; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt -mtriple=x86_64-unknown-linux-gnu < %s -passes=instcombine -S | FileCheck %s ; Make sure libcalls are replaced with intrinsic calls. declare float @llvm.fabs.f32(float) declare <2 x float> @llvm.fabs.v2f32(<2 x float>) declare double @llvm.fabs.f64(double) declare fp128 @llvm.fabs.f128(fp128) declare float @fabsf(float) declare double @fabs(double) declare fp128 @fabsl(fp128) declare float @llvm.fma.f32(float, float, float) declare float @llvm.fmuladd.f32(float, float, float) declare void @use(float) define float @replace_fabs_call_f32(float %x) { ; CHECK-LABEL: @replace_fabs_call_f32( ; CHECK-NEXT: [[FABSF:%.*]] = tail call float @llvm.fabs.f32(float [[X:%.*]]) ; CHECK-NEXT: ret float [[FABSF]] ; %fabsf = tail call float @fabsf(float %x) ret float %fabsf } define double @replace_fabs_call_f64(double %x) { ; CHECK-LABEL: @replace_fabs_call_f64( ; CHECK-NEXT: [[FABS:%.*]] = tail call double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: ret double [[FABS]] ; %fabs = tail call double @fabs(double %x) ret double %fabs } define fp128 @replace_fabs_call_f128(fp128 %x) { ; CHECK-LABEL: @replace_fabs_call_f128( ; CHECK-NEXT: [[FABSL:%.*]] = tail call fp128 @llvm.fabs.f128(fp128 [[X:%.*]]) ; CHECK-NEXT: ret fp128 [[FABSL]] ; %fabsl = tail call fp128 @fabsl(fp128 %x) ret fp128 %fabsl } ; Make sure fast math flags are preserved when replacing the libcall. define float @fmf_replace_fabs_call_f32(float %x) { ; CHECK-LABEL: @fmf_replace_fabs_call_f32( ; CHECK-NEXT: [[FABSF:%.*]] = tail call nnan float @llvm.fabs.f32(float [[X:%.*]]) ; CHECK-NEXT: ret float [[FABSF]] ; %fabsf = tail call nnan float @fabsf(float %x) ret float %fabsf } ; Make sure all intrinsic calls are eliminated when the input is known ; positive. ; The fabs cannot be eliminated because %x may be a NaN define float @square_fabs_intrinsic_f32(float %x) { ; CHECK-LABEL: @square_fabs_intrinsic_f32( ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[X:%.*]], [[X]] ; CHECK-NEXT: [[FABSF:%.*]] = tail call float @llvm.fabs.f32(float [[MUL]]) ; CHECK-NEXT: ret float [[FABSF]] ; %mul = fmul float %x, %x %fabsf = tail call float @llvm.fabs.f32(float %mul) ret float %fabsf } define double @square_fabs_intrinsic_f64(double %x) { ; CHECK-LABEL: @square_fabs_intrinsic_f64( ; CHECK-NEXT: [[MUL:%.*]] = fmul double [[X:%.*]], [[X]] ; CHECK-NEXT: [[FABS:%.*]] = tail call double @llvm.fabs.f64(double [[MUL]]) ; CHECK-NEXT: ret double [[FABS]] ; %mul = fmul double %x, %x %fabs = tail call double @llvm.fabs.f64(double %mul) ret double %fabs } define fp128 @square_fabs_intrinsic_f128(fp128 %x) { ; CHECK-LABEL: @square_fabs_intrinsic_f128( ; CHECK-NEXT: [[MUL:%.*]] = fmul fp128 [[X:%.*]], [[X]] ; CHECK-NEXT: [[FABSL:%.*]] = tail call fp128 @llvm.fabs.f128(fp128 [[MUL]]) ; CHECK-NEXT: ret fp128 [[FABSL]] ; %mul = fmul fp128 %x, %x %fabsl = tail call fp128 @llvm.fabs.f128(fp128 %mul) ret fp128 %fabsl } define float @square_nnan_fabs_intrinsic_f32(float %x) { ; CHECK-LABEL: @square_nnan_fabs_intrinsic_f32( ; CHECK-NEXT: [[MUL:%.*]] = fmul nnan float [[X:%.*]], [[X]] ; CHECK-NEXT: ret float [[MUL]] ; %mul = fmul nnan float %x, %x %fabsf = call float @llvm.fabs.f32(float %mul) ret float %fabsf } ; Shrinking a library call to a smaller type should not be inhibited by nor inhibit the square optimization. define float @square_fabs_shrink_call1(float %x) { ; CHECK-LABEL: @square_fabs_shrink_call1( ; CHECK-NEXT: [[TMP1:%.*]] = fmul float [[X:%.*]], [[X]] ; CHECK-NEXT: [[TRUNC:%.*]] = call float @llvm.fabs.f32(float [[TMP1]]) ; CHECK-NEXT: ret float [[TRUNC]] ; %ext = fpext float %x to double %sq = fmul double %ext, %ext %fabs = call double @fabs(double %sq) %trunc = fptrunc double %fabs to float ret float %trunc } define float @square_fabs_shrink_call2(float %x) { ; CHECK-LABEL: @square_fabs_shrink_call2( ; CHECK-NEXT: [[SQ:%.*]] = fmul float [[X:%.*]], [[X]] ; CHECK-NEXT: [[TMP1:%.*]] = call float @llvm.fabs.f32(float [[SQ]]) ; CHECK-NEXT: ret float [[TMP1]] ; %sq = fmul float %x, %x %ext = fpext float %sq to double %fabs = call double @fabs(double %ext) %trunc = fptrunc double %fabs to float ret float %trunc } define float @fabs_select_constant_negative_positive(i32 %c) { ; CHECK-LABEL: @fabs_select_constant_negative_positive( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[CMP]], float 1.000000e+00, float 2.000000e+00 ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float -1.0, float 2.