#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/Optional.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSizeOpts.h"
#include "llvm/CodeGen/RegisterBankInfo.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#define DEBUG_TYPE "globalisel-utils"
using namespace llvm;
using namespace MIPatternMatch;
Register llvm::constrainRegToClass(MachineRegisterInfo &MRI,
const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, Register Reg,
const TargetRegisterClass &RegClass) {
if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
return MRI.createVirtualRegister(&RegClass);
return Reg;
}
Register llvm::constrainOperandRegClass(
const MachineFunction &MF, const TargetRegisterInfo &TRI,
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, MachineInstr &InsertPt,
const TargetRegisterClass &RegClass, MachineOperand &RegMO) {
Register Reg = RegMO.getReg();
assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
auto *OldRegClass = MRI.getRegClassOrNull(Reg);
Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
if (ConstrainedReg != Reg) {
MachineBasicBlock::iterator InsertIt(&InsertPt);
MachineBasicBlock &MBB = *InsertPt.getParent();
if (RegMO.isUse()) {
BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
TII.get(TargetOpcode::COPY), ConstrainedReg)
.addReg(Reg);
} else {
assert(RegMO.isDef() && "Must be a definition");
BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
TII.get(TargetOpcode::COPY), Reg)
.addReg(ConstrainedReg);
}
if (GISelChangeObserver *Observer = MF.getObserver()) {
Observer->changingInstr(*RegMO.getParent());
}
RegMO.setReg(ConstrainedReg);
if (GISelChangeObserver *Observer = MF.getObserver()) {
Observer->changedInstr(*RegMO.getParent());
}
} else if (OldRegClass != MRI.getRegClassOrNull(Reg)) {
if (GISelChangeObserver *Observer = MF.getObserver()) {
if (!RegMO.isDef()) {
MachineInstr *RegDef = MRI.getVRegDef(Reg);
Observer->changedInstr(*RegDef);
}
Observer->changingAllUsesOfReg(MRI, Reg);
Observer->finishedChangingAllUsesOfReg();
}
}
return ConstrainedReg;
}
Register llvm::constrainOperandRegClass(
const MachineFunction &MF, const TargetRegisterInfo &TRI,
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
MachineOperand &RegMO, unsigned OpIdx) {
Register Reg = RegMO.getReg();
assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF);
if (OpRC) {
if (const auto *SubRC = TRI.getCommonSubClass(
OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI)))
OpRC = SubRC;
OpRC = TRI.getAllocatableClass(OpRC);
}
if (!OpRC) {
assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
"Register class constraint is required unless either the "
"instruction is target independent or the operand is a use");
return Reg;
}
return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC,
RegMO);
}
bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
const TargetInstrInfo &TII,
const TargetRegisterInfo &TRI,
const RegisterBankInfo &RBI) {
assert(!isPreISelGenericOpcode(I.getOpcode()) &&
"A selected instruction is expected");
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
MachineOperand &MO = I.getOperand(OpI);
if (!MO.isReg())
continue;
LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
assert(MO.isReg() && "Unsupported non-reg operand");
Register Reg = MO.getReg();
if (Register::isPhysicalRegister(Reg))
continue;
if (Reg == 0)
continue;
constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI);
if (MO.isUse()) {
int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
I.tieOperands(DefIdx, OpI);
}
}
return true;
}
bool llvm::canReplaceReg(Register DstReg, Register SrcReg,
MachineRegisterInfo &MRI) {
if (DstReg.isPhysical() || SrcReg.isPhysical())
return false;
if (MRI.getType(DstReg) != MRI.getType(SrcReg))
return false;
return !MRI.getRegClassOrRegBank(DstReg) ||
MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg);
}
bool llvm::isTriviallyDead(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE)
return false;
