; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -passes=instcombine -S | FileCheck %s declare void @use(i8) ; Tests for slt/ult define i1 @slt_positive_multip_rem_zero(i8 %x) { ; CHECK-LABEL: @slt_positive_multip_rem_zero( ; CHECK-NEXT: [[B:%.*]] = icmp slt i8 [[X:%.*]], 3 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nsw i8 %x, 7 %b = icmp slt i8 %a, 21 ret i1 %b } define i1 @slt_negative_multip_rem_zero(i8 %x) { ; CHECK-LABEL: @slt_negative_multip_rem_zero( ; CHECK-NEXT: [[B:%.*]] = icmp sgt i8 [[X:%.*]], -3 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nsw i8 %x, -7 %b = icmp slt i8 %a, 21 ret i1 %b } define i1 @slt_positive_multip_rem_nz(i8 %x) { ; CHECK-LABEL: @slt_positive_multip_rem_nz( ; CHECK-NEXT: [[B:%.*]] = icmp slt i8 [[X:%.*]], 5 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nsw i8 %x, 5 %b = icmp slt i8 %a, 21 ret i1 %b } define i1 @ult_rem_zero(i8 %x) { ; CHECK-LABEL: @ult_rem_zero( ; CHECK-NEXT: [[B:%.*]] = icmp ult i8 [[X:%.*]], 3 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nuw i8 %x, 7 %b = icmp ult i8 %a, 21 ret i1 %b } define i1 @ult_rem_nz(i8 %x) { ; CHECK-LABEL: @ult_rem_nz( ; CHECK-NEXT: [[B:%.*]] = icmp ult i8 [[X:%.*]], 5 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nuw i8 %x, 5 %b = icmp ult i8 %a, 21 ret i1 %b } ; Tests for sgt/ugt define i1 @sgt_positive_multip_rem_zero(i8 %x) { ; CHECK-LABEL: @sgt_positive_multip_rem_zero( ; CHECK-NEXT: [[B:%.*]] = icmp sgt i8 [[X:%.*]], 3 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nsw i8 %x, 7 %b = icmp sgt i8 %a, 21 ret i1 %b } define i1 @sgt_negative_multip_rem_zero(i8 %x) { ; CHECK-LABEL: @sgt_negative_multip_rem_zero( ; CHECK-NEXT: [[B:%.*]] = icmp slt i8 [[X:%.*]], -3 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nsw i8 %x, -7 %b = icmp sgt i8 %a, 21 ret i1 %b } define i1 @sgt_positive_multip_rem_nz(i8 %x) { ; CHECK-LABEL: @sgt_positive_multip_rem_nz( ; CHECK-NEXT: [[B:%.*]] = icmp sgt i8 [[X:%.*]], 4 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nsw i8 %x, 5 %b = icmp sgt i8 %a, 21 ret i1 %b } define i1 @ugt_rem_zero(i8 %x) { ; CHECK-LABEL: @ugt_rem_zero( ; CHECK-NEXT: [[B:%.*]] = icmp ugt i8 [[X:%.*]], 3 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nuw i8 %x, 7 %b = icmp ugt i8 %a, 21 ret i1 %b } define i1 @ugt_rem_nz(i8 %x) { ; CHECK-LABEL: @ugt_rem_nz( ; CHECK-NEXT: [[B:%.*]] = icmp ugt i8 [[X:%.*]], 4 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nuw i8 %x, 5 %b = icmp ugt i8 %a, 21 ret i1 %b } ; Tests for eq/ne define i1 @eq_nsw_rem_zero(i8 %x) { ; CHECK-LABEL: @eq_nsw_rem_zero( ; CHECK-NEXT: [[B:%.*]] = icmp eq i8 [[X:%.*]], -4 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nsw i8 %x, -5 %b = icmp eq i8 %a, 20 ret i1 %b } define <2 x i1> @ne_nsw_rem_zero(<2 x i8> %x) { ; CHECK-LABEL: @ne_nsw_rem_zero( ; CHECK-NEXT: [[B:%.