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define float @fabs_select_constant_positive_negative(i32 %c) { ; CHECK-LABEL: @fabs_select_constant_positive_negative( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[CMP]], float 1.000000e+00, float 2.000000e+00 ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 1.0, float -2.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define float @fabs_select_constant_negative_negative(i32 %c) { ; CHECK-LABEL: @fabs_select_constant_negative_negative( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[CMP]], float 1.000000e+00, float 2.000000e+00 ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float -1.0, float -2.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define float @fabs_select_constant_neg0(i32 %c) { ; CHECK-LABEL: @fabs_select_constant_neg0( ; CHECK-NEXT: ret float 0.000000e+00 ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float -0.0, float 0.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define float @fabs_select_var_constant_negative(i32 %c, float %x) { ; CHECK-LABEL: @fabs_select_var_constant_negative( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float [[X:%.*]], float -1.000000e+00 ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float %x, float -1.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } ; The fabs cannot be eliminated because %x may be a NaN define float @square_fma_fabs_intrinsic_f32(float %x) { ; CHECK-LABEL: @square_fma_fabs_intrinsic_f32( ; CHECK-NEXT: [[FMA:%.*]] = call float @llvm.fma.f32(float [[X:%.*]], float [[X]], float 1.000000e+00) ; CHECK-NEXT: [[FABSF:%.*]] = call float @llvm.fabs.f32(float [[FMA]]) ; CHECK-NEXT: ret float [[FABSF]] ; %fma = call float @llvm.fma.f32(float %x, float %x, float 1.0) %fabsf = call float @llvm.fabs.f32(float %fma) ret float %fabsf } ; The fabs cannot be eliminated because %x may be a NaN define float @square_nnan_fma_fabs_intrinsic_f32(float %x) { ; CHECK-LABEL: @square_nnan_fma_fabs_intrinsic_f32( ; CHECK-NEXT: [[FMA:%.*]] = call nnan float @llvm.fma.f32(float [[X:%.*]], float [[X]], float 1.000000e+00) ; CHECK-NEXT: ret float [[FMA]] ; %fma = call nnan float @llvm.fma.f32(float %x, float %x, float 1.0) %fabsf = call float @llvm.fabs.f32(float %fma) ret float %fabsf } define float @square_fmuladd_fabs_intrinsic_f32(float %x) { ; CHECK-LABEL: @square_fmuladd_fabs_intrinsic_f32( ; CHECK-NEXT: [[FMULADD:%.*]] = call float @llvm.fmuladd.f32(float [[X:%.*]], float [[X]], float 1.000000e+00) ; CHECK-NEXT: [[FABSF:%.*]] = call float @llvm.fabs.f32(float [[FMULADD]]) ; CHECK-NEXT: ret float [[FABSF]] ; %fmuladd = call float @llvm.fmuladd.f32(float %x, float %x, float 1.0) %fabsf = call float @llvm.fabs.f32(float %fmuladd) ret float %fabsf } define float @square_nnan_fmuladd_fabs_intrinsic_f32(float %x) { ; CHECK-LABEL: @square_nnan_fmuladd_fabs_intrinsic_f32( ; CHECK-NEXT: [[FMULADD:%.*]] = call nnan float @llvm.fmuladd.f32(float [[X:%.*]], float [[X]], float 1.000000e+00) ; CHECK-NEXT: ret float [[FMULADD]] ; %fmuladd = call nnan float @llvm.fmuladd.f32(float %x, float %x, float 1.0) %fabsf = call float @llvm.fabs.f32(float %fmuladd) ret float %fabsf } ; Don't introduce a second fpext define double @multi_use_fabs_fpext(float %x) { ; CHECK-LABEL: @multi_use_fabs_fpext( ; CHECK-NEXT: [[FPEXT:%.*]] = fpext float [[X:%.*]] to double ; CHECK-NEXT: [[FABS:%.*]] = call double @llvm.fabs.f64(double [[FPEXT]]) ; CHECK-NEXT: store volatile double [[FPEXT]], double* undef, align 8 ; CHECK-NEXT: ret double [[FABS]] ; %fpext = fpext float %x to double %fabs = call double @llvm.fabs.f64(double %fpext) store volatile double %fpext, double* undef ret double %fabs } ; X <= 0.0 ? (0.0 - X) : X --> fabs(X) define double @select_fcmp_ole_zero(double %x) { ; CHECK-LABEL: @select_fcmp_ole_zero( ; CHECK-NEXT: [[TMP1:%.*]] = call double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: ret double [[TMP1]] ; %lezero = fcmp ole double %x, 0.0 %negx = fsub double 0.0, %x %fabs = select i1 %lezero, double %negx, double %x ret double %fabs } define double @select_fcmp_nnan_ole_zero(double %x) { ; CHECK-LABEL: @select_fcmp_nnan_ole_zero( ; CHECK-NEXT: [[TMP1:%.*]] = call double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: ret double [[TMP1]] ; %lezero = fcmp ole double %x, 0.0 %negx = fsub nnan double 0.0, %x %fabs = select i1 %lezero, double %negx, double %x ret double %fabs } define double @select_nnan_fcmp_nnan_ole_zero(double %x) { ; CHECK-LABEL: @select_nnan_fcmp_nnan_ole_zero( ; CHECK-NEXT: [[TMP1:%.