; RUN: opt < %s -early-cse-memssa -earlycse-debug-hash -verify-memoryssa -disable-output ; REQUIRES: asserts target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" target triple = "x86_64-unknown-linux-gnu" ; Tests below highlight scenarios where EarlyCSE does not preserve MemorySSA ; optimized accesses. Current MemorySSA verify will accept these. ; Test 1: ; AA cannot tell here that the last load does not alias the only store. ; The first two loads are a common expression, EarlyCSE removes the second one, ; and then AA can see that the last load is a Use(LoE). Hence not optimized as ; it claims. Note that if we replace the GEP indices 2 and 1, AA sees NoAlias ; for the last load, before CSE-ing the first 2 loads. %struct.ImageParameters = type { i32, i32, i32 } @img = external global ptr, align 8 define void @test1_macroblock() { entry: ; MemoryUse(LoE) %0 = load ptr, ptr @img, align 8 %Pos_2 = getelementptr inbounds %struct.ImageParameters, ptr %0, i64 0, i32 2 ; 1 = MemoryDef(LoE) store i32 undef, ptr %Pos_2, align 8 ; MemoryUse(LoE) %1 = load ptr, ptr @img, align 8 %Pos_1 = getelementptr inbounds %struct.ImageParameters, ptr %1, i64 0, i32 1 ; MemoryUse(1) MayAlias %2 = load i32, ptr %Pos_1, align 4 unreachable } ; Test 2: ; EarlyCSE simplifies %string to undef. Def and Use used to be MustAlias, with ; undef they are NoAlias. The Use can be optimized further to LoE. We can ; de-optimize uses of replaced instructions, but in general this is not enough ; (see next tests). %struct.TermS = type { i32, i32, i32, i32, i32, ptr } define fastcc void @test2_term_string() { entry: %string = getelementptr inbounds %struct.TermS, ptr undef, i64 0, i32 5 ; 1 = MemoryDef(LoE) store ptr undef, ptr %string, align 8 ; MemoryUse(1) MustAlias %0 = load ptr, ptr %string, align 8 unreachable } ; Test 3: ; EarlyCSE simplifies %0 to undef. So the second Def now stores to undef. ; We now find the second load (Use(2) can be optimized further to LoE) ; When replacing instructions, we can deoptimize all uses of the replaced ; instruction and all uses of transitive accesses. However this does not stop ; MemorySSA from being tripped by AA (see test4). %struct.Grammar = type { ptr, ptr, %struct.anon } %struct.anon = type { i32, i32, ptr, [3 x ptr] } %struct.Term = type { i32 } define fastcc void @test3_term_string(ptr %g) { entry: ; 1 = MemoryDef(LoE) store ptr undef, ptr undef, align 8 ; MemoryUse(LoE) %0 = load ptr, ptr undef, align 8 %arrayidx = getelementptr inbounds i8, ptr %0, i64 undef ; 2 = MemoryDef(1) store i8 0, ptr %arrayidx, align 1 %v = getelementptr inbounds %struct.Grammar, ptr %g, i64 0, i32 2, i32 2 ; MemoryUse(2) MayAlias %1 = load ptr, ptr %v, align 8 unreachable } ; Test 4: ; Removing dead/unused instructions in if.then274 makes AA smarter. Before ; removal, it finds %4 MayAlias the store above. After removal this can be ; optimized to LoE. Hence after EarlyCSE, there is an access who claims is ; optimized and it can be optimized further. ; We can't escape such cases in general when relying on Alias Analysis. ; The only fail-safe way to actually preserve MemorySSA when removing or ; replacing instructions (i.e. get the *same* MemorySSA as if it was computed ; for the updated IR) is to recompute it from scratch. What we get now is still ; a correct update, but with accesses that claim to be optimized and can be ; optimized further if we were to re-run MemorySSA on the IR. %struct.gnode.0.1.3.6.9.18.20.79 = type { i32, i32, i32, i32, i32, i32, i32, ptr } @gnodeArray = external global ptr, align 8 define void @test4_shortest() { entry: %exl.i = alloca [5 x i32], align 16 br i1 undef, label %if.then274, label %for.cond404 if.then274: ; preds = %if.end256 %arrayidx.i = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 1 %arrayidx1.i = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 2 %arrayidx2.i = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 3 %arrayidx3.i = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 4 %arrayidx.i1034 = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 1 %arrayidx1.i1035 = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 2 %arrayidx2.i1036 = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 3 %arrayidx3.i1037 = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 4 unreachable for.cond404: ; preds = %if.end256 %arrayidx.i960 = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 1 %arrayidx1.i961 = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 2 %arrayidx2.i962 = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 3 ; 1 = MemoryDef(LoE) store i32 undef, ptr %arrayidx2.i962, align 4 %arrayidx3.i963 = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 4 ; MemoryUse(LoE) %0 = load ptr, ptr @gnodeArray, align 8 %arrayidx6.i968 = getelementptr inbounds ptr, ptr %0, i64 undef ; MemoryUse(1) MayAlias %1 = load ptr, ptr %arrayidx6.i968, align 8 br i1 undef, label %for.cond26.preheader.i974, label %if.then20.for.body_crit_edge.i999 for.cond26.preheader.i974: ; preds = %if.then20.i996 %arrayidx.i924 = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 1 %arrayidx1.i925 = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 2 %arrayidx2.i926 = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 3 %arrayidx3.i927 = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 4 unreachable if.then20.for.body_crit_edge.i999: ; preds = %if.then20.i996 %arrayidx9.phi.trans.insert.i997 = getelementptr inbounds [5 x i32], ptr %exl.i, i64 0, i64 undef unreachable }