*]] = icmp ne <2 x i8> [[X:%.*]], <i8 -6, i8 -6> ; CHECK-NEXT: ret <2 x i1> [[B]] ; %a = mul nsw <2 x i8> %x, <i8 5, i8 5> %b = icmp ne <2 x i8> %a, <i8 -30, i8 -30> ret <2 x i1> %b } ; TODO: Missed fold with undef. define <2 x i1> @ne_nsw_rem_zero_undef1(<2 x i8> %x) { ; CHECK-LABEL: @ne_nsw_rem_zero_undef1( ; CHECK-NEXT: [[A:%.*]] = mul nsw <2 x i8> [[X:%.*]], <i8 5, i8 undef> ; CHECK-NEXT: [[B:%.*]] = icmp ne <2 x i8> [[A]], <i8 -30, i8 -30> ; CHECK-NEXT: ret <2 x i1> [[B]] ; %a = mul nsw <2 x i8> %x, <i8 5, i8 undef> %b = icmp ne <2 x i8> %a, <i8 -30, i8 -30> ret <2 x i1> %b } ; TODO: Missed fold with undef. define <2 x i1> @ne_nsw_rem_zero_undef2(<2 x i8> %x) { ; CHECK-LABEL: @ne_nsw_rem_zero_undef2( ; CHECK-NEXT: [[A:%.*]] = mul nsw <2 x i8> [[X:%.*]], <i8 5, i8 5> ; CHECK-NEXT: [[B:%.*]] = icmp ne <2 x i8> [[A]], <i8 -30, i8 undef> ; CHECK-NEXT: ret <2 x i1> [[B]] ; %a = mul nsw <2 x i8> %x, <i8 5, i8 5> %b = icmp ne <2 x i8> %a, <i8 -30, i8 undef> ret <2 x i1> %b } define i1 @eq_nsw_rem_zero_uses(i8 %x) { ; CHECK-LABEL: @eq_nsw_rem_zero_uses( ; CHECK-NEXT: [[A:%.*]] = mul nsw i8 [[X:%.*]], -5 ; CHECK-NEXT: call void @use(i8 [[A]]) ; CHECK-NEXT: [[B:%.*]] = icmp eq i8 [[X]], -4 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nsw i8 %x, -5 call void @use(i8 %a) %b = icmp eq i8 %a, 20 ret i1 %b } ; Impossible multiple should be handled by instsimplify. define i1 @eq_nsw_rem_nz(i8 %x) { ; CHECK-LABEL: @eq_nsw_rem_nz( ; CHECK-NEXT: ret i1 false ; %a = mul nsw i8 %x, 5 %b = icmp eq i8 %a, 245 ret i1 %b } ; Impossible multiple should be handled by instsimplify. define i1 @ne_nsw_rem_nz(i8 %x) { ; CHECK-LABEL: @ne_nsw_rem_nz( ; CHECK-NEXT: ret i1 true ; %a = mul nsw i8 %x, 5 %b = icmp ne i8 %a, 130 ret i1 %b } define <2 x i1> @eq_nuw_rem_zero(<2 x i8> %x) { ; CHECK-LABEL: @eq_nuw_rem_zero( ; CHECK-NEXT: [[B:%.*]] = icmp eq <2 x i8> [[X:%.*]], <i8 4, i8 4> ; CHECK-NEXT: ret <2 x i1> [[B]] ; %a = mul nuw <2 x i8> %x, <i8 5, i8 5> %b = icmp eq <2 x i8> %a, <i8 20, i8 20> ret <2 x i1> %b } ; TODO: Missed fold with undef. define <2 x i1> @eq_nuw_rem_zero_undef1(<2 x i8> %x) { ; CHECK-LABEL: @eq_nuw_rem_zero_undef1( ; CHECK-NEXT: [[A:%.*]] = mul nuw <2 x i8> [[X:%.*]], <i8 undef, i8 5> ; CHECK-NEXT: [[B:%.*]] = icmp eq <2 x i8> [[A]], <i8 20, i8 20> ; CHECK-NEXT: ret <2 x i1> [[B]] ; %a = mul nuw <2 x i8> %x, <i8 undef, i8 5> %b = icmp eq <2 x i8> %a, <i8 20, i8 20> ret <2 x i1> %b } ; TODO: Missed fold with undef. define <2 x i1> @eq_nuw_rem_zero_undef2(<2 x i8> %x) { ; CHECK-LABEL: @eq_nuw_rem_zero_undef2( ; CHECK-NEXT: [[A:%.*]] = mul nuw <2 x i8> [[X:%.*]], <i8 5, i8 5> ; CHECK-NEXT: [[B:%.*]] = icmp eq <2 x i8> [[A]], <i8 undef, i8 20> ; CHECK-NEXT: ret <2 x i1> [[B]] ; %a = mul nuw <2 x i8> %x, <i8 5, i8 5> %b = icmp eq <2 x i8> %a, <i8 undef, i8 20> ret <2 x i1> %b } define i1 @ne_nuw_rem_zero(i8 %x) { ; CHECK-LABEL: @ne_nuw_rem_zero( ; CHECK-NEXT: [[B:%.