca i32, align 4 ; CHECK-NEXT: store i32 [[U:%.*]], i32* [[U_ADDR]], align 4 ; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[U]], 2 ; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[MUL]] to i64 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM]] ; CHECK-NEXT: [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM]] ; CHECK-NEXT: [[TMP0:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>* ; CHECK-NEXT: [[TMP1:%.*]] = load <2 x double>, <2 x double>* [[TMP0]], align 8 ; CHECK-NEXT: [[TMP2:%.*]] = bitcast double* [[ARRAYIDX4]] to <2 x double>* ; CHECK-NEXT: [[TMP3:%.*]] = load <2 x double>, <2 x double>* [[TMP2]], align 8 ; CHECK-NEXT: [[TMP4:%.*]] = fadd <2 x double> [[TMP1]], [[TMP3]] ; CHECK-NEXT: [[TMP5:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>* ; CHECK-NEXT: store <2 x double> [[TMP4]], <2 x double>* [[TMP5]], align 8 ; CHECK-NEXT: ret void ; entry: %u.addr = alloca i32, align 4 store i32 %u, i32* %u.addr, align 4 %mul = mul nsw i32 %u, 2 %idxprom = sext i32 %mul to i64 %arrayidx = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom %0 = load double, double* %arrayidx, align 8 %arrayidx4 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom %1 = load double, double* %arrayidx4, align 8 %add5 = fadd double %0, %1 store double %add5, double* %arrayidx, align 8 %add11 = add nsw i32 %mul, 1 %idxprom12 = sext i32 %add11 to i64 %arrayidx13 = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom12 %2 = load double, double* %arrayidx13, align 8 %arrayidx17 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom12 %3 = load double, double* %arrayidx17, align 8 %add18 = fadd double %2, %3 store double %add18, double* %arrayidx13, align 8 ret void } ; Similar to the previous test, but with different datatype. ; Function Attrs: nounwind ssp uwtable define void @foo_4float(i32 %u) #0 { ; CHECK-LABEL: @foo_4float( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[U_ADDR:%.*]] = alloca i32, align 4 ; CHECK-NEXT: store i32 [[U:%.*]], i32* [[U_ADDR]], align 4 ; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[U]], 4 ; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[MUL]] to i64 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x float], [2000 x float]* @C, i32 0, i64 [[IDXPROM]] ; CHECK-NEXT: [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x float], [2000 x float]* @D, i32 0, i64 [[IDXPROM]] ; CHECK-NEXT: [[TMP0:%.*]] = bitcast float* [[ARRAYIDX]] to <4 x float>* ; CHECK-NEXT: [[TMP1:%.*]] = load <4 x float>, <4 x float>* [[TMP0]], align 4 ; CHECK-NEXT: [[TMP2:%.*]] = bitcast float* [[ARRAYIDX4]] to <4 x float>* ; CHECK-NEXT: [[TMP3:%.*]] = load <4 x float>, <4 x float>* [[TMP2]], align 4 ; CHECK-NEXT: [[TMP4:%.*]] = fadd <4 x float> [[TMP1]], [[TMP3]] ; CHECK-NEXT: [[TMP5:%.