*]] = call nnan double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: ret double [[TMP1]] ; %lezero = fcmp ole double %x, 0.0 %negx = fsub nnan double 0.0, %x %fabs = select nnan i1 %lezero, double %negx, double %x ret double %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define double @select_fcmp_nnan_ule_zero(double %x) { ; CHECK-LABEL: @select_fcmp_nnan_ule_zero( ; CHECK-NEXT: [[TMP1:%.*]] = call double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: ret double [[TMP1]] ; %lezero = fcmp ule double %x, 0.0 %negx = fsub nnan double 0.0, %x %fabs = select i1 %lezero, double %negx, double %x ret double %fabs } ; Negative test - wrong predicate. define double @select_fcmp_nnan_olt_zero(double %x) { ; CHECK-LABEL: @select_fcmp_nnan_olt_zero( ; CHECK-NEXT: [[LEZERO:%.*]] = fcmp olt double [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fsub nnan double 0.000000e+00, [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LEZERO]], double [[NEGX]], double [[X]] ; CHECK-NEXT: ret double [[FABS]] ; %lezero = fcmp olt double %x, 0.0 %negx = fsub nnan double 0.0, %x %fabs = select i1 %lezero, double %negx, double %x ret double %fabs } ; X <= -0.0 ? (0.0 - X) : X --> fabs(X) define <2 x float> @select_fcmp_nnan_ole_negzero(<2 x float> %x) { ; CHECK-LABEL: @select_fcmp_nnan_ole_negzero( ; CHECK-NEXT: [[TMP1:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[X:%.*]]) ; CHECK-NEXT: ret <2 x float> [[TMP1]] ; %lezero = fcmp ole <2 x float> %x, <float -0.0, float -0.0> %negx = fsub nnan <2 x float> <float 0.0, float undef>, %x %fabs = select <2 x i1> %lezero, <2 x float> %negx, <2 x float> %x ret <2 x float> %fabs } define <2 x float> @select_nnan_fcmp_nnan_ole_negzero(<2 x float> %x) { ; CHECK-LABEL: @select_nnan_fcmp_nnan_ole_negzero( ; CHECK-NEXT: [[TMP1:%.*]] = call nnan <2 x float> @llvm.fabs.v2f32(<2 x float> [[X:%.*]]) ; CHECK-NEXT: ret <2 x float> [[TMP1]] ; %lezero = fcmp ole <2 x float> %x, <float -0.0, float -0.0> %negx = fsub nnan <2 x float> <float 0.0, float undef>, %x %fabs = select nnan <2 x i1> %lezero, <2 x float> %negx, <2 x float> %x ret <2 x float> %fabs } ; X > 0.0 ? X : (0.0 - X) --> fabs(X) define fp128 @select_fcmp_ogt_zero(fp128 %x) { ; CHECK-LABEL: @select_fcmp_ogt_zero( ; CHECK-NEXT: [[TMP1:%.*]] = call fp128 @llvm.fabs.f128(fp128 [[X:%.*]]) ; CHECK-NEXT: ret fp128 [[TMP1]] ; %gtzero = fcmp ogt fp128 %x, zeroinitializer %negx = fsub fp128 zeroinitializer, %x %fabs = select i1 %gtzero, fp128 %x, fp128 %negx ret fp128 %fabs } define float @select_fcmp_ogt_fneg(float %a) { ; CHECK-LABEL: @select_fcmp_ogt_fneg( ; CHECK-NEXT: [[TMP1:%.*]] = call nsz float @llvm.fabs.f32(float [[A:%.*]]) ; CHECK-NEXT: ret float [[TMP1]] ; %fneg = fneg float %a %cmp = fcmp ogt float %a, %fneg %r = select nsz i1 %cmp, float %a, float %fneg ret float %r } define fp128 @select_fcmp_nnan_ogt_zero(fp128 %x) { ; CHECK-LABEL: @select_fcmp_nnan_ogt_zero( ; CHECK-NEXT: [[TMP1:%.*]] = call fp128 @llvm.fabs.f128(fp128 [[X:%.*]]) ; CHECK-NEXT: ret fp128 [[TMP1]] ; %gtzero = fcmp ogt fp128 %x, zeroinitializer %negx = fsub nnan fp128 zeroinitializer, %x %fabs = select i1 %gtzero, fp128 %x, fp128 %negx ret fp128 %fabs } define fp128 @select_nnan_fcmp_nnan_ogt_zero(fp128 %x) { ; CHECK-LABEL: @select_nnan_fcmp_nnan_ogt_zero( ; CHECK-NEXT: [[TMP1:%.*]] = call nnan fp128 @llvm.fabs.f128(fp128 [[X:%.*]]) ; CHECK-NEXT: ret fp128 [[TMP1]] ; %gtzero = fcmp ogt fp128 %x, zeroinitializer %negx = fsub nnan fp128 zeroinitializer, %x %fabs = select nnan i1 %gtzero, fp128 %x, fp128 %negx ret fp128 %fabs } ; X > -0.0 ? X : (0.0 - X) --> fabs(X) define half @select_fcmp_nnan_ogt_negzero(half %x) { ; CHECK-LABEL: @select_fcmp_nnan_ogt_negzero( ; CHECK-NEXT: [[TMP1:%.*]] = call half @llvm.fabs.f16(half [[X:%.*]]) ; CHECK-NEXT: ret half [[TMP1]] ; %gtzero = fcmp ogt half %x, -0.0 %negx = fsub nnan half 0.0, %x %fabs = select i1 %gtzero, half %x, half %negx ret half %fabs } define half @select_nnan_fcmp_nnan_ogt_negzero(half %x) { ; CHECK-LABEL: @select_nnan_fcmp_nnan_ogt_negzero( ; CHECK-NEXT: [[TMP1:%.*]] = call nnan half @llvm.fabs.f16(half [[X:%.*]]) ; CHECK-NEXT: ret half [[TMP1]] ; %gtzero = fcmp ogt half %x, -0.0 %negx = fsub nnan half 0.0, %x %fabs = select nnan i1 %gtzero, half %x, half %negx ret half %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define half @select_fcmp_nnan_ugt_negzero(half %x) { ; CHECK-LABEL: @select_fcmp_nnan_ugt_negzero( ; CHECK-NEXT: [[TMP1:%.