*]] = icmp ne i8 [[X:%.*]], 26 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nuw i8 %x, 5 %b = icmp ne i8 %a, 130 ret i1 %b } define i1 @ne_nuw_rem_zero_uses(i8 %x) { ; CHECK-LABEL: @ne_nuw_rem_zero_uses( ; CHECK-NEXT: [[A:%.*]] = mul nuw i8 [[X:%.*]], 5 ; CHECK-NEXT: call void @use(i8 [[A]]) ; CHECK-NEXT: [[B:%.*]] = icmp ne i8 [[X]], 26 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul nuw i8 %x, 5 call void @use(i8 %a) %b = icmp ne i8 %a, 130 ret i1 %b } ; Impossible multiple should be handled by instsimplify. define i1 @eq_nuw_rem_nz(i8 %x) { ; CHECK-LABEL: @eq_nuw_rem_nz( ; CHECK-NEXT: ret i1 false ; %a = mul nuw i8 %x, -5 %b = icmp eq i8 %a, 20 ret i1 %b } ; Impossible multiple should be handled by instsimplify. define i1 @ne_nuw_rem_nz(i8 %x) { ; CHECK-LABEL: @ne_nuw_rem_nz( ; CHECK-NEXT: ret i1 true ; %a = mul nuw i8 %x, 5 %b = icmp ne i8 %a, -30 ret i1 %b } ; Negative tests for the icmp mul folds define i1 @sgt_positive_multip_rem_zero_nonsw(i8 %x) { ; CHECK-LABEL: @sgt_positive_multip_rem_zero_nonsw( ; CHECK-NEXT: [[A:%.*]] = mul i8 [[X:%.*]], 7 ; CHECK-NEXT: [[B:%.*]] = icmp sgt i8 [[A]], 21 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul i8 %x, 7 %b = icmp sgt i8 %a, 21 ret i1 %b } define i1 @ult_multip_rem_zero_nonsw(i8 %x) { ; CHECK-LABEL: @ult_multip_rem_zero_nonsw( ; CHECK-NEXT: [[A:%.*]] = mul i8 [[X:%.*]], 7 ; CHECK-NEXT: [[B:%.*]] = icmp ult i8 [[A]], 21 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul i8 %x, 7 %b = icmp ult i8 %a, 21 ret i1 %b } define i1 @ugt_rem_zero_nonuw(i8 %x) { ; CHECK-LABEL: @ugt_rem_zero_nonuw( ; CHECK-NEXT: [[A:%.*]] = mul i8 [[X:%.*]], 7 ; CHECK-NEXT: [[B:%.*]] = icmp ugt i8 [[A]], 21 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul i8 %x, 7 %b = icmp ugt i8 %a, 21 ret i1 %b } define i1 @sgt_minnum(i8 %x) { ; CHECK-LABEL: @sgt_minnum( ; CHECK-NEXT: ret i1 true ; %a = mul nsw i8 %x, 7 %b = icmp sgt i8 %a, -128 ret i1 %b } define i1 @ule_bignum(i8 %x) { ; CHECK-LABEL: @ule_bignum( ; CHECK-NEXT: [[B:%.*]] = icmp eq i8 [[X:%.*]], 0 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul i8 %x, 2147483647 %b = icmp ule i8 %a, 0 ret i1 %b } define i1 @sgt_mulzero(i8 %x) { ; CHECK-LABEL: @sgt_mulzero( ; CHECK-NEXT: ret i1 false ; %a = mul nsw i8 %x, 0 %b = icmp sgt i8 %a, 21 ret i1 %b } define i1 @eq_rem_zero_nonuw(i8 %x) { ; CHECK-LABEL: @eq_rem_zero_nonuw( ; CHECK-NEXT: [[A:%.*]] = mul i8 [[X:%.*]], 5 ; CHECK-NEXT: [[B:%.*]] = icmp eq i8 [[A]], 20 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul i8 %x, 5 %b = icmp eq i8 %a, 20 ret i1 %b } define i1 @ne_rem_zero_nonuw(i8 %x) { ; CHECK-LABEL: @ne_rem_zero_nonuw( ; CHECK-NEXT: [[A:%.*]] = mul i8 [[X:%.*]], 5 ; CHECK-NEXT: [[B:%.