; Test negated floating-point absolute. ; ; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 | FileCheck %s ; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z13 | FileCheck %s ; Test f32. declare float @llvm.fabs.f32(float %f) define float @f1(float %f) { ; CHECK-LABEL: f1: ; CHECK: lndfr %f0, %f0 ; CHECK: br %r14 %abs = call float @llvm.fabs.f32(float %f) %res = fneg float %abs ret float %res } ; Test f64. declare double @llvm.fabs.f64(double %f) define double @f2(double %f) { ; CHECK-LABEL: f2: ; CHECK: lndfr %f0, %f0 ; CHECK: br %r14 %abs = call double @llvm.fabs.f64(double %f) %res = fneg double %abs ret double %res } ; Test f128. With the loads and stores, a pure negative-absolute would ; probably be better implemented using an OI on the upper byte. Do some ; extra processing so that using FPRs is unequivocally better. declare fp128 @llvm.fabs.f128(fp128 %f) define void @f3(fp128 *%ptr, fp128 *%ptr2) { ; CHECK-LABEL: f3: ; CHECK: lnxbr ; CHECK: dxbr ; CHECK: br %r14 %orig = load fp128, fp128 *%ptr %abs = call fp128 @llvm.fabs.f128(fp128 %orig) %negabs = fneg fp128 %abs %op2 = load fp128, fp128 *%ptr2 %res = fdiv fp128 %negabs, %op2 store fp128 %res, fp128 *%ptr ret void }