if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
MI.getOpcode() == TargetOpcode::LIFETIME_END)
return false;
bool SawStore = false;
if (!MI.isSafeToMove(nullptr, SawStore) && !MI.isPHI())
return false;
for (const auto &MO : MI.operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
Register Reg = MO.getReg();
if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg))
return false;
}
return true;
}
static void reportGISelDiagnostic(DiagnosticSeverity Severity,
MachineFunction &MF,
const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
bool IsFatal = Severity == DS_Error &&
TPC.isGlobalISelAbortEnabled();
if (!R.getLocation().isValid() || IsFatal)
R << (" (in function: " + MF.getName() + ")").str();
if (IsFatal)
report_fatal_error(Twine(R.getMsg()));
else
MORE.emit(R);
}
void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R);
}
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R);
}
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
const char *PassName, StringRef Msg,
const MachineInstr &MI) {
MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
MI.getDebugLoc(), MI.getParent());
R << Msg;
if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
R << ": " << ore::MNV("Inst", MI);
reportGISelFailure(MF, TPC, MORE, R);
}
Optional<APInt> llvm::getIConstantVRegVal(Register VReg,
const MachineRegisterInfo &MRI) {
Optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough(
VReg, MRI, false);
assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
"Value found while looking through instrs");
if (!ValAndVReg)
return None;
return ValAndVReg->Value;
}
Optional<int64_t>
llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) {
Optional<APInt> Val = getIConstantVRegVal(VReg, MRI);
if (Val && Val->getBitWidth() <= 64)
return Val->getSExtValue();
return None;
}
namespace {
typedef std::function<bool(const MachineInstr *)> IsOpcodeFn;
typedef std::function<Optional<APInt>(const MachineInstr *MI)> GetAPCstFn;
Optional<ValueAndVReg> getConstantVRegValWithLookThrough(
Register VReg, const MachineRegisterInfo &MRI, IsOpcodeFn IsConstantOpcode,
GetAPCstFn getAPCstValue, bool LookThroughInstrs = true,
bool LookThroughAnyExt = false) {
SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
MachineInstr *MI;
while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) &&
LookThroughInstrs) {
switch (MI->getOpcode()) {
case TargetOpcode::G_ANYEXT:
if (!LookThroughAnyExt)
return None;
LLVM_FALLTHROUGH;
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT:
SeenOpcodes.push_back(std::make_pair(
MI->getOpcode(),
MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
VReg = MI->getOperand(1).getReg();
break;
case TargetOpcode::COPY:
VReg = MI->getOperand(1).getReg();
if (Register::isPhysicalRegister(VReg))
return None;
break;
case TargetOpcode::G_INTTOPTR:
VReg = MI->getOperand(1).getReg();
break;
default:
return None;
}
}
if (!MI || !IsConstantOpcode(MI))
return None;
Optional<APInt> MaybeVal = getAPCstValue(MI);
if (!MaybeVal)
return None;
APInt &Val = *MaybeVal;
while (!SeenOpcodes.empty()) {
std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
switch (OpcodeAndSize.first) {
case TargetOpcode::G_TRUNC:
Val = Val.trunc(OpcodeAndSize.second);
break;
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_SEXT:
Val = Val.sext(OpcodeAndSize.second);
break;
case TargetOpcode::G_ZEXT:
Val = Val.zext(OpcodeAndSize.second);
break;
}
}
return ValueAndVReg{Val, VReg};
}
bool isIConstant(const MachineInstr *MI) {
if (!MI)
return false;
return MI->getOpcode() == TargetOpcode::G_CONSTANT;
}
bool isFConstant(const MachineInstr *MI) {
if (!MI)
return false;
return MI->getOpcode() == TargetOpcode::G_FCONSTANT;
}
bool isAnyConstant(const MachineInstr *MI) {
if (!MI)
return false;
unsigned Opc = MI->getOpcode();
return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT;
}
Optional<APInt> getCImmAsAPInt(const MachineInstr *MI) {