*]] = icmp ne i8 [[A]], 30 ; CHECK-NEXT: ret i1 [[B]] ; %a = mul i8 %x, 5 %b = icmp ne i8 %a, 30 ret i1 %b } define i1 @mul_constant_eq(i32 %x, i32 %y) { ; CHECK-LABEL: @mul_constant_eq( ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul i32 %x, 5 %B = mul i32 %y, 5 %C = icmp eq i32 %A, %B ret i1 %C } define <2 x i1> @mul_constant_ne_splat(<2 x i32> %x, <2 x i32> %y) { ; CHECK-LABEL: @mul_constant_ne_splat( ; CHECK-NEXT: [[C:%.*]] = icmp ne <2 x i32> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x i1> [[C]] ; %A = mul <2 x i32> %x, <i32 5, i32 5> %B = mul <2 x i32> %y, <i32 5, i32 5> %C = icmp ne <2 x i32> %A, %B ret <2 x i1> %C } define i1 @mul_constant_ne_extra_use1(i8 %x, i8 %y) { ; CHECK-LABEL: @mul_constant_ne_extra_use1( ; CHECK-NEXT: [[A:%.*]] = mul i8 [[X:%.*]], 5 ; CHECK-NEXT: call void @use(i8 [[A]]) ; CHECK-NEXT: [[C:%.*]] = icmp ne i8 [[X]], [[Y:%.*]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul i8 %x, 5 call void @use(i8 %A) %B = mul i8 %y, 5 %C = icmp ne i8 %A, %B ret i1 %C } define i1 @mul_constant_eq_extra_use2(i8 %x, i8 %y) { ; CHECK-LABEL: @mul_constant_eq_extra_use2( ; CHECK-NEXT: [[B:%.*]] = mul i8 [[Y:%.*]], 5 ; CHECK-NEXT: call void @use(i8 [[B]]) ; CHECK-NEXT: [[C:%.*]] = icmp eq i8 [[X:%.*]], [[Y]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul i8 %x, 5 %B = mul i8 %y, 5 call void @use(i8 %B) %C = icmp eq i8 %A, %B ret i1 %C } define i1 @mul_constant_ne_extra_use3(i8 %x, i8 %y) { ; CHECK-LABEL: @mul_constant_ne_extra_use3( ; CHECK-NEXT: [[A:%.*]] = mul i8 [[X:%.*]], 5 ; CHECK-NEXT: call void @use(i8 [[A]]) ; CHECK-NEXT: [[B:%.*]] = mul i8 [[Y:%.*]], 5 ; CHECK-NEXT: call void @use(i8 [[B]]) ; CHECK-NEXT: [[C:%.*]] = icmp ne i8 [[X]], [[Y]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul i8 %x, 5 call void @use(i8 %A) %B = mul i8 %y, 5 call void @use(i8 %B) %C = icmp ne i8 %A, %B ret i1 %C } define i1 @mul_constant_eq_nsw(i32 %x, i32 %y) { ; CHECK-LABEL: @mul_constant_eq_nsw( ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul nsw i32 %x, 6 %B = mul nsw i32 %y, 6 %C = icmp eq i32 %A, %B ret i1 %C } define <2 x i1> @mul_constant_ne_nsw_splat(<2 x i32> %x, <2 x i32> %y) { ; CHECK-LABEL: @mul_constant_ne_nsw_splat( ; CHECK-NEXT: [[C:%.*]] = icmp ne <2 x i32> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x i1> [[C]] ; %A = mul nsw <2 x i32> %x, <i32 12, i32 12> %B = mul nsw <2 x i32> %y, <i32 12, i32 12> %C = icmp ne <2 x i32> %A, %B ret <2 x i1> %C } define i1 @mul_constant_ne_nsw_extra_use1(i8 %x, i8 %y) { ; CHECK-LABEL: @mul_constant_ne_nsw_extra_use1( ; CHECK-NEXT: [[A:%.*]] = mul nsw i8 [[X:%.*]], 74 ; CHECK-NEXT: call void @use(i8 [[A]]) ; CHECK-NEXT: [[C:%.*]] = icmp ne i8 [[X]], [[Y:%.