#include "llvm/Config/config.h"
#if defined(LLVM_HAVE_TF_API)
#include "llvm/Analysis/ModelUnderTrainingRunner.h"
using namespace llvm;
ModelUnderTrainingRunner::ModelUnderTrainingRunner(
    LLVMContext &Ctx, const std::string &ModelPath,
    const std::vector<TensorSpec> &InputSpecs,
    const std::vector<LoggedFeatureSpec> &OutputSpecs)
    : MLModelRunner(Ctx, MLModelRunner::Kind::Development, InputSpecs.size()),
      OutputSpecs(OutputSpecs) {
  Evaluator = std::make_unique<TFModelEvaluator>(
      ModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I].Spec; },
      OutputSpecs.size());
  if (!Evaluator || !Evaluator->isValid()) {
    Ctx.emitError("Failed to create saved model evaluator");
    Evaluator.reset();
    return;
  }
  for (size_t I = 0, E = InputSpecs.size(); I < E; ++I) {
    setUpBufferForTensor(I, InputSpecs[I], Evaluator->getUntypedInput(I));
  }
}
void *ModelUnderTrainingRunner::evaluateUntyped() {
  LastEvaluationResult = Evaluator->evaluate();
  if (!LastEvaluationResult.hasValue()) {
    Ctx.emitError("Error evaluating model.");
    return nullptr;
  }
  return LastEvaluationResult->getUntypedTensorValue(0);
}
std::unique_ptr<ModelUnderTrainingRunner>
ModelUnderTrainingRunner::createAndEnsureValid(
    LLVMContext &Ctx, const std::string &ModelPath, StringRef DecisionName,
    const std::vector<TensorSpec> &InputSpecs,
    StringRef OutputSpecsPathOverride) {
  if (auto MaybeOutputSpecs = loadOutputSpecs(Ctx, DecisionName, ModelPath,
                                              OutputSpecsPathOverride))
    return createAndEnsureValid(Ctx, ModelPath, DecisionName, InputSpecs,
                                *MaybeOutputSpecs);
  Ctx.emitError("Could not load the policy model from the provided path");
  return nullptr;
}
std::unique_ptr<ModelUnderTrainingRunner>
ModelUnderTrainingRunner::createAndEnsureValid(
    LLVMContext &Ctx, const std::string &ModelPath, StringRef DecisionName,
    const std::vector<TensorSpec> &InputSpecs,
    const std::vector<LoggedFeatureSpec> &OutputSpecs) {
  std::unique_ptr<ModelUnderTrainingRunner> MUTR;
  MUTR.reset(
      new ModelUnderTrainingRunner(Ctx, ModelPath, InputSpecs, OutputSpecs));
  if (MUTR && MUTR->isValid())
    return MUTR;
  Ctx.emitError("Could not load or create model evaluator.");
  return nullptr;
}
#endif