; RUN: opt < %s -passes=sroa -S | FileCheck %s target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64" define i8 @test1() { ; We fully promote these to the i24 load or store size, resulting in just masks ; and other operations that instcombine will fold, but no alloca. Note this is ; the same as test12 in basictest.ll, but here we assert big-endian byte ; ordering. ; ; CHECK-LABEL: @test1( entry: %a = alloca [3 x i8] %b = alloca [3 x i8] ; CHECK-NOT: alloca store i8 0, ptr %a %a1ptr = getelementptr [3 x i8], ptr %a, i64 0, i32 1 store i8 0, ptr %a1ptr %a2ptr = getelementptr [3 x i8], ptr %a, i64 0, i32 2 store i8 0, ptr %a2ptr %ai = load i24, ptr %a ; CHECK-NOT: store ; CHECK-NOT: load ; CHECK: %[[ext2:.*]] = zext i8 0 to i24 ; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, -256 ; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[ext2]] ; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24 ; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8 ; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281 ; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]] ; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24 ; CHECK-NEXT: %[[shift0:.*]] = shl i24 %[[ext0]], 16 ; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], 65535 ; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[shift0]] store i24 %ai, ptr %b %b0 = load i8, ptr %b %b1ptr = getelementptr [3 x i8], ptr %b, i64 0, i32 1 %b1 = load i8, ptr %b1ptr %b2ptr = getelementptr [3 x i8], ptr %b, i64 0, i32 2 %b2 = load i8, ptr %b2ptr ; CHECK-NOT: store ; CHECK-NOT: load ; CHECK: %[[shift0:.*]] = lshr i24 %[[insert0]], 16 ; CHECK-NEXT: %[[trunc0:.*]] = trunc i24 %[[shift0]] to i8 ; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8 ; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8 ; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[insert0]] to i8 %bsum0 = add i8 %b0, %b1 %bsum1 = add i8 %bsum0, %b2 ret i8 %bsum1 ; CHECK: %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]] ; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]] ; CHECK-NEXT: ret i8 %[[sum1]] } define i64 @test2() { ; Test for various mixed sizes of integer loads and stores all getting ; promoted. ; ; CHECK-LABEL: @test2( entry: %a = alloca [7 x i8] ; CHECK-NOT: alloca %a1ptr = getelementptr [7 x i8], ptr %a, i64 0, i32 1 %a2ptr = getelementptr [7 x i8], ptr %a, i64 0, i32 2 %a3ptr = getelementptr [7 x i8], ptr %a, i64 0, i32 3 ; CHECK-NOT: store ; CHECK-NOT: load store i16 1, ptr %a store i8 1, ptr %a2ptr store i24 1, ptr %a3ptr store i40 1, ptr %a2ptr ; the alloca is splitted into multiple slices ; Here, i8 1 is for %a[6] ; CHECK: %[[ext1:.*]] = zext i8 1 to i40 ; CHECK-NEXT: %[[mask1:.*]] = and i40 undef, -256 ; CHECK-NEXT: %[[insert1:.*]] = or i40 %[[mask1]], %[[ext1]] ; Here, i24 0 is for %a[3] to %a[5] ; CHECK-NEXT: %[[ext2:.*]] = zext i24 0 to i40 ; CHECK-NEXT: %[[shift2:.*]] = shl i40 %[[ext2]], 8 ; CHECK-NEXT: %[[mask2:.*]] = and i40 %[[insert1]], -4294967041 ; CHECK-NEXT: %[[insert2:.*]] = or i40 %[[mask2]], %[[shift2]] ; Here, i8 0 is for %a[2] ; CHECK-NEXT: %[[ext3:.*]] = zext i8 0 to i40 ; CHECK-NEXT: %[[shift3:.*]] = shl i40 %[[ext3]], 32 ; CHECK-NEXT: %[[mask3:.*]] = and i40 %[[insert2]], 4294967295 ; CHECK-NEXT: %[[insert3:.*]] = or i40 %[[mask3]], %[[shift3]] ; CHECK-NEXT: %[[ext4:.*]] = zext i40 %[[insert3]] to i56 ; CHECK-NEXT: %[[mask4:.*]] = and i56 undef, -1099511627776 ; CHECK-NEXT: %[[insert4:.*]] = or i56 %[[mask4]], %[[ext4]] ; CHECK-NOT: store ; CHECK-NOT: load %ai = load i56, ptr %a %ret = zext i56 %ai to i64 ret i64 %ret ; Here, i16 1 is for %a[0] to %a[1] ; CHECK-NEXT: %[[ext5:.*]] = zext i16 1 to i56 ; CHECK-NEXT: %[[shift5:.*]] = shl i56 %[[ext5]], 40 ; CHECK-NEXT: %[[mask5:.*]] = and i56 %[[insert4]], 1099511627775 ; CHECK-NEXT: %[[insert5:.*]] = or i56 %[[mask5]], %[[shift5]] ; CHECK-NEXT: %[[ret:.