*]] = call half @llvm.fabs.f16(half [[X:%.*]]) ; CHECK-NEXT: ret half [[TMP1]] ; %gtzero = fcmp ugt half %x, -0.0 %negx = fsub nnan half 0.0, %x %fabs = select i1 %gtzero, half %x, half %negx ret half %fabs } ; Negative test - wrong predicate. define half @select_fcmp_nnan_oge_negzero(half %x) { ; CHECK-LABEL: @select_fcmp_nnan_oge_negzero( ; CHECK-NEXT: [[GTZERO:%.*]] = fcmp oge half [[X:%.*]], 0xH0000 ; CHECK-NEXT: [[NEGX:%.*]] = fsub nnan half 0xH0000, [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[GTZERO]], half [[X]], half [[NEGX]] ; CHECK-NEXT: ret half [[FABS]] ; %gtzero = fcmp oge half %x, -0.0 %negx = fsub nnan half 0.0, %x %fabs = select i1 %gtzero, half %x, half %negx ret half %fabs } ; X < 0.0 ? -X : X --> fabs(X) define double @select_fcmp_olt_zero_unary_fneg(double %x) { ; CHECK-LABEL: @select_fcmp_olt_zero_unary_fneg( ; CHECK-NEXT: [[TMP1:%.*]] = call nsz double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: ret double [[TMP1]] ; %ltzero = fcmp olt double %x, 0.0 %negx = fneg double %x %fabs = select nsz i1 %ltzero, double %negx, double %x ret double %fabs } define double @select_fcmp_nnan_nsz_olt_zero(double %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_olt_zero( ; CHECK-NEXT: [[LTZERO:%.*]] = fcmp olt double [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz double [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LTZERO]], double [[NEGX]], double [[X]] ; CHECK-NEXT: ret double [[FABS]] ; %ltzero = fcmp olt double %x, 0.0 %negx = fsub nnan nsz double -0.0, %x %fabs = select i1 %ltzero, double %negx, double %x ret double %fabs } define double @select_nnan_nsz_fcmp_nnan_nsz_olt_zero(double %x) { ; CHECK-LABEL: @select_nnan_nsz_fcmp_nnan_nsz_olt_zero( ; CHECK-NEXT: [[TMP1:%.*]] = call nnan nsz double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: ret double [[TMP1]] ; %ltzero = fcmp olt double %x, 0.0 %negx = fsub nnan nsz double -0.0, %x %fabs = select nnan nsz i1 %ltzero, double %negx, double %x ret double %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define double @select_fcmp_nnan_nsz_ult_zero(double %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ult_zero( ; CHECK-NEXT: [[LTZERO:%.*]] = fcmp ult double [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz double [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LTZERO]], double [[NEGX]], double [[X]] ; CHECK-NEXT: ret double [[FABS]] ; %ltzero = fcmp ult double %x, 0.0 %negx = fsub nnan nsz double -0.0, %x %fabs = select i1 %ltzero, double %negx, double %x ret double %fabs } define double @select_fcmp_nnan_nsz_olt_zero_unary_fneg(double %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_olt_zero_unary_fneg( ; CHECK-NEXT: [[LTZERO:%.*]] = fcmp olt double [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz double [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LTZERO]], double [[NEGX]], double [[X]] ; CHECK-NEXT: ret double [[FABS]] ; %ltzero = fcmp olt double %x, 0.0 %negx = fneg nnan nsz double %x %fabs = select i1 %ltzero, double %negx, double %x ret double %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define double @select_fcmp_nnan_nsz_ult_zero_unary_fneg(double %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ult_zero_unary_fneg( ; CHECK-NEXT: [[LTZERO:%.*]] = fcmp ult double [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz double [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LTZERO]], double [[NEGX]], double [[X]] ; CHECK-NEXT: ret double [[FABS]] ; %ltzero = fcmp ult double %x, 0.0 %negx = fneg nnan nsz double %x %fabs = select i1 %ltzero, double %negx, double %x ret double %fabs } ; X < -0.0 ? -X : X --> fabs(X) define float @select_fcmp_nnan_nsz_olt_negzero(float %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_olt_negzero( ; CHECK-NEXT: [[LTZERO:%.*]] = fcmp olt float [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan ninf nsz float [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LTZERO]], float [[NEGX]], float [[X]] ; CHECK-NEXT: ret float [[FABS]] ; %ltzero = fcmp olt float %x, -0.0 %negx = fsub nnan ninf nsz float -0.0, %x %fabs = select i1 %ltzero, float %negx, float %x ret float %fabs } define float @select_nnan_ninf_nsz_fcmp_nnan_nsz_olt_negzero(float %x) { ; CHECK-LABEL: @select_nnan_ninf_nsz_fcmp_nnan_nsz_olt_negzero( ; CHECK-NEXT: [[TMP1:%.*]] = call nnan ninf nsz float @llvm.fabs.f32(float [[X:%.