*]] = bitcast float* [[ARRAYIDX]] to <4 x float>* ; CHECK-NEXT: store <4 x float> [[TMP4]], <4 x float>* [[TMP5]], align 4 ; CHECK-NEXT: ret void ; entry: %u.addr = alloca i32, align 4 store i32 %u, i32* %u.addr, align 4 %mul = mul nsw i32 %u, 4 %idxprom = sext i32 %mul to i64 %arrayidx = getelementptr inbounds [2000 x float], [2000 x float]* @C, i32 0, i64 %idxprom %0 = load float, float* %arrayidx, align 4 %arrayidx4 = getelementptr inbounds [2000 x float], [2000 x float]* @D, i32 0, i64 %idxprom %1 = load float, float* %arrayidx4, align 4 %add5 = fadd float %0, %1 store float %add5, float* %arrayidx, align 4 %add11 = add nsw i32 %mul, 1 %idxprom12 = sext i32 %add11 to i64 %arrayidx13 = getelementptr inbounds [2000 x float], [2000 x float]* @C, i32 0, i64 %idxprom12 %2 = load float, float* %arrayidx13, align 4 %arrayidx17 = getelementptr inbounds [2000 x float], [2000 x float]* @D, i32 0, i64 %idxprom12 %3 = load float, float* %arrayidx17, align 4 %add18 = fadd float %2, %3 store float %add18, float* %arrayidx13, align 4 %add24 = add nsw i32 %mul, 2 %idxprom25 = sext i32 %add24 to i64 %arrayidx26 = getelementptr inbounds [2000 x float], [2000 x float]* @C, i32 0, i64 %idxprom25 %4 = load float, float* %arrayidx26, align 4 %arrayidx30 = getelementptr inbounds [2000 x float], [2000 x float]* @D, i32 0, i64 %idxprom25 %5 = load float, float* %arrayidx30, align 4 %add31 = fadd float %4, %5 store float %add31, float* %arrayidx26, align 4 %add37 = add nsw i32 %mul, 3 %idxprom38 = sext i32 %add37 to i64 %arrayidx39 = getelementptr inbounds [2000 x float], [2000 x float]* @C, i32 0, i64 %idxprom38 %6 = load float, float* %arrayidx39, align 4 %arrayidx43 = getelementptr inbounds [2000 x float], [2000 x float]* @D, i32 0, i64 %idxprom38 %7 = load float, float* %arrayidx43, align 4 %add44 = fadd float %6, %7 store float %add44, float* %arrayidx39, align 4 ret void } ; Similar to the previous tests, but now we are dealing with AddRec SCEV. ; Function Attrs: nounwind ssp uwtable define i32 @foo_loop(double* %A, i32 %n) #0 { ; CHECK-LABEL: @foo_loop( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[A_ADDR:%.*]] = alloca double*, align 8 ; CHECK-NEXT: [[N_ADDR:%.*]] = alloca i32, align 4 ; CHECK-NEXT: [[SUM:%.*]] = alloca double, align 8 ; CHECK-NEXT: [[I:%.*]] = alloca i32, align 4 ; CHECK-NEXT: store double* [[A:%.*]], double** [[A_ADDR]], align 8 ; CHECK-NEXT: store i32 [[N:%.*]], i32* [[N_ADDR]], align 4 ; CHECK-NEXT: store double 0.000000e+00, double* [[SUM]], align 8 ; CHECK-NEXT: store i32 0, i32* [[I]], align 4 ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 0, [[N]] ; CHECK-NEXT: br i1 [[CMP1]], label [[FOR_BODY_LR_PH:%.*]], label [[FOR_END:%.*]] ; CHECK: for.body.lr.ph: ; CHECK-NEXT: br label [[FOR_BODY:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[TMP0:%.*]] = phi i32 [ 0, [[FOR_BODY_LR_PH]] ], [ [[INC:%.*]], [[FOR_BODY]] ] ; CHECK-NEXT: [[TMP1:%.*]] = phi double [ 0.000000e+00, [[FOR_BODY_LR_PH]] ], [ [[ADD7:%.*]], [[FOR_BODY]] ] ; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[TMP0]], 2 ; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[MUL]] to i64 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds double, double* [[A]], i64 [[IDXPROM]] ; CHECK-NEXT: [[TMP2:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>* ; CHECK-NEXT: [[TMP3:%.*]] = load <2 x double>, <2 x double>* [[TMP2]], align 8 ; CHECK-NEXT: [[TMP4:%.