const MachineOperand &CstVal = MI->getOperand(1);
if (CstVal.isCImm())
return CstVal.getCImm()->getValue();
return None;
}
Optional<APInt> getCImmOrFPImmAsAPInt(const MachineInstr *MI) {
const MachineOperand &CstVal = MI->getOperand(1);
if (CstVal.isCImm())
return CstVal.getCImm()->getValue();
if (CstVal.isFPImm())
return CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
return None;
}
}
Optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough(
Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
return getConstantVRegValWithLookThrough(VReg, MRI, isIConstant,
getCImmAsAPInt, LookThroughInstrs);
}
Optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough(
Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
bool LookThroughAnyExt) {
return getConstantVRegValWithLookThrough(
VReg, MRI, isAnyConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs,
LookThroughAnyExt);
}
Optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough(
Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
auto Reg = getConstantVRegValWithLookThrough(
VReg, MRI, isFConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs);
if (!Reg)
return None;
return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(),
Reg->VReg};
}
const ConstantFP *
llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) {
MachineInstr *MI = MRI.getVRegDef(VReg);
if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
return nullptr;
return MI->getOperand(1).getFPImm();
}
Optional<DefinitionAndSourceRegister>
llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) {
Register DefSrcReg = Reg;
auto *DefMI = MRI.getVRegDef(Reg);
auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
if (!DstTy.isValid())
return None;
unsigned Opc = DefMI->getOpcode();
while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) {
Register SrcReg = DefMI->getOperand(1).getReg();
auto SrcTy = MRI.getType(SrcReg);
if (!SrcTy.isValid())
break;
DefMI = MRI.getVRegDef(SrcReg);
DefSrcReg = SrcReg;
Opc = DefMI->getOpcode();
}
return DefinitionAndSourceRegister{DefMI, DefSrcReg};
}
MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
const MachineRegisterInfo &MRI) {
Optional<DefinitionAndSourceRegister> DefSrcReg =
getDefSrcRegIgnoringCopies(Reg, MRI);
return DefSrcReg ? DefSrcReg->MI : nullptr;
}
Register llvm::getSrcRegIgnoringCopies(Register Reg,
const MachineRegisterInfo &MRI) {
Optional<DefinitionAndSourceRegister> DefSrcReg =
getDefSrcRegIgnoringCopies(Reg, MRI);
return DefSrcReg ? DefSrcReg->Reg : Register();
}
MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
const MachineRegisterInfo &MRI) {
MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
}
APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
if (Size == 32)
return APFloat(float(Val));
if (Size == 64)
return APFloat(Val);
if (Size != 16)
llvm_unreachable("Unsupported FPConstant size");
bool Ignored;
APFloat APF(Val);
APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
return APF;
}
Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const Register Op1,
const Register Op2,
const MachineRegisterInfo &MRI) {
auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false);
if (!MaybeOp2Cst)
return None;
auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false);
if (!MaybeOp1Cst)
return None;
const APInt &C1 = MaybeOp1Cst->Value;
const APInt &C2 = MaybeOp2Cst->Value;
switch (Opcode) {
default:
break;
case TargetOpcode::G_ADD:
case TargetOpcode::G_PTR_ADD:
return C1 + C2;
case TargetOpcode::G_AND:
return C1 & C2;
case TargetOpcode::G_ASHR:
return C1.ashr(C2);
case TargetOpcode::G_LSHR:
return C1.lshr(C2);
case TargetOpcode::G_MUL:
return C1 * C2;
case TargetOpcode::G_OR:
return C1 | C2;
case TargetOpcode::G_SHL:
return C1 << C2;
case TargetOpcode::G_SUB:
return C1 - C2;
case TargetOpcode::G_XOR:
return C1 ^ C2;
case TargetOpcode::G_UDIV:
if (!C2.getBoolValue())
break;
return C1.udiv(C2);
case TargetOpcode::G_SDIV:
if (!C2.getBoolValue())
break;