*]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul nsw i8 %x, 74 call void @use(i8 %A) %B = mul nsw i8 %y, 74 %C = icmp ne i8 %A, %B ret i1 %C } define i1 @mul_constant_eq_nsw_extra_use2(i8 %x, i8 %y) { ; CHECK-LABEL: @mul_constant_eq_nsw_extra_use2( ; CHECK-NEXT: [[B:%.*]] = mul nsw i8 [[Y:%.*]], 20 ; CHECK-NEXT: call void @use(i8 [[B]]) ; CHECK-NEXT: [[C:%.*]] = icmp eq i8 [[X:%.*]], [[Y]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul nsw i8 %x, 20 %B = mul nsw i8 %y, 20 call void @use(i8 %B) %C = icmp eq i8 %A, %B ret i1 %C } define i1 @mul_constant_ne_nsw_extra_use3(i8 %x, i8 %y) { ; CHECK-LABEL: @mul_constant_ne_nsw_extra_use3( ; CHECK-NEXT: [[A:%.*]] = mul nsw i8 [[X:%.*]], 24 ; CHECK-NEXT: call void @use(i8 [[A]]) ; CHECK-NEXT: [[B:%.*]] = mul nsw i8 [[Y:%.*]], 24 ; CHECK-NEXT: call void @use(i8 [[B]]) ; CHECK-NEXT: [[C:%.*]] = icmp ne i8 [[X]], [[Y]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul nsw i8 %x, 24 call void @use(i8 %A) %B = mul nsw i8 %y, 24 call void @use(i8 %B) %C = icmp ne i8 %A, %B ret i1 %C } define i1 @mul_constant_nuw_eq(i32 %x, i32 %y) { ; CHECK-LABEL: @mul_constant_nuw_eq( ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul nuw i32 %x, 22 %B = mul nuw i32 %y, 22 %C = icmp eq i32 %A, %B ret i1 %C } define <2 x i1> @mul_constant_ne_nuw_splat(<2 x i32> %x, <2 x i32> %y) { ; CHECK-LABEL: @mul_constant_ne_nuw_splat( ; CHECK-NEXT: [[C:%.*]] = icmp ne <2 x i32> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x i1> [[C]] ; %A = mul nuw <2 x i32> %x, <i32 10, i32 10> %B = mul nuw <2 x i32> %y, <i32 10, i32 10> %C = icmp ne <2 x i32> %A, %B ret <2 x i1> %C } define i1 @mul_constant_ne_nuw_extra_use1(i8 %x, i8 %y) { ; CHECK-LABEL: @mul_constant_ne_nuw_extra_use1( ; CHECK-NEXT: [[A:%.*]] = mul nuw i8 [[X:%.*]], 6 ; CHECK-NEXT: call void @use(i8 [[A]]) ; CHECK-NEXT: [[C:%.*]] = icmp ne i8 [[X]], [[Y:%.*]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul nuw i8 %x, 6 call void @use(i8 %A) %B = mul nuw i8 %y, 6 %C = icmp ne i8 %A, %B ret i1 %C } define i1 @mul_constant_eq_nuw_extra_use2(i8 %x, i8 %y) { ; CHECK-LABEL: @mul_constant_eq_nuw_extra_use2( ; CHECK-NEXT: [[B:%.*]] = mul nuw i8 [[Y:%.*]], 36 ; CHECK-NEXT: call void @use(i8 [[B]]) ; CHECK-NEXT: [[C:%.*]] = icmp eq i8 [[X:%.*]], [[Y]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul nuw i8 %x, 36 %B = mul nuw i8 %y, 36 call void @use(i8 %B) %C = icmp eq i8 %A, %B ret i1 %C } define i1 @mul_constant_ne_nuw_extra_use3(i8 %x, i8 %y) { ; CHECK-LABEL: @mul_constant_ne_nuw_extra_use3( ; CHECK-NEXT: [[A:%.*]] = mul nuw i8 [[X:%.*]], 38 ; CHECK-NEXT: call void @use(i8 [[A]]) ; CHECK-NEXT: [[B:%.*]] = mul nuw i8 [[Y:%.*]], 38 ; CHECK-NEXT: call void @use(i8 [[B]]) ; CHECK-NEXT: [[C:%.*]] = icmp ne i8 [[X]], [[Y]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul nuw i8 %x, 38 call void @use(i8 %A) %B = mul nuw i8 %y, 38 call void @use(i8 %B) %C = icmp ne i8 %A, %B ret i1 %C } ; Negative test - wrong pred define i1 @mul_constant_ult(i32 %x, i32 %y) { ; CHECK-LABEL: @mul_constant_ult( ; CHECK-NEXT: [[A:%.