//=- SystemZCallingConv.td - Calling conventions for SystemZ -*- tablegen -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // This describes the calling conventions for the SystemZ ABI. //===----------------------------------------------------------------------===// class CCIfExtend<CCAction A> : CCIf<"ArgFlags.isSExt() || ArgFlags.isZExt()", A>; class CCIfSubtarget<string F, CCAction A> : CCIf<!strconcat("static_cast<const SystemZSubtarget&>" "(State.getMachineFunction().getSubtarget()).", F), A>; // Match if this specific argument is a fixed (i.e. named) argument. class CCIfFixed<CCAction A> : CCIf<"static_cast<SystemZCCState *>(&State)->IsFixed(ValNo)", A>; // Match if this specific argument is not a fixed (i.e. vararg) argument. class CCIfNotFixed<CCAction A> : CCIf<"!(static_cast<SystemZCCState *>(&State)->IsFixed(ValNo))", A>; // Match if this specific argument was widened from a short vector type. class CCIfShortVector<CCAction A> : CCIf<"static_cast<SystemZCCState *>(&State)->IsShortVector(ValNo)", A>; //===----------------------------------------------------------------------===// // z/Linux return value calling convention //===----------------------------------------------------------------------===// def RetCC_SystemZ_ELF : CallingConv<[ // Promote i32 to i64 if it has an explicit extension type. CCIfType<[i32], CCIfExtend<CCPromoteToType<i64>>>, // A SwiftError is returned in R9. CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R9D]>>>, // ABI-compliant code returns 64-bit integers in R2. Make the other // call-clobbered argument registers available for code that doesn't // care about the ABI. (R6 is an argument register too, but is // call-saved and therefore not suitable for return values.) CCIfType<[i32], CCAssignToReg<[R2L, R3L, R4L, R5L]>>, CCIfType<[i64], CCAssignToReg<[R2D, R3D, R4D, R5D]>>, // ABI-complaint code returns float and double in F0. Make the // other floating-point argument registers available for code that // doesn't care about the ABI. All floating-point argument registers // are call-clobbered, so we can use all of them here. CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>, CCIfType<[f64], CCAssignToReg<[F0D, F2D, F4D, F6D]>>, // Similarly for vectors, with V24 being the ABI-compliant choice. // Sub-128 vectors are returned in the same way, but they're widened // to one of these types during type legalization. CCIfSubtarget<"hasVector()", CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToReg<[V24, V26, V28, V30, V25, V27, V29, V31]>>> ]>; //===----------------------------------------------------------------------===// // z/Linux argument calling conventions for GHC //===----------------------------------------------------------------------===// def CC_SystemZ_GHC : CallingConv<[ // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, R8, SpLim CCIfType<[i64], CCAssignToReg<[R7D, R8D, R10D, R11D, R12D, R13D, R6D, R2D, R3D, R4D, R5D, R9D]>>, // Pass in STG registers: F1, ..., F6 CCIfType<[f32], CCAssignToReg<[F8S, F9S, F10S, F11S, F0S, F1S]>>, // Pass in STG registers: D1, ..., D6 CCIfType<[f64], CCAssignToReg<[F12D, F13D, F14D, F15D, F2D, F3D]>>, // Pass in STG registers: XMM1, ..., XMM6 CCIfSubtarget<"hasVector()", CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCIfFixed<CCAssignToReg<[V16, V17, V18, V19, V20, V21]>>>>, // Fail otherwise CCCustom<"CC_SystemZ_GHC_Error"> ]>; //===----------------------------------------------------------------------===// // z/Linux argument calling conventions //===----------------------------------------------------------------------===// def CC_SystemZ_ELF : CallingConv<[ CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_SystemZ_GHC>>, // Promote i32 to i64 if it has an explicit extension type. // The convention is that true integer arguments that are smaller // than 64 bits should be marked as extended, but structures that // are smaller than 64 bits shouldn't. CCIfType<[i32], CCIfExtend<CCPromoteToType<i64>>>, // A SwiftSelf is passed in callee-saved R10. CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R10D]>>>, // A SwiftError is passed in callee-saved R9. CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R9D]>>>, // Force long double values to the stack and pass i64 pointers to them. CCIfType<[f128], CCPassIndirect<i64>>, // Same for i128 values. These are already split into two i64 here, // so we have to use a custom