*]] = fmul <2 x double> <double 7.000000e+00, double 7.000000e+00>, [[TMP3]] ; CHECK-NEXT: [[TMP5:%.*]] = extractelement <2 x double> [[TMP4]], i32 0 ; CHECK-NEXT: [[TMP6:%.*]] = extractelement <2 x double> [[TMP4]], i32 1 ; CHECK-NEXT: [[ADD6:%.*]] = fadd double [[TMP5]], [[TMP6]] ; CHECK-NEXT: [[ADD7]] = fadd double [[TMP1]], [[ADD6]] ; CHECK-NEXT: store double [[ADD7]], double* [[SUM]], align 8 ; CHECK-NEXT: [[INC]] = add nsw i32 [[TMP0]], 1 ; CHECK-NEXT: store i32 [[INC]], i32* [[I]], align 4 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[INC]], [[N]] ; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_COND_FOR_END_CRIT_EDGE:%.*]] ; CHECK: for.cond.for.end_crit_edge: ; CHECK-NEXT: [[SPLIT:%.*]] = phi double [ [[ADD7]], [[FOR_BODY]] ] ; CHECK-NEXT: br label [[FOR_END]] ; CHECK: for.end: ; CHECK-NEXT: [[DOTLCSSA:%.*]] = phi double [ [[SPLIT]], [[FOR_COND_FOR_END_CRIT_EDGE]] ], [ 0.000000e+00, [[ENTRY:%.*]] ] ; CHECK-NEXT: [[CONV:%.*]] = fptosi double [[DOTLCSSA]] to i32 ; CHECK-NEXT: ret i32 [[CONV]] ; entry: %A.addr = alloca double*, align 8 %n.addr = alloca i32, align 4 %sum = alloca double, align 8 %i = alloca i32, align 4 store double* %A, double** %A.addr, align 8 store i32 %n, i32* %n.addr, align 4 store double 0.000000e+00, double* %sum, align 8 store i32 0, i32* %i, align 4 %cmp1 = icmp slt i32 0, %n br i1 %cmp1, label %for.body.lr.ph, label %for.end for.body.lr.ph: ; preds = %entry br label %for.body for.body: ; preds = %for.body.lr.ph, %for.body %0 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ] %1 = phi double [ 0.000000e+00, %for.body.lr.ph ], [ %add7, %for.body ] %mul = mul nsw i32 %0, 2 %idxprom = sext i32 %mul to i64 %arrayidx = getelementptr inbounds double, double* %A, i64 %idxprom %2 = load double, double* %arrayidx, align 8 %mul1 = fmul double 7.000000e+00, %2 %add = add nsw i32 %mul, 1 %idxprom3 = sext i32 %add to i64 %arrayidx4 = getelementptr inbounds double, double* %A, i64 %idxprom3 %3 = load double, double* %arrayidx4, align 8 %mul5 = fmul double 7.000000e+00, %3 %add6 = fadd double %mul1, %mul5 %add7 = fadd double %1, %add6 store double %add7, double* %sum, align 8 %inc = add nsw i32 %0, 1 store i32 %inc, i32* %i, align 4 %cmp = icmp slt i32 %inc, %n br i1 %cmp, label %for.body, label %for.cond.for.end_crit_edge for.cond.for.end_crit_edge: ; preds = %for.body %split = phi double [ %add7, %for.body ] br label %for.end for.end: ; preds = %for.cond.for.end_crit_edge, %entry %.lcssa = phi double [ %split, %for.cond.for.end_crit_edge ], [ 0.000000e+00, %entry ] %conv = fptosi double %.lcssa to i32 ret i32 %conv } ; Similar to foo_2double but with a non-power-of-2 factor and potential ; wrapping (both indices wrap or both don't in the same time) ; Function Attrs: nounwind ssp uwtable define void @foo_2double_non_power_of_2(i32 %u) #0 { ; CHECK-LABEL: @foo_2double_non_power_of_2( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[U_ADDR:%.*]] = alloca i32, align 4 ; CHECK-NEXT: store i32 [[U:%.*]], i32* [[U_ADDR]], align 4 ; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[U]], 6 ; CHECK-NEXT: [[ADD6:%.