*]] = mul i32 [[X:%.*]], 47 ; CHECK-NEXT: [[B:%.*]] = mul i32 [[Y:%.*]], 47 ; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[A]], [[B]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul i32 %x, 47 %B = mul i32 %y, 47 %C = icmp ult i32 %A, %B ret i1 %C } ; Negative test - wrong pred define i1 @mul_constant_nuw_sgt(i32 %x, i32 %y) { ; CHECK-LABEL: @mul_constant_nuw_sgt( ; CHECK-NEXT: [[A:%.*]] = mul nuw i32 [[X:%.*]], 46 ; CHECK-NEXT: [[B:%.*]] = mul nuw i32 [[Y:%.*]], 46 ; CHECK-NEXT: [[C:%.*]] = icmp sgt i32 [[A]], [[B]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul nuw i32 %x, 46 %B = mul nuw i32 %y, 46 %C = icmp sgt i32 %A, %B ret i1 %C } ; Negative test - wrong constants define i1 @mul_mismatch_constant_nuw_eq(i32 %x, i32 %y) { ; CHECK-LABEL: @mul_mismatch_constant_nuw_eq( ; CHECK-NEXT: [[A:%.*]] = mul nuw i32 [[X:%.*]], 46 ; CHECK-NEXT: [[B:%.*]] = mul nuw i32 [[Y:%.*]], 44 ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[A]], [[B]] ; CHECK-NEXT: ret i1 [[C]] ; %A = mul nuw i32 %x, 46 %B = mul nuw i32 %y, 44 %C = icmp eq i32 %A, %B ret i1 %C } ; If the multiply constant has any trailing zero bits but could overflow, ; we get something completely different. ; We mask off the high bits of each input and then convert: ; (X&Z) == (Y&Z) -> (X^Y) & Z == 0 define i1 @mul_constant_partial_nuw_eq(i32 %x, i32 %y) { ; CHECK-LABEL: @mul_constant_partial_nuw_eq( ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[TMP1]], 1073741823 ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[TMP2]], 0 ; CHECK-NEXT: ret i1 [[C]] ; %A = mul i32 %x, 44 %B = mul nuw i32 %y, 44 %C = icmp eq i32 %A, %B ret i1 %C } define i1 @mul_constant_mismatch_wrap_eq(i32 %x, i32 %y) { ; CHECK-LABEL: @mul_constant_mismatch_wrap_eq( ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[TMP1]], 2147483647 ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[TMP2]], 0 ; CHECK-NEXT: ret i1 [[C]] ; %A = mul nsw i32 %x, 54 %B = mul nuw i32 %y, 54 %C = icmp eq i32 %A, %B ret i1 %C } define i1 @eq_mul_constants_with_tz(i32 %x, i32 %y) { ; CHECK-LABEL: @eq_mul_constants_with_tz( ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[TMP1]], 1073741823 ; CHECK-NEXT: [[C:%.*]] = icmp ne i32 [[TMP2]], 0 ; CHECK-NEXT: ret i1 [[C]] ; %A = mul i32 %x, 12 %B = mul i32 %y, 12 %C = icmp ne i32 %A, %B ret i1 %C } define <2 x i1> @eq_mul_constants_with_tz_splat(<2 x i32> %x, <2 x i32> %y) { ; CHECK-LABEL: @eq_mul_constants_with_tz_splat( ; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i32> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = and <2 x i32> [[TMP1]], <i32 1073741823, i32 1073741823> ; CHECK-NEXT: [[C:%.