handler. CCIfType<[i64], CCCustom<"CC_SystemZ_I128Indirect">>, // The first 5 integer arguments are passed in R2-R6. Note that R6 // is call-saved. CCIfType<[i32], CCAssignToReg<[R2L, R3L, R4L, R5L, R6L]>>, CCIfType<[i64], CCAssignToReg<[R2D, R3D, R4D, R5D, R6D]>>, // The first 4 float and double arguments are passed in even registers F0-F6. CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>, CCIfType<[f64], CCAssignToReg<[F0D, F2D, F4D, F6D]>>, // The first 8 named vector arguments are passed in V24-V31. Sub-128 vectors // are passed in the same way, but they're widened to one of these types // during type legalization. CCIfSubtarget<"hasVector()", CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCIfFixed<CCAssignToReg<[V24, V26, V28, V30, V25, V27, V29, V31]>>>>, // However, sub-128 vectors which need to go on the stack occupy just a // single 8-byte-aligned 8-byte stack slot. Pass as i64. CCIfSubtarget<"hasVector()", CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCIfShortVector<CCBitConvertToType<i64>>>>, // Other vector arguments are passed in 8-byte-aligned 16-byte stack slots. CCIfSubtarget<"hasVector()", CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 8>>>, // Other arguments are passed in 8-byte-aligned 8-byte stack slots. CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>> ]>; //===----------------------------------------------------------------------===// // z/Linux callee-saved registers //===----------------------------------------------------------------------===// def CSR_SystemZ_ELF : CalleeSavedRegs<(add (sequence "R%dD", 6, 15), (sequence "F%dD", 8, 15))>; // R9 is used to return SwiftError; remove it from CSR. def CSR_SystemZ_SwiftError : CalleeSavedRegs<(sub CSR_SystemZ_ELF, R9D)>; // "All registers" as used by the AnyReg calling convention. // Note that registers 0 and 1 are still defined as intra-call scratch // registers that may be clobbered e.g. by PLT stubs. def CSR_SystemZ_AllRegs : CalleeSavedRegs<(add (sequence "R%dD", 2, 15), (sequence "F%dD", 0, 15))>; def CSR_SystemZ_AllRegs_Vector : CalleeSavedRegs<(add (sequence "R%dD", 2, 15), (sequence "V%d", 0, 31))>; def CSR_SystemZ_NoRegs : CalleeSavedRegs<(add)>; //===----------------------------------------------------------------------===// // z/OS XPLINK64 callee-saved registers //===----------------------------------------------------------------------===// def CSR_SystemZ_XPLINK64 : CalleeSavedRegs<(add (sequence "R%dD", 8, 15), (sequence "F%dD", 15, 8))>; def CSR_SystemZ_XPLINK64_Vector : CalleeSavedRegs<(add CSR_SystemZ_XPLINK64, (sequence "V%d", 23, 16))>; //===----------------------------------------------------------------------===// // z/OS XPLINK64 return value calling convention //===----------------------------------------------------------------------===// def RetCC_SystemZ_XPLINK64 : CallingConv<[ // XPLINK64 ABI compliant code widens integral types smaller than i64 // to i64. CCIfType<[i32], CCPromoteToType<i64>>, // Structs of size 1-24 bytes are returned in R1D, R2D, and R3D. CCIfType<[i64], CCIfInReg<CCAssignToReg<[R1D, R2D, R3D]>>>, // An i64 is returned in R3D. R2D and R1D provided for ABI non-compliant // code. CCIfType<[i64], CCAssignToReg<[R3D, R2D, R1D]>>, // ABI compliant code returns floating point values in FPR0, FPR2, FPR4 // and FPR6, using as many registers as required. // All floating point return-value registers are call-clobbered. CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>, CCIfType<[f64], CCAssignToReg<[F0D, F2D, F4D, F6D]>>, // ABI compliant code returns f128 in F0D and F2D, hence F0Q. // F4D and F6D, hence F4Q are used for complex long double types. CCIfType<[f128], CCAssignToReg<[F0Q,F4Q]>>, // ABI compliant code returns vectors in VR24 but other registers // are provided for code that does not care about the ABI. CCIfSubtarget<"hasVector()", CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToReg<[V24, V25, V26, V27, V28, V29, V30, V31]>>> ]>; //===----------------------------------------------------------------------===// // z/OS XPLINK64 argument calling conventions //===----------------------------------------------------------------------===// // XPLink uses a logical argument list consisting of contiguous register-size // words (8 bytes in 64-Bit mode) where some arguments are passed in registers // and some in storage. // Even though 3 GPRs, 4 FPRs, and 8 VRs may be used, // space must be reserved for all the