return C1.sdiv(C2);
case TargetOpcode::G_UREM:
if (!C2.getBoolValue())
break;
return C1.urem(C2);
case TargetOpcode::G_SREM:
if (!C2.getBoolValue())
break;
return C1.srem(C2);
case TargetOpcode::G_SMIN:
return APIntOps::smin(C1, C2);
case TargetOpcode::G_SMAX:
return APIntOps::smax(C1, C2);
case TargetOpcode::G_UMIN:
return APIntOps::umin(C1, C2);
case TargetOpcode::G_UMAX:
return APIntOps::umax(C1, C2);
}
return None;
}
Optional<APFloat> llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1,
const Register Op2,
const MachineRegisterInfo &MRI) {
const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
if (!Op2Cst)
return None;
const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
if (!Op1Cst)
return None;
APFloat C1 = Op1Cst->getValueAPF();
const APFloat &C2 = Op2Cst->getValueAPF();
switch (Opcode) {
case TargetOpcode::G_FADD:
C1.add(C2, APFloat::rmNearestTiesToEven);
return C1;
case TargetOpcode::G_FSUB:
C1.subtract(C2, APFloat::rmNearestTiesToEven);
return C1;
case TargetOpcode::G_FMUL:
C1.multiply(C2, APFloat::rmNearestTiesToEven);
return C1;
case TargetOpcode::G_FDIV:
C1.divide(C2, APFloat::rmNearestTiesToEven);
return C1;
case TargetOpcode::G_FREM:
C1.mod(C2);
return C1;
case TargetOpcode::G_FCOPYSIGN:
C1.copySign(C2);
return C1;
case TargetOpcode::G_FMINNUM:
return minnum(C1, C2);
case TargetOpcode::G_FMAXNUM:
return maxnum(C1, C2);
case TargetOpcode::G_FMINIMUM:
return minimum(C1, C2);
case TargetOpcode::G_FMAXIMUM:
return maximum(C1, C2);
case TargetOpcode::G_FMINNUM_IEEE:
case TargetOpcode::G_FMAXNUM_IEEE:
break;
default:
break;
}
return None;
}
SmallVector<APInt>
llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1,
const Register Op2,
const MachineRegisterInfo &MRI) {
auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI);
if (!SrcVec2)
return SmallVector<APInt>();
auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI);
if (!SrcVec1)
return SmallVector<APInt>();
SmallVector<APInt> FoldedElements;
for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) {
auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx),
SrcVec2->getSourceReg(Idx), MRI);
if (!MaybeCst)
return SmallVector<APInt>();
FoldedElements.push_back(*MaybeCst);
}
return FoldedElements;
}
bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
bool SNaN) {
const MachineInstr *DefMI = MRI.getVRegDef(Val);
if (!DefMI)
return false;
const TargetMachine& TM = DefMI->getMF()->getTarget();
if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath)
return true;
if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) {
return !FPVal->getValueAPF().isNaN() ||
(SNaN && !FPVal->getValueAPF().isSignaling());
}
if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
for (const auto &Op : DefMI->uses())
if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN))
return false;
return true;
}
switch (DefMI->getOpcode()) {
default:
break;
case TargetOpcode::G_FMINNUM_IEEE:
case TargetOpcode::G_FMAXNUM_IEEE: {
if (SNaN)
return true;
return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) &&
isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) ||
(isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) &&
isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI));
}
case TargetOpcode::G_FMINNUM:
case TargetOpcode::G_FMAXNUM: {
return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) ||
isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN);
}
}
if (SNaN) {
switch (DefMI->getOpcode()) {
case TargetOpcode::G_FPEXT:
case TargetOpcode::G_FPTRUNC:
case TargetOpcode::G_FCANONICALIZE:
return true;
default:
return false;
}
}
return false;
}
Align llvm::inferAlignFromPtrInfo(MachineFunction &MF,
const MachinePointerInfo &MPO) {
auto PSV = MPO.V.dyn_cast<const PseudoSourceValue *>();
if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
MachineFrameInfo &MFI = MF.getFrameInfo();
return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()),
MPO.Offset);
}