*]] = icmp eq <2 x i32> [[TMP2]], zeroinitializer ; CHECK-NEXT: ret <2 x i1> [[C]] ; %A = mul <2 x i32> %x, <i32 12, i32 12> %B = mul <2 x i32> %y, <i32 12, i32 12> %C = icmp eq <2 x i32> %A, %B ret <2 x i1> %C } @g = extern_weak global i32 define i1 @oss_fuzz_39934(i32 %arg) { ; CHECK-LABEL: @oss_fuzz_39934( ; CHECK-NEXT: [[B13:%.*]] = mul nsw i32 [[ARG:%.*]], -65536 ; CHECK-NEXT: [[C10:%.*]] = icmp ne i32 [[B13]], mul (i32 or (i32 zext (i1 icmp eq (i32* @g, i32* null) to i32), i32 65537), i32 -65536) ; CHECK-NEXT: ret i1 [[C10]] ; %B13 = mul nsw i32 %arg, -65536 %C10 = icmp ne i32 mul (i32 or (i32 zext (i1 icmp eq (i32* @g, i32* null) to i32), i32 65537), i32 -65536), %B13 ret i1 %C10 } define i1 @mul_of_bool(i32 %x, i8 %y) { ; CHECK-LABEL: @mul_of_bool( ; CHECK-NEXT: ret i1 false ; %b = and i32 %x, 1 %z = zext i8 %y to i32 %m = mul i32 %b, %z %r = icmp ugt i32 %m, 255 ret i1 %r } define i1 @mul_of_bool_commute(i32 %x, i32 %y) { ; CHECK-LABEL: @mul_of_bool_commute( ; CHECK-NEXT: ret i1 false ; %x1 = and i32 %x, 1 %y8 = and i32 %y, 255 %m = mul i32 %y8, %x1 %r = icmp ugt i32 %m, 255 ret i1 %r } define i1 @mul_of_bools(i32 %x, i32 %y) { ; CHECK-LABEL: @mul_of_bools( ; CHECK-NEXT: ret i1 true ; %x1 = and i32 %x, 1 %y1 = and i32 %y, 1 %m = mul i32 %x1, %y1 %r = icmp ult i32 %m, 2 ret i1 %r } ; negative test - not a mask of low bit define i1 @not_mul_of_bool(i32 %x, i8 %y) { ; CHECK-LABEL: @not_mul_of_bool( ; CHECK-NEXT: [[Q:%.*]] = and i32 [[X:%.*]], 3 ; CHECK-NEXT: [[Z:%.*]] = zext i8 [[Y:%.*]] to i32 ; CHECK-NEXT: [[M:%.*]] = mul nuw nsw i32 [[Q]], [[Z]] ; CHECK-NEXT: [[R:%.*]] = icmp ugt i32 [[M]], 255 ; CHECK-NEXT: ret i1 [[R]] ; %q = and i32 %x, 3 %z = zext i8 %y to i32 %m = mul i32 %q, %z %r = icmp ugt i32 %m, 255 ret i1 %r } ; negative test - not a single low bit define i1 @not_mul_of_bool_commute(i32 %x, i32 %y) { ; CHECK-LABEL: @not_mul_of_bool_commute( ; CHECK-NEXT: [[X30:%.*]] = lshr i32 [[X:%.*]], 30 ; CHECK-NEXT: [[Y8:%.*]] = and i32 [[Y:%.*]], 255 ; CHECK-NEXT: [[M:%.*]] = mul nuw nsw i32 [[Y8]], [[X30]] ; CHECK-NEXT: [[R:%.*]] = icmp ugt i32 [[M]], 255 ; CHECK-NEXT: ret i1 [[R]] ; %x30 = lshr i32 %x, 30 %y8 = and i32 %y, 255 %m = mul i32 %y8, %x30 %r = icmp ugt i32 %m, 255 ret i1 %r } ; no leading zeros for 's', but we reduce this with other transforms define i1 @mul_of_bool_no_lz_other_op(i32 %x, i8 %y) { ; CHECK-LABEL: @mul_of_bool_no_lz_other_op( ; CHECK-NEXT: ret i1 false ; %b = and i32 %x, 1 %s = sext i8 %y to i32 %m = mul nuw nsw i32 %b, %s %r = icmp sgt i32 %m, 127 ret i1 %r } ; high and low bits are known 0 define i1 @mul_of_pow2(i32 %x, i8 %y) { ; CHECK-LABEL: @mul_of_pow2( ; CHECK-NEXT: ret i1 false ; %b = and i32 %x, 2 %z = zext i8 %y to i32 %m = mul i32 %b, %z %r = icmp ugt i32 %m, 510 ret i1 %r } ; high and low bits are known 0 define i1 @mul_of_pow2_commute(i32 %x, i32 %y) { ; CHECK-LABEL: @mul_of_pow2_commute( ; CHECK-NEXT: ret i1 false ; %x4 = and i32 %x, 4 %y8 = and i32 %y, 255 %m = mul i32 %y8, %x4 %r = icmp ugt i32 %m, 1020 ret i1 %r } ; only bit 7 can be set by the multiply define i32 @mul_of_pow2s(i32 %x, i32 %y) { ; CHECK-LABEL: @mul_of_pow2s( ; CHECK-NEXT: ret i32 128 ; %x8 = and i32 %x, 8 %y16 = and i32 %y, 16 %m = mul i32 %x8, %y16 %bit7 = or i32 %m, 128 ret i32 %bit7 } ; negative test - 6 * 255 = 1530 (but constant range analysis can get this) define i1 @not_mul_of_pow2(i32 %x, i8 %y) { ; CHECK-LABEL: @not_mul_of_pow2( ; CHECK-NEXT: [[Q:%.*]] = and i32 [[X:%.*]], 6 ; CHECK-NEXT: [[Z:%.*]] = zext i8 [[Y:%.*]] to i32 ; CHECK-NEXT: [[M:%.*]] = mul nuw nsw i32 [[Q]], [[Z]] ; CHECK-NEXT: [[R:%.*]] = icmp ugt i32 [[M]], 1530 ; CHECK-NEXT: ret i1 [[R]] ; %q = and i32 %x, 6 %z = zext i8 %y to i32 %m = mul i32 %q, %z %r = icmp ugt i32 %m, 1530 ret i1 %r } ; negative test - 12 * 255 = 3060 (but constant range analysis can get this) define i1 @not_mul_of_pow2_commute(i32 %x, i32 %y) { ; CHECK-LABEL: @not_mul_of_pow2_commute( ; CHECK-NEXT: [[X30:%.*]] = and i32 [[X:%.*]], 12 ; CHECK-NEXT: [[Y8:%.*]] = and i32 [[Y:%.*]], 255 ; CHECK-NEXT: [[M:%.*]] = mul nuw nsw i32 [[Y8]], [[X30]] ; CHECK-NEXT: [[R:%.*]] = icmp ugt i32 [[M]], 3060 ; CHECK-NEXT: ret i1 [[R]] ; %x30 = and i32 %x, 12 %y8 = and i32 %y, 255 %m = mul i32 %y8, %x30 %r = icmp ugt i32 %m, 3060 ret i1 %r } ; negative test - no leading zeros for 's' ; TODO: If analysis was generalized for sign bits, we could reduce this to false. define i1 @mul_of_pow2_no_lz_other_op(i32 %x, i8 %y) { ; CHECK-LABEL: @mul_of_pow2_no_lz_other_op( ; CHECK-NEXT: [[B:%.*]] = and i32 [[X:%.*]], 2 ; CHECK-NEXT: [[S:%.*]] = sext i8 [[Y:%.*]] to i32 ; CHECK-NEXT: [[M:%.*]] = mul nuw nsw i32 [[B]], [[S]] ; CHECK-NEXT: [[R:%.*]] = icmp sgt i32 [[M]], 254 ; CHECK-NEXT: ret i1 [[R]] ; %b = and i32 %x, 2 %s = sext i8 %y to i32 %m = mul nuw nsw i32 %b, %s %r = icmp sgt i32 %m, 254 ret i1 %r } ; The top 32-bits must be zero. define i1 @splat_mul_known_lz(i32 %x) { ; CHECK-LABEL: @splat_mul_known_lz( ; CHECK-NEXT: ret i1 true ; %z = zext i32 %x to i128 %m = mul i128 %z, 18446744078004518913 ; 0x00000000_00000001_00000001_00000001 %s = lshr i128 %m, 96 %r = icmp eq i128 %s, 0 ret i1 %r } ; The 33rd bit can only be set when MSB of x is set. define i1 @splat_mul_unknown_lz(i32 %x) { ; CHECK-LABEL: @splat_mul_unknown_lz( ; CHECK-NEXT: [[Z:%.*]] = zext i32 [[X:%.*]] to i128 ; CHECK-NEXT: [[M:%.*]] = mul nuw nsw i128 [[Z]], 18446744078004518913 ; CHECK-NEXT: [[R:%.*]] = icmp ult i128 [[M]], 39614081257132168796771975168 ; CHECK-NEXT: ret i1 [[R]] ; %z = zext i32 %x to i128 %m = mul i128 %z, 18446744078004518913 ; 0x00000000_00000001_00000001_00000001 %s = lshr i128 %m, 95 %r = icmp eq i128 %s, 0 ret i1 %r }