*]] = add i32 [[MUL]], 6 ; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[ADD6]] to i64 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM]] ; CHECK-NEXT: [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM]] ; CHECK-NEXT: [[TMP0:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>* ; CHECK-NEXT: [[TMP1:%.*]] = load <2 x double>, <2 x double>* [[TMP0]], align 8 ; CHECK-NEXT: [[TMP2:%.*]] = bitcast double* [[ARRAYIDX4]] to <2 x double>* ; CHECK-NEXT: [[TMP3:%.*]] = load <2 x double>, <2 x double>* [[TMP2]], align 8 ; CHECK-NEXT: [[TMP4:%.*]] = fadd <2 x double> [[TMP1]], [[TMP3]] ; CHECK-NEXT: [[TMP5:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>* ; CHECK-NEXT: store <2 x double> [[TMP4]], <2 x double>* [[TMP5]], align 8 ; CHECK-NEXT: ret void ; entry: %u.addr = alloca i32, align 4 store i32 %u, i32* %u.addr, align 4 %mul = mul i32 %u, 6 %add6 = add i32 %mul, 6 %idxprom = sext i32 %add6 to i64 %arrayidx = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom %0 = load double, double* %arrayidx, align 8 %arrayidx4 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom %1 = load double, double* %arrayidx4, align 8 %add5 = fadd double %0, %1 store double %add5, double* %arrayidx, align 8 %add7 = add i32 %mul, 7 %idxprom12 = sext i32 %add7 to i64 %arrayidx13 = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom12 %2 = load double, double* %arrayidx13, align 8 %arrayidx17 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom12 %3 = load double, double* %arrayidx17, align 8 %add18 = fadd double %2, %3 store double %add18, double* %arrayidx13, align 8 ret void } ; Similar to foo_2double_non_power_of_2 but with zext's instead of sext's ; Function Attrs: nounwind ssp uwtable define void @foo_2double_non_power_of_2_zext(i32 %u) #0 { ; CHECK-LABEL: @foo_2double_non_power_of_2_zext( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[U_ADDR:%.*]] = alloca i32, align 4 ; CHECK-NEXT: store i32 [[U:%.*]], i32* [[U_ADDR]], align 4 ; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[U]], 6 ; CHECK-NEXT: [[ADD6:%.*]] = add i32 [[MUL]], 6 ; CHECK-NEXT: [[IDXPROM:%.*]] = zext i32 [[ADD6]] to i64 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM]] ; CHECK-NEXT: [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM]] ; CHECK-NEXT: [[TMP0:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>* ; CHECK-NEXT: [[TMP1:%.*]] = load <2 x double>, <2 x double>* [[TMP0]], align 8 ; CHECK-NEXT: [[TMP2:%.*]] = bitcast double* [[ARRAYIDX4]] to <2 x double>* ; CHECK-NEXT: [[TMP3:%.*]] = load <2 x double>, <2 x double>* [[TMP2]], align 8 ; CHECK-NEXT: [[TMP4:%.*]] = fadd <2 x double> [[TMP1]], [[TMP3]] ; CHECK-NEXT: [[TMP5:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>* ; CHECK-NEXT: store <2 x double> [[TMP4]], <2 x double>* [[TMP5]], align 8 ; CHECK-NEXT: ret void ; entry: %u.addr = alloca i32, align 4 store i32 %u, i32* %u.addr, align 4 %mul = mul i32 %u, 6 %add6 = add i32 %mul, 6 %idxprom = zext i32 %add6 to i64 %arrayidx = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom %0 = load double, double* %arrayidx, align 8 %arrayidx4 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom %1 = load double, double* %arrayidx4, align 8 %add5 = fadd double %0, %1 store double %add5, double* %arrayidx, align 8 %add7 = add i32 %mul, 7 %idxprom12 = zext i32 %add7 to i64 %arrayidx13 = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom12 %2 = load double, double* %arrayidx13, align 8 %arrayidx17 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom12 %3 = load double, double* %arrayidx17, align 8 %add18 = fadd double %2, %3 store double %add18, double* %arrayidx13, align 8 ret void } ; Similar to foo_2double_non_power_of_2, but now we are dealing with AddRec SCEV. ; Alternatively, this is like foo_loop, but with a non-power-of-2 factor and ; potential wrapping (both indices wrap or both don't in the same time) ; Function Attrs: nounwind ssp uwtable define i32 @foo_loop_non_power_of_2(double* %A, i32 %n) #0 { ; CHECK-LABEL: @foo_loop_non_power_of_2( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[A_ADDR:%.*]] = alloca double*, align 8 ; CHECK-NEXT: [[N_ADDR:%.*]] = alloca i32, align 4 ; CHECK-NEXT: [[SUM:%.*]] = alloca double, align 8 ; CHECK-NEXT: [[I:%.*]] = alloca i32, align 4 ; CHECK-NEXT: store double* [[A:%.*]], double** [[A_ADDR]], align 8 ; CHECK-NEXT: store i32 [[N:%.*]], i32* [[N_ADDR]], align 4 ; CHECK-NEXT: store double 0.000000e+00, double* [[SUM]], align 8 ; CHECK-NEXT: store i32 0, i32* [[I]], align 4 ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 0, [[N]] ; CHECK-NEXT: br i1 [[CMP1]], label [[FOR_BODY_LR_PH:%.*]], label [[FOR_END:%.*]] ; CHECK: for.body.lr.ph: ; CHECK-NEXT: br label [[FOR_BODY:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[TMP0:%.*]] = phi i32 [ 0, [[FOR_BODY_LR_PH]] ], [ [[INC:%.*]], [[FOR_BODY]] ] ; CHECK-NEXT: [[TMP1:%.*]] = phi double [ 0.000000e+00, [[FOR_BODY_LR_PH]] ], [ [[ADD7:%.*]], [[FOR_BODY]] ] ; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[TMP0]], 12 ; CHECK-NEXT: [[ADD_5:%.*]] = add i32 [[MUL]], 5 ; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[ADD_5]] to i64 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds double, double* [[A]], i64 [[IDXPROM]] ; CHECK-NEXT: [[TMP2:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>* ; CHECK-NEXT: [[TMP3:%.*]] = load <2 x double>, <2 x double>* [[TMP2]], align 8 ; CHECK-NEXT: [[TMP4:%.*]] = fmul <2 x double> <double 7.000000e+00, double 7.000000e+00>, [[TMP3]] ; CHECK-NEXT: [[TMP5:%.*]] = extractelement <2 x double> [[TMP4]], i32 0 ; CHECK-NEXT: [[TMP6:%.*]] = extractelement <2 x double> [[TMP4]], i32 1 ; CHECK-NEXT: [[ADD6:%.*]] = fadd double [[TMP5]], [[TMP6]] ; CHECK-NEXT: [[ADD7]] = fadd double [[TMP1]], [[ADD6]] ; CHECK-NEXT: store double [[ADD7]], double* [[SUM]], align 8 ; CHECK-NEXT: [[INC]] = add i32 [[TMP0]], 1 ; CHECK-NEXT: store i32 [[INC]], i32* [[I]], align 4 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[INC]], [[N]] ; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_COND_FOR_END_CRIT_EDGE:%.*]] ; CHECK: for.cond.for.end_crit_edge: ; CHECK-NEXT: [[SPLIT:%.*]] = phi double [ [[ADD7]], [[FOR_BODY]] ] ; CHECK-NEXT: br label [[FOR_END]] ; CHECK: for.end: ; CHECK-NEXT: [[DOTLCSSA:%.