if (const Value *V = MPO.V.dyn_cast<const Value *>()) {
const Module *M = MF.getFunction().getParent();
return V->getPointerAlignment(M->getDataLayout());
}
return Align(1);
}
Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF,
const TargetInstrInfo &TII,
MCRegister PhysReg,
const TargetRegisterClass &RC,
const DebugLoc &DL, LLT RegTy) {
MachineBasicBlock &EntryMBB = MF.front();
MachineRegisterInfo &MRI = MF.getRegInfo();
Register LiveIn = MRI.getLiveInVirtReg(PhysReg);
if (LiveIn) {
MachineInstr *Def = MRI.getVRegDef(LiveIn);
if (Def) {
assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block");
return LiveIn;
}
} else {
LiveIn = MF.addLiveIn(PhysReg, &RC);
if (RegTy.isValid())
MRI.setType(LiveIn, RegTy);
}
BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn)
.addReg(PhysReg);
if (!EntryMBB.isLiveIn(PhysReg))
EntryMBB.addLiveIn(PhysReg);
return LiveIn;
}
Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const Register Op1,
uint64_t Imm,
const MachineRegisterInfo &MRI) {
auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI);
if (MaybeOp1Cst) {
switch (Opcode) {
default:
break;
case TargetOpcode::G_SEXT_INREG: {
LLT Ty = MRI.getType(Op1);
return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits());
}
}
}
return None;
}
Optional<APFloat> llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy,
Register Src,
const MachineRegisterInfo &MRI) {
assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP);
if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) {
APFloat DstVal(getFltSemanticForLLT(DstTy));
DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP,
APFloat::rmNearestTiesToEven);
return DstVal;
}
return None;
}
Optional<SmallVector<unsigned>>
llvm::ConstantFoldCTLZ(Register Src, const MachineRegisterInfo &MRI) {
LLT Ty = MRI.getType(Src);
SmallVector<unsigned> FoldedCTLZs;
auto tryFoldScalar = [&](Register R) -> Optional<unsigned> {
auto MaybeCst = getIConstantVRegVal(R, MRI);
if (!MaybeCst)
return None;
return MaybeCst->countLeadingZeros();
};
if (Ty.isVector()) {
auto *BV = getOpcodeDef<GBuildVector>(Src, MRI);
if (!BV)
return None;
for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) {
FoldedCTLZs.emplace_back(*MaybeFold);
continue;
}
return None;
}
return FoldedCTLZs;
}
if (auto MaybeCst = tryFoldScalar(Src)) {
FoldedCTLZs.emplace_back(*MaybeCst);
return FoldedCTLZs;
}
return None;
}
bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI,
GISelKnownBits *KB) {
Optional<DefinitionAndSourceRegister> DefSrcReg =
getDefSrcRegIgnoringCopies(Reg, MRI);
if (!DefSrcReg)
return false;
const MachineInstr &MI = *DefSrcReg->MI;
const LLT Ty = MRI.getType(Reg);
switch (MI.getOpcode()) {
case TargetOpcode::G_CONSTANT: {
unsigned BitWidth = Ty.getScalarSizeInBits();
const ConstantInt *CI = MI.getOperand(1).getCImm();
return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2();
}
case TargetOpcode::G_SHL: {
if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
if (*ConstLHS == 1)
return true;
}
break;
}
case TargetOpcode::G_LSHR: {
if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
if (ConstLHS->isSignMask())
return true;
}
break;
}
case TargetOpcode::G_BUILD_VECTOR: {
for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB))
return false;
return true;
}
case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
const unsigned BitWidth = Ty.getScalarSizeInBits();
for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
auto Const = getIConstantVRegVal(MO.getReg(), MRI);
if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2())
return false;
}
return true;
}
default:
break;
}
if (!KB)
return false;
KnownBits Known = KB->getKnownBits(Reg);
return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
}
void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
AU.addPreserved<StackProtector>();
}
static unsigned getLCMSize(unsigned OrigSize, unsigned TargetSize) {
unsigned Mul = OrigSize * TargetSize;