*]] = zext i56 %[[insert5]] to i64 ; CHECK-NEXT: ret i64 %[[ret]] } define i64 @PR14132(i1 %flag) { ; CHECK-LABEL: @PR14132( ; Here we form a PHI-node by promoting the pointer alloca first, and then in ; order to promote the other two allocas, we speculate the load of the ; now-phi-node-pointer. In doing so we end up loading a 64-bit value from an i8 ; alloca. While this is a bit dubious, we were asserting on trying to ; rewrite it. The trick is that the code using the value may carefully take ; steps to only use the not-undef bits, and so we need to at least loosely ; support this. This test is particularly interesting because how we handle ; a load of an i64 from an i8 alloca is dependent on endianness. entry: %a = alloca i64, align 8 %b = alloca i8, align 8 %ptr = alloca ptr, align 8 ; CHECK-NOT: alloca store i64 0, ptr %a store i8 1, ptr %b store ptr %a, ptr %ptr br i1 %flag, label %if.then, label %if.end if.then: store ptr %b, ptr %ptr br label %if.end ; CHECK-NOT: store ; CHECK: %[[ext:.*]] = zext i8 1 to i64 ; CHECK: %[[shift:.*]] = shl i64 %[[ext]], 56 if.end: %tmp = load ptr, ptr %ptr %result = load i64, ptr %tmp ; CHECK-NOT: load ; CHECK: %[[result:.*]] = phi i64 [ %[[shift]], %if.then ], [ 0, %entry ] ret i64 %result ; CHECK-NEXT: ret i64 %[[result]] } declare void @f(i64 %x, i32 %y) define void @test3() { ; CHECK-LABEL: @test3( ; ; This is a test that specifically exercises the big-endian lowering because it ; ends up splitting a 64-bit integer into two smaller integers and has a number ; of tricky aspects (the i24 type) that make that hard. Historically, SROA ; would miscompile this by either dropping a most significant byte or least ; significant byte due to shrinking the [4,8) slice to an i24, or by failing to ; move the bytes around correctly. ; ; The magical number 34494054408 is used because it has bits set in various ; bytes so that it is clear if those bytes fail to be propagated. ; ; If you're debugging this, rather than using the direct magical numbers, run ; the IR through '-sroa -instcombine'. With '-instcombine' these will be ; constant folded, and if the i64 doesn't round-trip correctly, you've found ; a bug! ; entry: %a = alloca { i32, i24 }, align 4 ; CHECK-NOT: alloca store i64 34494054408, ptr %a %tmp1 = load i64, ptr %a, align 4 %tmp3 = load i32, ptr %a, align 4 ; CHECK: %[[HI_EXT:.*]] = zext i32 134316040 to i64 ; CHECK: %[[HI_INPUT:.*]] = and i64 undef, -4294967296 ; CHECK: %[[HI_MERGE:.*]] = or i64 %[[HI_INPUT]], %[[HI_EXT]] ; CHECK: %[[LO_EXT:.*]] = zext i32 8 to i64 ; CHECK: %[[LO_SHL:.*]] = shl i64 %[[LO_EXT]], 32 ; CHECK: %[[LO_INPUT:.*]] = and i64 %[[HI_MERGE]], 4294967295 ; CHECK: %[[LO_MERGE:.*]] = or i64 %[[LO_INPUT]], %[[LO_SHL]] call void @f(i64 %tmp1, i32 %tmp3) ; CHECK: call void @f(i64 %[[LO_MERGE]], i32 8) ret void ; CHECK: ret void } define void @test4() { ; CHECK-LABEL: @test4 ; ; Much like @test3, this is specifically testing big-endian management of data. ; Also similarly, it uses constants with particular bits set to help track ; whether values are corrupted, and can be easily evaluated by running through ; -instcombine to see that the i64 round-trips. ; entry: %a = alloca { i32, i24 }, align 4 %a2 = alloca i64, align 4 ; CHECK-NOT: alloca store i64 34494054408, ptr %a2 call void @llvm.memcpy.p0.p0.i64(ptr align 4 %a, ptr align 4 %a2, i64 8, i1 false) ; CHECK: %[[LO_SHR:.*]] = lshr i64 34494054408, 32 ; CHECK: %[[LO_START:.*]] = trunc i64 %[[LO_SHR]] to i32 ; CHECK: %[[HI_START:.*]] = trunc i64 34494054408 to i32 %tmp3 = load i64, ptr %a, align 4 %tmp5 = load i32, ptr %a, align 4 ; CHECK: %[[HI_EXT:.*]] = zext i32 %[[HI_START]] to i64 ; CHECK: %[[HI_INPUT:.*]] = and i64 undef, -4294967296 ; CHECK: %[[HI_MERGE:.*]] = or i64 %[[HI_INPUT]], %[[HI_EXT]] ; CHECK: %[[LO_EXT:.*]] = zext i32 %[[LO_START]] to i64 ; CHECK: %[[LO_SHL:.*]] = shl i64 %[[LO_EXT]], 32 ; CHECK: %[[LO_INPUT:.*]] = and i64 %[[HI_MERGE]], 4294967295 ; CHECK: %[[LO_MERGE:.*]] = or i64 %[[LO_INPUT]], %[[LO_SHL]] call void @f(i64 %tmp3, i32 %tmp5) ; CHECK: call void @f(i64 %[[LO_MERGE]], i32 %[[LO_START]]) ret void ; CHECK: ret void } declare void @llvm.memcpy.p0.p0.i64(ptr, ptr, i64, i1)