*]]) ; CHECK-NEXT: ret float [[TMP1]] ; %ltzero = fcmp olt float %x, -0.0 %negx = fsub nnan nsz float -0.0, %x %fabs = select nnan ninf nsz i1 %ltzero, float %negx, float %x ret float %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define float @select_fcmp_nnan_nsz_ult_negzero(float %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ult_negzero( ; CHECK-NEXT: [[LTZERO:%.*]] = fcmp ult float [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan ninf nsz float [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LTZERO]], float [[NEGX]], float [[X]] ; CHECK-NEXT: ret float [[FABS]] ; %ltzero = fcmp ult float %x, -0.0 %negx = fsub nnan ninf nsz float -0.0, %x %fabs = select i1 %ltzero, float %negx, float %x ret float %fabs } define float @select_fcmp_nnan_nsz_olt_negzero_unary_fneg(float %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_olt_negzero_unary_fneg( ; CHECK-NEXT: [[LTZERO:%.*]] = fcmp olt float [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan ninf nsz float [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LTZERO]], float [[NEGX]], float [[X]] ; CHECK-NEXT: ret float [[FABS]] ; %ltzero = fcmp olt float %x, -0.0 %negx = fneg nnan ninf nsz float %x %fabs = select i1 %ltzero, float %negx, float %x ret float %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define float @select_fcmp_nnan_nsz_ult_negzero_unary_fneg(float %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ult_negzero_unary_fneg( ; CHECK-NEXT: [[LTZERO:%.*]] = fcmp ult float [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan ninf nsz float [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LTZERO]], float [[NEGX]], float [[X]] ; CHECK-NEXT: ret float [[FABS]] ; %ltzero = fcmp ult float %x, -0.0 %negx = fneg nnan ninf nsz float %x %fabs = select i1 %ltzero, float %negx, float %x ret float %fabs } ; X <= 0.0 ? -X : X --> fabs(X) define double @select_fcmp_nnan_nsz_ole_zero(double %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ole_zero( ; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ole double [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg fast double [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LEZERO]], double [[NEGX]], double [[X]] ; CHECK-NEXT: ret double [[FABS]] ; %lezero = fcmp ole double %x, 0.0 %negx = fsub fast double -0.0, %x %fabs = select i1 %lezero, double %negx, double %x ret double %fabs } define double @select_fast_fcmp_nnan_nsz_ole_zero(double %x) { ; CHECK-LABEL: @select_fast_fcmp_nnan_nsz_ole_zero( ; CHECK-NEXT: [[TMP1:%.*]] = call fast double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: ret double [[TMP1]] ; %lezero = fcmp ole double %x, 0.0 %negx = fsub nnan nsz double -0.0, %x %fabs = select fast i1 %lezero, double %negx, double %x ret double %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define double @select_fcmp_nnan_nsz_ule_zero(double %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ule_zero( ; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ule double [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg fast double [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LEZERO]], double [[NEGX]], double [[X]] ; CHECK-NEXT: ret double [[FABS]] ; %lezero = fcmp ule double %x, 0.0 %negx = fsub fast double -0.0, %x %fabs = select i1 %lezero, double %negx, double %x ret double %fabs } define double @select_fcmp_nnan_nsz_ole_zero_unary_fneg(double %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ole_zero_unary_fneg( ; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ole double [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg fast double [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LEZERO]], double [[NEGX]], double [[X]] ; CHECK-NEXT: ret double [[FABS]] ; %lezero = fcmp ole double %x, 0.0 %negx = fneg fast double %x %fabs = select i1 %lezero, double %negx, double %x ret double %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define double @select_fcmp_nnan_nsz_ule_zero_unary_fneg(double %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ule_zero_unary_fneg( ; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ule double [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg fast double [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LEZERO]], double [[NEGX]], double [[X]] ; CHECK-NEXT: ret double [[FABS]] ; %lezero = fcmp ule double %x, 0.0 %negx = fneg fast double %x %fabs = select i1 %lezero, double %negx, double %x ret double %fabs } ; X <= -0.0 ? -X : X --> fabs(X) define float @select_fcmp_nnan_nsz_ole_negzero(float %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ole_negzero( ; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ole float [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz float [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LEZERO]], float [[NEGX]], float [[X]] ; CHECK-NEXT: ret float [[FABS]] ; %lezero = fcmp ole float %x, -0.0 %negx = fsub nnan nsz float -0.0, %x %fabs = select i1 %lezero, float %negx, float %x ret float %fabs } define float @select_nnan_nsz_fcmp_nnan_nsz_ole_negzero(float %x) { ; CHECK-LABEL: @select_nnan_nsz_fcmp_nnan_nsz_ole_negzero( ; CHECK-NEXT: [[TMP1:%.*]] = call nnan nsz float @llvm.fabs.f32(float [[X:%.*]]) ; CHECK-NEXT: ret float [[TMP1]] ; %lezero = fcmp ole float %x, -0.0 %negx = fsub nnan nsz float -0.0, %x %fabs = select nnan nsz i1 %lezero, float %negx, float %x ret float %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define float @select_fcmp_nnan_nsz_ule_negzero(float %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ule_negzero( ; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ule float [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz float [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LEZERO]], float [[NEGX]], float [[X]] ; CHECK-NEXT: ret float [[FABS]] ; %lezero = fcmp ule float %x, -0.0 %negx = fsub nnan nsz float -0.0, %x %fabs = select i1 %lezero, float %negx, float %x ret float %fabs } define float @select_fcmp_nnan_nsz_ole_negzero_unary_fneg(float %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ole_negzero_unary_fneg( ; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ole float [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz float [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LEZERO]], float [[NEGX]], float [[X]] ; CHECK-NEXT: ret float [[FABS]] ; %lezero = fcmp ole float %x, -0.0 %negx = fneg nnan nsz float %x %fabs = select i1 %lezero, float %negx, float %x ret float %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define float @select_fcmp_nnan_nsz_ule_negzero_unary_fneg(float %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ule_negzero_unary_fneg( ; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ule float [[X:%.*]], 0.000000e+00 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz float [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LEZERO]], float [[NEGX]], float [[X]] ; CHECK-NEXT: ret float [[FABS]] ; %lezero = fcmp ule float %x, -0.0 %negx = fneg nnan nsz float %x %fabs = select i1 %lezero, float %negx, float %x ret float %fabs } ; X > 0.0 ? X : (0.0 - X) --> fabs(X) define <2 x float> @select_fcmp_ogt_zero_unary_fneg(<2 x float> %x) { ; CHECK-LABEL: @select_fcmp_ogt_zero_unary_fneg( ; CHECK-NEXT: [[TMP1:%.*]] = call nsz <2 x float> @llvm.fabs.v2f32(<2 x float> [[X:%.*]]) ; CHECK-NEXT: ret <2 x float> [[TMP1]] ; %gtzero = fcmp ogt <2 x float> %x, zeroinitializer %negx = fneg <2 x float> %x %fabs = select nsz <2 x i1> %gtzero, <2 x float> %x, <2 x float> %negx ret <2 x float> %fabs } define <2 x float> @select_fcmp_nnan_nsz_ogt_zero(<2 x float> %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ogt_zero( ; CHECK-NEXT: [[GTZERO:%.*]] = fcmp ogt <2 x float> [[X:%.*]], zeroinitializer ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz arcp <2 x float> [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select <2 x i1> [[GTZERO]], <2 x float> [[X]], <2 x float> [[NEGX]] ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %gtzero = fcmp ogt <2 x float> %x, zeroinitializer %negx = fsub nnan nsz arcp <2 x float> <float -0.0, float -0.0>, %x %fabs = select <2 x i1> %gtzero, <2 x float> %x, <2 x float> %negx ret <2 x float> %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define <2 x float> @select_fcmp_nnan_nsz_ugt_zero(<2 x float> %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ugt_zero( ; CHECK-NEXT: [[GTZERO:%.*]] = fcmp ugt <2 x float> [[X:%.*]], zeroinitializer ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz arcp <2 x float> [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select <2 x i1> [[GTZERO]], <2 x float> [[X]], <2 x float> [[NEGX]] ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %gtzero = fcmp ugt <2 x float> %x, zeroinitializer %negx = fsub nnan nsz arcp <2 x float> <float -0.0, float -0.0>, %x %fabs = select <2 x i1> %gtzero, <2 x float> %x, <2 x float> %negx ret <2 x float> %fabs } define <2 x float> @select_fcmp_nnan_nsz_ogt_zero_unary_fneg(<2 x float> %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ogt_zero_unary_fneg( ; CHECK-NEXT: [[GTZERO:%.