unsigned GCDSize = greatestCommonDivisor(OrigSize, TargetSize);
return Mul / GCDSize;
}
LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) {
const unsigned OrigSize = OrigTy.getSizeInBits();
const unsigned TargetSize = TargetTy.getSizeInBits();
if (OrigSize == TargetSize)
return OrigTy;
if (OrigTy.isVector()) {
const LLT OrigElt = OrigTy.getElementType();
if (TargetTy.isVector()) {
const LLT TargetElt = TargetTy.getElementType();
if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
int GCDElts = greatestCommonDivisor(OrigTy.getNumElements(),
TargetTy.getNumElements());
ElementCount Mul = OrigTy.getElementCount() * TargetTy.getNumElements();
return LLT::vector(Mul.divideCoefficientBy(GCDElts),
OrigTy.getElementType());
}
} else {
if (OrigElt.getSizeInBits() == TargetSize)
return OrigTy;
}
unsigned LCMSize = getLCMSize(OrigSize, TargetSize);
return LLT::fixed_vector(LCMSize / OrigElt.getSizeInBits(), OrigElt);
}
if (TargetTy.isVector()) {
unsigned LCMSize = getLCMSize(OrigSize, TargetSize);
return LLT::fixed_vector(LCMSize / OrigSize, OrigTy);
}
unsigned LCMSize = getLCMSize(OrigSize, TargetSize);
if (LCMSize == OrigSize)
return OrigTy;
if (LCMSize == TargetSize)
return TargetTy;
return LLT::scalar(LCMSize);
}
LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) {
if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy ||
(OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits()))
return getLCMType(OrigTy, TargetTy);
unsigned OrigTyNumElts = OrigTy.getNumElements();
unsigned TargetTyNumElts = TargetTy.getNumElements();
if (OrigTyNumElts % TargetTyNumElts == 0)
return OrigTy;
unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts);
return LLT::scalarOrVector(ElementCount::getFixed(NumElts),
OrigTy.getElementType());
}
LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) {
const unsigned OrigSize = OrigTy.getSizeInBits();
const unsigned TargetSize = TargetTy.getSizeInBits();
if (OrigSize == TargetSize)
return OrigTy;
if (OrigTy.isVector()) {
LLT OrigElt = OrigTy.getElementType();
if (TargetTy.isVector()) {
LLT TargetElt = TargetTy.getElementType();
if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
int GCD = greatestCommonDivisor(OrigTy.getNumElements(),
TargetTy.getNumElements());
return LLT::scalarOrVector(ElementCount::getFixed(GCD), OrigElt);
}
} else {
if (OrigElt.getSizeInBits() == TargetSize)
return OrigElt;
}
unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize);
if (GCD == OrigElt.getSizeInBits())
return OrigElt;
if (GCD < OrigElt.getSizeInBits())
return LLT::scalar(GCD);
return LLT::fixed_vector(GCD / OrigElt.getSizeInBits(), OrigElt);
}
if (TargetTy.isVector()) {
LLT TargetElt = TargetTy.getElementType();
if (TargetElt.getSizeInBits() == OrigSize)
return OrigTy;
}
unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize);
return LLT::scalar(GCD);
}
Optional<int> llvm::getSplatIndex(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
"Only G_SHUFFLE_VECTOR can have a splat index!");
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; });
if (FirstDefinedIdx == Mask.end())
return 0;
int SplatValue = *FirstDefinedIdx;
if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()),
[&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; }))
return None;
return SplatValue;
}
static bool isBuildVectorOp(unsigned Opcode) {
return Opcode == TargetOpcode::G_BUILD_VECTOR ||
Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC;
}
namespace {
Optional<ValueAndVReg> getAnyConstantSplat(Register VReg,
const MachineRegisterInfo &MRI,
bool AllowUndef) {
MachineInstr *MI = getDefIgnoringCopies(VReg, MRI);
if (!MI)
return None;
if (!isBuildVectorOp(MI->getOpcode()))
return None;
Optional<ValueAndVReg> SplatValAndReg = None;
for (MachineOperand &Op : MI->uses()) {
Register Element = Op.getReg();
auto ElementValAndReg =
getAnyConstantVRegValWithLookThrough(Element, MRI, true, true);
if (!ElementValAndReg) {
if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element)))