args on stack. // The first three register-sized words of the parameter area are passed in // GPRs 1-3. FP values and vector-type arguments are instead passed in FPRs // and VRs respectively, but if a FP value or vector argument occupies one of // the first three register-sized words of the parameter area, the corresponding // GPR's value is not used to pass arguments. // // The XPLINK64 Calling Convention is fully specified in Chapter 22 of the z/OS // Language Environment Vendor Interfaces. Appendix B of the same document contains // examples. def CC_SystemZ_XPLINK64 : CallingConv<[ // XPLINK64 ABI compliant code widens integral types smaller than i64 // to i64 before placing the parameters either on the stack or in registers. CCIfType<[i32], CCIfExtend<CCPromoteToType<i64>>>, // Promote f32 to f64 and bitcast to i64, if it needs to be passed in GPRs. // Although we assign the f32 vararg to be bitcast, it will first be promoted // to an f64 within convertValVTToLocVT(). CCIfType<[f32, f64], CCIfNotFixed<CCBitConvertToType<i64>>>, // long double, can only be passed in GPR2 and GPR3, if available, // hence R2Q CCIfType<[f128], CCIfNotFixed<CCCustom<"CC_XPLINK64_Allocate128BitVararg">>>, // Non fixed vector arguments are treated in the same way as long // doubles. CCIfSubtarget<"hasVector()", CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCIfNotFixed<CCCustom<"CC_XPLINK64_Allocate128BitVararg">>>>, // A SwiftSelf is passed in callee-saved R10. CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R10D]>>>, // A SwiftError is passed in R0. CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R0D]>>>, // First i128 values. These are already split into two i64 here, // so we have to use a custom handler and assign into registers, if possible // We need to deal with this first CCIfType<[i64], CCCustom<"CC_SystemZ_I128Indirect">>, // The first 3 integer arguments are passed in registers R1D-R3D. // The rest will be passed in the user area. The address offset of the user // area can be found in register R4D. CCIfType<[i64], CCAssignToRegAndStack<[R1D, R2D, R3D], 8, 8>>, // The first 8 named vector arguments are passed in V24-V31. Sub-128 vectors // are passed in the same way, but they're widened to one of these types // during type legalization. CCIfSubtarget<"hasVector()", CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCIfFixed<CCCustom<"CC_XPLINK64_Shadow_Reg">>>>, CCIfSubtarget<"hasVector()", CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCIfFixed<CCAssignToRegAndStack<[V24, V25, V26, V27, V28, V29, V30, V31], 16, 8>>>>, // The first 4 named float and double arguments are passed in registers // FPR0-FPR6. The rest will be passed in the user area. CCIfType<[f32, f64], CCIfFixed<CCCustom<"CC_XPLINK64_Shadow_Reg">>>, CCIfType<[f32], CCIfFixed<CCAssignToRegAndStack<[F0S, F2S, F4S, F6S], 4, 8>>>, CCIfType<[f64], CCIfFixed<CCAssignToRegAndStack<[F0D, F2D, F4D, F6D], 8, 8>>>, // The first 2 long double arguments are passed in register FPR0/FPR2 // and FPR4/FPR6. The rest will be passed in the user area. CCIfType<[f128], CCIfFixed<CCCustom<"CC_XPLINK64_Shadow_Reg">>>, CCIfType<[f128], CCIfFixed<CCAssignToRegAndStack<[F0Q, F4Q], 16, 8>>>, // Other arguments are passed in 8-byte-aligned 8-byte stack slots. CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, // Other f128 arguments are passed in 8-byte-aligned 16-byte stack slots. CCIfType<[f128], CCAssignToStack<16, 8>>, // Vector arguments are passed in 8-byte-alinged 16-byte stack slots too. CCIfSubtarget<"hasVector()", CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 8>>> ]>; //===----------------------------------------------------------------------===// // s390x return value calling convention //===----------------------------------------------------------------------===// def RetCC_SystemZ : CallingConv<[ // zOS XPLINK64 CCIfSubtarget<"isTargetXPLINK64()", CCDelegateTo<RetCC_SystemZ_XPLINK64>>, // ELF Linux SystemZ CCIfSubtarget<"isTargetELF()", CCDelegateTo<RetCC_SystemZ_ELF>> ]>; //===----------------------------------------------------------------------===// // s390x argument calling conventions //===----------------------------------------------------------------------===// def CC_SystemZ : CallingConv<[ // zOS XPLINK64 CCIfSubtarget<"isTargetXPLINK64()", CCDelegateTo<CC_SystemZ_XPLINK64>>, // ELF Linux SystemZ CCIfSubtarget<"isTargetELF()", CCDelegateTo<CC_SystemZ_ELF>> ]>;