*]] = fcmp ogt <2 x float> [[X:%.*]], zeroinitializer ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz arcp <2 x float> [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select <2 x i1> [[GTZERO]], <2 x float> [[X]], <2 x float> [[NEGX]] ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %gtzero = fcmp ogt <2 x float> %x, zeroinitializer %negx = fneg nnan nsz arcp <2 x float> %x %fabs = select <2 x i1> %gtzero, <2 x float> %x, <2 x float> %negx ret <2 x float> %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define <2 x float> @select_fcmp_nnan_nsz_ugt_zero_unary_fneg(<2 x float> %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ugt_zero_unary_fneg( ; CHECK-NEXT: [[GTZERO:%.*]] = fcmp ugt <2 x float> [[X:%.*]], zeroinitializer ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz arcp <2 x float> [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select <2 x i1> [[GTZERO]], <2 x float> [[X]], <2 x float> [[NEGX]] ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %gtzero = fcmp ugt <2 x float> %x, zeroinitializer %negx = fneg nnan nsz arcp <2 x float> %x %fabs = select <2 x i1> %gtzero, <2 x float> %x, <2 x float> %negx ret <2 x float> %fabs } ; X > -0.0 ? X : (0.0 - X) --> fabs(X) define half @select_fcmp_nnan_nsz_ogt_negzero(half %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ogt_negzero( ; CHECK-NEXT: [[GTZERO:%.*]] = fcmp ogt half [[X:%.*]], 0xH0000 ; CHECK-NEXT: [[NEGX:%.*]] = fneg fast half [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[GTZERO]], half [[X]], half [[NEGX]] ; CHECK-NEXT: ret half [[FABS]] ; %gtzero = fcmp ogt half %x, -0.0 %negx = fsub fast half 0.0, %x %fabs = select i1 %gtzero, half %x, half %negx ret half %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define half @select_fcmp_nnan_nsz_ugt_negzero(half %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_ugt_negzero( ; CHECK-NEXT: [[GTZERO:%.*]] = fcmp ugt half [[X:%.*]], 0xH0000 ; CHECK-NEXT: [[NEGX:%.*]] = fneg fast half [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[GTZERO]], half [[X]], half [[NEGX]] ; CHECK-NEXT: ret half [[FABS]] ; %gtzero = fcmp ugt half %x, -0.0 %negx = fsub fast half 0.0, %x %fabs = select i1 %gtzero, half %x, half %negx ret half %fabs } ; X > 0.0 ? X : (0.0 - X) --> fabs(X) define <2 x double> @select_fcmp_nnan_nsz_oge_zero(<2 x double> %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_oge_zero( ; CHECK-NEXT: [[GEZERO:%.*]] = fcmp oge <2 x double> [[X:%.*]], zeroinitializer ; CHECK-NEXT: [[NEGX:%.*]] = fneg reassoc nnan nsz <2 x double> [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select <2 x i1> [[GEZERO]], <2 x double> [[X]], <2 x double> [[NEGX]] ; CHECK-NEXT: ret <2 x double> [[FABS]] ; %gezero = fcmp oge <2 x double> %x, zeroinitializer %negx = fsub nnan nsz reassoc <2 x double> <double -0.0, double -0.0>, %x %fabs = select <2 x i1> %gezero, <2 x double> %x, <2 x double> %negx ret <2 x double> %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define <2 x double> @select_fcmp_nnan_nsz_uge_zero(<2 x double> %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_uge_zero( ; CHECK-NEXT: [[GEZERO:%.*]] = fcmp uge <2 x double> [[X:%.*]], zeroinitializer ; CHECK-NEXT: [[NEGX:%.*]] = fneg reassoc nnan nsz <2 x double> [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select <2 x i1> [[GEZERO]], <2 x double> [[X]], <2 x double> [[NEGX]] ; CHECK-NEXT: ret <2 x double> [[FABS]] ; %gezero = fcmp uge <2 x double> %x, zeroinitializer %negx = fsub nnan nsz reassoc <2 x double> <double -0.0, double -0.0>, %x %fabs = select <2 x i1> %gezero, <2 x double> %x, <2 x double> %negx ret <2 x double> %fabs } define <2 x double> @select_fcmp_nnan_nsz_oge_zero_unary_fneg(<2 x double> %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_oge_zero_unary_fneg( ; CHECK-NEXT: [[GEZERO:%.*]] = fcmp oge <2 x double> [[X:%.*]], zeroinitializer ; CHECK-NEXT: [[NEGX:%.*]] = fneg reassoc nnan nsz <2 x double> [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select <2 x i1> [[GEZERO]], <2 x double> [[X]], <2 x double> [[NEGX]] ; CHECK-NEXT: ret <2 x double> [[FABS]] ; %gezero = fcmp oge <2 x double> %x, zeroinitializer %negx = fneg nnan nsz reassoc <2 x double> %x %fabs = select <2 x i1> %gezero, <2 x double> %x, <2 x double> %negx ret <2 x double> %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define <2 x double> @select_fcmp_nnan_nsz_uge_zero_unary_fneg(<2 x double> %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_uge_zero_unary_fneg( ; CHECK-NEXT: [[GEZERO:%.