continue;
return None;
}
if (!SplatValAndReg)
SplatValAndReg = ElementValAndReg;
if (SplatValAndReg->Value != ElementValAndReg->Value)
return None;
}
return SplatValAndReg;
}
}
bool llvm::isBuildVectorConstantSplat(const Register Reg,
const MachineRegisterInfo &MRI,
int64_t SplatValue, bool AllowUndef) {
if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef))
return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue));
return false;
}
bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
int64_t SplatValue, bool AllowUndef) {
return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue,
AllowUndef);
}
Optional<APInt> llvm::getIConstantSplatVal(const Register Reg,
const MachineRegisterInfo &MRI) {
if (auto SplatValAndReg =
getAnyConstantSplat(Reg, MRI, false)) {
Optional<ValueAndVReg> ValAndVReg =
getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI);
return ValAndVReg->Value;
}
return None;
}
Optional<APInt> getIConstantSplatVal(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI);
}
Optional<int64_t>
llvm::getIConstantSplatSExtVal(const Register Reg,
const MachineRegisterInfo &MRI) {
if (auto SplatValAndReg =
getAnyConstantSplat(Reg, MRI, false))
return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI);
return None;
}
Optional<int64_t>
llvm::getIConstantSplatSExtVal(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI);
}
Optional<FPValueAndVReg> llvm::getFConstantSplat(Register VReg,
const MachineRegisterInfo &MRI,
bool AllowUndef) {
if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef))
return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI);
return None;
}
bool llvm::isBuildVectorAllZeros(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowUndef) {
return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef);
}
bool llvm::isBuildVectorAllOnes(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowUndef) {
return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef);
}
Optional<RegOrConstant> llvm::getVectorSplat(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
unsigned Opc = MI.getOpcode();
if (!isBuildVectorOp(Opc))
return None;
if (auto Splat = getIConstantSplatSExtVal(MI, MRI))
return RegOrConstant(*Splat);
auto Reg = MI.getOperand(1).getReg();
if (any_of(make_range(MI.operands_begin() + 2, MI.operands_end()),
[&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; }))
return None;
return RegOrConstant(Reg);
}
static bool isConstantScalar(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowFP = true,
bool AllowOpaqueConstants = true) {
switch (MI.getOpcode()) {
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_IMPLICIT_DEF:
return true;
case TargetOpcode::G_FCONSTANT:
return AllowFP;
case TargetOpcode::G_GLOBAL_VALUE:
case TargetOpcode::G_FRAME_INDEX:
case TargetOpcode::G_BLOCK_ADDR:
case TargetOpcode::G_JUMP_TABLE:
return AllowOpaqueConstants;
default:
return false;
}
}
bool llvm::isConstantOrConstantVector(MachineInstr &MI,
const MachineRegisterInfo &MRI) {
Register Def = MI.getOperand(0).getReg();
if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
return true;
GBuildVector *BV = dyn_cast<GBuildVector>(&MI);
if (!BV)
return false;
for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) ||
getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI))
continue;
return false;
}
return true;
}
bool llvm::isConstantOrConstantVector(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowFP, bool AllowOpaqueConstants) {
if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants))
return true;
if (!isBuildVectorOp(MI.getOpcode()))
return false;
const unsigned NumOps = MI.getNumOperands();
for (unsigned I = 1; I != NumOps; ++I) {
const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg());
if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants))
return false;
}
return true;
}
Optional<APInt>
llvm::isConstantOrConstantSplatVector(MachineInstr &MI,