*]] = phi double [ [[SPLIT]], [[FOR_COND_FOR_END_CRIT_EDGE]] ], [ 0.000000e+00, [[ENTRY:%.*]] ] ; CHECK-NEXT: [[CONV:%.*]] = fptosi double [[DOTLCSSA]] to i32 ; CHECK-NEXT: ret i32 [[CONV]] ; entry: %A.addr = alloca double*, align 8 %n.addr = alloca i32, align 4 %sum = alloca double, align 8 %i = alloca i32, align 4 store double* %A, double** %A.addr, align 8 store i32 %n, i32* %n.addr, align 4 store double 0.000000e+00, double* %sum, align 8 store i32 0, i32* %i, align 4 %cmp1 = icmp slt i32 0, %n br i1 %cmp1, label %for.body.lr.ph, label %for.end for.body.lr.ph: ; preds = %entry br label %for.body for.body: ; preds = %for.body.lr.ph, %for.body %0 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ] %1 = phi double [ 0.000000e+00, %for.body.lr.ph ], [ %add7, %for.body ] %mul = mul i32 %0, 12 %add.5 = add i32 %mul, 5 %idxprom = sext i32 %add.5 to i64 %arrayidx = getelementptr inbounds double, double* %A, i64 %idxprom %2 = load double, double* %arrayidx, align 8 %mul1 = fmul double 7.000000e+00, %2 %add.6 = add i32 %mul, 6 %idxprom3 = sext i32 %add.6 to i64 %arrayidx4 = getelementptr inbounds double, double* %A, i64 %idxprom3 %3 = load double, double* %arrayidx4, align 8 %mul5 = fmul double 7.000000e+00, %3 %add6 = fadd double %mul1, %mul5 %add7 = fadd double %1, %add6 store double %add7, double* %sum, align 8 %inc = add i32 %0, 1 store i32 %inc, i32* %i, align 4 %cmp = icmp slt i32 %inc, %n br i1 %cmp, label %for.body, label %for.cond.for.end_crit_edge for.cond.for.end_crit_edge: ; preds = %for.body %split = phi double [ %add7, %for.body ] br label %for.end for.end: ; preds = %for.cond.for.end_crit_edge, %entry %.lcssa = phi double [ %split, %for.cond.for.end_crit_edge ], [ 0.000000e+00, %entry ] %conv = fptosi double %.lcssa to i32 ret i32 %conv } ; This is generated by `clang -std=c11 -Wpedantic -Wall -O3 main.c -S -o - -emit-llvm` ; with !{!"clang version 7.0.0 (trunk 337339) (llvm/trunk 337344)"} and stripping off ; the !tbaa metadata nodes to fit the rest of the test file, where `cat main.c` is: ; ; double bar(double *a, unsigned n) { ; double x = 0.0; ; double y = 0.0; ; for (unsigned i = 0; i < n; i += 2) { ; x += a[i]; ; y += a[i + 1]; ; } ; return x * y; ; } ; ; The resulting IR is similar to @foo_loop, but with zext's instead of sext's. ; ; Make sure we are able to vectorize this from now on: ; define double @bar(double* nocapture readonly %a, i32 %n) local_unnamed_addr #0 { ; CHECK-LABEL: @bar( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[CMP15:%.*]] = icmp eq i32 [[N:%.*]], 0 ; CHECK-NEXT: br i1 [[CMP15]], label [[FOR_COND_CLEANUP:%.*]], label [[FOR_BODY:%.*]] ; CHECK: for.cond.cleanup: ; CHECK-NEXT: [[TMP0:%.*]] = phi <2 x double> [ zeroinitializer, [[ENTRY:%.*]] ], [ [[TMP6:%.*]], [[FOR_BODY]] ] ; CHECK-NEXT: [[TMP1:%.*]] = extractelement <2 x double> [[TMP0]], i32 0 ; CHECK-NEXT: [[TMP2:%.*]] = extractelement <2 x double> [[TMP0]], i32 1 ; CHECK-NEXT: [[MUL:%.*]] = fmul double [[TMP1]], [[TMP2]] ; CHECK-NEXT: ret double [[MUL]] ; CHECK: for.body: ; CHECK-NEXT: [[I_018:%.*]] = phi i32 [ [[ADD5:%.