*]] = fcmp uge <2 x double> [[X:%.*]], zeroinitializer ; CHECK-NEXT: [[NEGX:%.*]] = fneg reassoc nnan nsz <2 x double> [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select <2 x i1> [[GEZERO]], <2 x double> [[X]], <2 x double> [[NEGX]] ; CHECK-NEXT: ret <2 x double> [[FABS]] ; %gezero = fcmp uge <2 x double> %x, zeroinitializer %negx = fneg nnan nsz reassoc <2 x double> %x %fabs = select <2 x i1> %gezero, <2 x double> %x, <2 x double> %negx ret <2 x double> %fabs } ; X > -0.0 ? X : (0.0 - X) --> fabs(X) define half @select_fcmp_nnan_nsz_oge_negzero(half %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_oge_negzero( ; CHECK-NEXT: [[GEZERO:%.*]] = fcmp oge half [[X:%.*]], 0xH0000 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz half [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[GEZERO]], half [[X]], half [[NEGX]] ; CHECK-NEXT: ret half [[FABS]] ; %gezero = fcmp oge half %x, -0.0 %negx = fsub nnan nsz half -0.0, %x %fabs = select i1 %gezero, half %x, half %negx ret half %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define half @select_fcmp_nnan_nsz_uge_negzero(half %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_uge_negzero( ; CHECK-NEXT: [[GEZERO:%.*]] = fcmp uge half [[X:%.*]], 0xH0000 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz half [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[GEZERO]], half [[X]], half [[NEGX]] ; CHECK-NEXT: ret half [[FABS]] ; %gezero = fcmp uge half %x, -0.0 %negx = fsub nnan nsz half -0.0, %x %fabs = select i1 %gezero, half %x, half %negx ret half %fabs } define half @select_fcmp_nnan_nsz_oge_negzero_unary_fneg(half %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_oge_negzero_unary_fneg( ; CHECK-NEXT: [[GEZERO:%.*]] = fcmp oge half [[X:%.*]], 0xH0000 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz half [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[GEZERO]], half [[X]], half [[NEGX]] ; CHECK-NEXT: ret half [[FABS]] ; %gezero = fcmp oge half %x, -0.0 %negx = fneg nnan nsz half %x %fabs = select i1 %gezero, half %x, half %negx ret half %fabs } ; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically. define half @select_fcmp_nnan_nsz_uge_negzero_unary_fneg(half %x) { ; CHECK-LABEL: @select_fcmp_nnan_nsz_uge_negzero_unary_fneg( ; CHECK-NEXT: [[GEZERO:%.*]] = fcmp uge half [[X:%.*]], 0xH0000 ; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz half [[X]] ; CHECK-NEXT: [[FABS:%.*]] = select i1 [[GEZERO]], half [[X]], half [[NEGX]] ; CHECK-NEXT: ret half [[FABS]] ; %gezero = fcmp uge half %x, -0.0 %negx = fneg nnan nsz half %x %fabs = select i1 %gezero, half %x, half %negx ret half %fabs } define float @select_fneg(i1 %c, float %x) { ; CHECK-LABEL: @select_fneg( ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]]) ; CHECK-NEXT: ret float [[FABS]] ; %n = fneg float %x %s = select i1 %c, float %n, float %x %fabs = call float @llvm.fabs.f32(float %s) ret float %fabs } define float @select_fneg_use1(i1 %c, float %x) { ; CHECK-LABEL: @select_fneg_use1( ; CHECK-NEXT: [[N:%.*]] = fneg float [[X:%.*]] ; CHECK-NEXT: call void @use(float [[N]]) ; CHECK-NEXT: [[FABS:%.*]] = call fast float @llvm.fabs.f32(float [[X]]) ; CHECK-NEXT: ret float [[FABS]] ; %n = fneg float %x call void @use(float %n) %s = select i1 %c, float %x, float %n %fabs = call fast float @llvm.fabs.f32(float %s) ret float %fabs } define float @select_fneg_use2(i1 %c, float %x) { ; CHECK-LABEL: @select_fneg_use2( ; CHECK-NEXT: [[N:%.*]] = fneg arcp float [[X:%.*]] ; CHECK-NEXT: [[S:%.*]] = select i1 [[C:%.*]], float [[N]], float [[X]] ; CHECK-NEXT: call void @use(float [[S]]) ; CHECK-NEXT: [[FABS:%.*]] = call nnan nsz float @llvm.fabs.f32(float [[X]]) ; CHECK-NEXT: ret float [[FABS]] ; %n = fneg arcp float %x %s = select i1 %c, float %n, float %x call void @use(float %s) %fabs = call nnan nsz float @llvm.fabs.f32(float %s) ret float %fabs } define <2 x float> @select_fneg_vec(<2 x i1> %c, <2 x float> %x) { ; CHECK-LABEL: @select_fneg_vec( ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[X:%.*]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %n = fneg <2 x float> %x %s = select fast <2 x i1> %c, <2 x float> %x, <2 x float> %n %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %s) ret <2 x float> %fabs }