const MachineRegisterInfo &MRI) {
Register Def = MI.getOperand(0).getReg();
if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
return C->Value;
auto MaybeCst = getIConstantSplatSExtVal(MI, MRI);
if (!MaybeCst)
return None;
const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits();
return APInt(ScalarSize, *MaybeCst, true);
}
bool llvm::isNullOrNullSplat(const MachineInstr &MI,
const MachineRegisterInfo &MRI, bool AllowUndefs) {
switch (MI.getOpcode()) {
case TargetOpcode::G_IMPLICIT_DEF:
return AllowUndefs;
case TargetOpcode::G_CONSTANT:
return MI.getOperand(1).getCImm()->isNullValue();
case TargetOpcode::G_FCONSTANT: {
const ConstantFP *FPImm = MI.getOperand(1).getFPImm();
return FPImm->isZero() && !FPImm->isNegative();
}
default:
if (!AllowUndefs) return false;
return isBuildVectorAllZeros(MI, MRI);
}
}
bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowUndefs) {
switch (MI.getOpcode()) {
case TargetOpcode::G_IMPLICIT_DEF:
return AllowUndefs;
case TargetOpcode::G_CONSTANT:
return MI.getOperand(1).getCImm()->isAllOnesValue();
default:
if (!AllowUndefs) return false;
return isBuildVectorAllOnes(MI, MRI);
}
}
bool llvm::matchUnaryPredicate(
const MachineRegisterInfo &MRI, Register Reg,
std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) {
const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
return Match(nullptr);
if (Def->getOpcode() == TargetOpcode::G_CONSTANT)
return Match(Def->getOperand(1).getCImm());
if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
return false;
for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) {
Register SrcElt = Def->getOperand(I).getReg();
const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI);
if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) {
if (!Match(nullptr))
return false;
continue;
}
if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT ||
!Match(SrcDef->getOperand(1).getCImm()))
return false;
}
return true;
}
bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector,
bool IsFP) {
switch (TLI.getBooleanContents(IsVector, IsFP)) {
case TargetLowering::UndefinedBooleanContent:
return Val & 0x1;
case TargetLowering::ZeroOrOneBooleanContent:
return Val == 1;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return Val == -1;
}
llvm_unreachable("Invalid boolean contents");
}
int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector,
bool IsFP) {
switch (TLI.getBooleanContents(IsVector, IsFP)) {
case TargetLowering::UndefinedBooleanContent:
case TargetLowering::ZeroOrOneBooleanContent:
return 1;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return -1;
}
llvm_unreachable("Invalid boolean contents");
}
bool llvm::shouldOptForSize(const MachineBasicBlock &MBB,
ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
const auto &F = MBB.getParent()->getFunction();
return F.hasOptSize() || F.hasMinSize() ||
llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI);
}
void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI,
LostDebugLocObserver *LocObserver,
SmallInstListTy &DeadInstChain) {
for (MachineOperand &Op : MI.uses()) {
if (Op.isReg() && Op.getReg().isVirtual())
DeadInstChain.insert(MRI.getVRegDef(Op.getReg()));
}
LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n");
DeadInstChain.remove(&MI);
MI.eraseFromParent();
if (LocObserver)
LocObserver->checkpoint(false);
}
void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs,
MachineRegisterInfo &MRI,
LostDebugLocObserver *LocObserver) {
SmallInstListTy DeadInstChain;
for (MachineInstr *MI : DeadInstrs)
saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain);
while (!DeadInstChain.empty()) {
MachineInstr *Inst = DeadInstChain.pop_back_val();
if (!isTriviallyDead(*Inst, MRI))
continue;
saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain);
}
}
void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI,
LostDebugLocObserver *LocObserver) {
return eraseInstrs({&MI}, MRI, LocObserver);
}