*]], [[FOR_BODY]] ], [ 0, [[ENTRY]] ] ; CHECK-NEXT: [[TMP3:%.*]] = phi <2 x double> [ [[TMP6]], [[FOR_BODY]] ], [ zeroinitializer, [[ENTRY]] ] ; CHECK-NEXT: [[IDXPROM:%.*]] = zext i32 [[I_018]] to i64 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds double, double* [[A:%.*]], i64 [[IDXPROM]] ; CHECK-NEXT: [[TMP4:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>* ; CHECK-NEXT: [[TMP5:%.*]] = load <2 x double>, <2 x double>* [[TMP4]], align 8 ; CHECK-NEXT: [[TMP6]] = fadd <2 x double> [[TMP3]], [[TMP5]] ; CHECK-NEXT: [[ADD5]] = add i32 [[I_018]], 2 ; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 [[ADD5]], [[N]] ; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_COND_CLEANUP]] ; entry: %cmp15 = icmp eq i32 %n, 0 br i1 %cmp15, label %for.cond.cleanup, label %for.body for.cond.cleanup: ; preds = %for.body, %entry %x.0.lcssa = phi double [ 0.000000e+00, %entry ], [ %add, %for.body ] %y.0.lcssa = phi double [ 0.000000e+00, %entry ], [ %add4, %for.body ] %mul = fmul double %x.0.lcssa, %y.0.lcssa ret double %mul for.body: ; preds = %entry, %for.body %i.018 = phi i32 [ %add5, %for.body ], [ 0, %entry ] %y.017 = phi double [ %add4, %for.body ], [ 0.000000e+00, %entry ] %x.016 = phi double [ %add, %for.body ], [ 0.000000e+00, %entry ] %idxprom = zext i32 %i.018 to i64 %arrayidx = getelementptr inbounds double, double* %a, i64 %idxprom %0 = load double, double* %arrayidx, align 8 %add = fadd double %x.016, %0 %add1 = or i32 %i.018, 1 %idxprom2 = zext i32 %add1 to i64 %arrayidx3 = getelementptr inbounds double, double* %a, i64 %idxprom2 %1 = load double, double* %arrayidx3, align 8 %add4 = fadd double %y.017, %1 %add5 = add i32 %i.018, 2 %cmp = icmp ult i32 %add5, %n br i1 %cmp, label %for.body, label %for.cond.cleanup } ; Globals/constant expressions are not normal constants. ; They should not be treated as the usual vectorization candidates. @g1 = external global i32, align 4 @g2 = external global i32, align 4 define void @PR33958(i32** nocapture %p) { ; CHECK-LABEL: @PR33958( ; CHECK-NEXT: store i32* @g1, i32** [[P:%.*]], align 8 ; CHECK-NEXT: [[ARRAYIDX1:%.*]] = getelementptr inbounds i32*, i32** [[P]], i64 1 ; CHECK-NEXT: store i32* @g2, i32** [[ARRAYIDX1]], align 8 ; CHECK-NEXT: ret void ; store i32* @g1, i32** %p, align 8 %arrayidx1 = getelementptr inbounds i32*, i32** %p, i64 1 store i32* @g2, i32** %arrayidx1, align 8 ret void } define void @store_constant_expression(i64* %p) { ; CHECK-LABEL: @store_constant_expression( ; CHECK-NEXT: store i64 ptrtoint (i32* @g1 to i64), i64* [[P:%.*]], align 8 ; CHECK-NEXT: [[ARRAYIDX1:%.*]] = getelementptr inbounds i64, i64* [[P]], i64 1 ; CHECK-NEXT: store i64 ptrtoint (i32* @g2 to i64), i64* [[ARRAYIDX1]], align 8 ; CHECK-NEXT: ret void ; store i64 ptrtoint (i32* @g1 to i64), i64* %p, align 8 %arrayidx1 = getelementptr inbounds i64, i64* %p, i64 1 store i64 ptrtoint (i32* @g2 to i64), i64* %arrayidx1, align 8 ret void } attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" "frame-pointer"="all" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" } !llvm.ident = !{!0} !0 = !{!"clang version 3.5.0 "}