//===------ Core.h -- Core ORC APIs (Layer, JITDylib, etc.) -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Contains core ORC APIs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_ORC_CORE_H
#define LLVM_EXECUTIONENGINE_ORC_CORE_H
#include "llvm/ADT/BitmaskEnum.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FunctionExtras.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ExecutionEngine/JITLink/JITLinkDylib.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/ExecutorProcessControl.h"
#include "llvm/ExecutionEngine/Orc/Shared/WrapperFunctionUtils.h"
#include "llvm/ExecutionEngine/Orc/TaskDispatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ExtensibleRTTI.h"
#include <atomic>
#include <future>
#include <memory>
#include <vector>
namespace llvm {
namespace orc {
// Forward declare some classes.
class AsynchronousSymbolQuery;
class ExecutionSession;
class MaterializationUnit;
class MaterializationResponsibility;
class JITDylib;
class ResourceTracker;
class InProgressLookupState;
enum class SymbolState : uint8_t;
using ResourceTrackerSP = IntrusiveRefCntPtr<ResourceTracker>;
using JITDylibSP = IntrusiveRefCntPtr<JITDylib>;
using ResourceKey = uintptr_t;
/// API to remove / transfer ownership of JIT resources.
class ResourceTracker : public ThreadSafeRefCountedBase<ResourceTracker> {
private:
friend class ExecutionSession;
friend class JITDylib;
friend class MaterializationResponsibility;
public:
ResourceTracker(const ResourceTracker &) = delete;
ResourceTracker &operator=(const ResourceTracker &) = delete;
ResourceTracker(ResourceTracker &&) = delete;
ResourceTracker &operator=(ResourceTracker &&) = delete;
~ResourceTracker();
/// Return the JITDylib targeted by this tracker.
JITDylib &getJITDylib() const {
return *reinterpret_cast<JITDylib *>(JDAndFlag.load() &
~static_cast<uintptr_t>(1));
}
/// Remove all resources associated with this key.
Error remove();
/// Transfer all resources associated with this key to the given
/// tracker, which must target the same JITDylib as this one.
void transferTo(ResourceTracker &DstRT);
/// Return true if this tracker has become defunct.
bool isDefunct() const { return JDAndFlag.load() & 0x1; }
/// Returns the key associated with this tracker.
/// This method should not be used except for debug logging: there is no
/// guarantee that the returned value will remain valid.
ResourceKey getKeyUnsafe() const { return reinterpret_cast<uintptr_t>(this); }
private:
ResourceTracker(JITDylibSP JD);
void makeDefunct();
std::atomic_uintptr_t JDAndFlag;
};
/// Listens for ResourceTracker operations.
class ResourceManager {
public:
virtual ~ResourceManager();
virtual Error handleRemoveResources(ResourceKey K) = 0;
virtual void handleTransferResources(ResourceKey DstK, ResourceKey SrcK) = 0;
};
/// A set of symbol names (represented by SymbolStringPtrs for
// efficiency).
using SymbolNameSet = DenseSet<SymbolStringPtr>;
/// A vector of symbol names.
using SymbolNameVector = std::vector<SymbolStringPtr>;
/// A map from symbol names (as SymbolStringPtrs) to JITSymbols
/// (address/flags pairs).
using SymbolMap = DenseMap<SymbolStringPtr, JITEvaluatedSymbol>;
/// A map from symbol names (as SymbolStringPtrs) to JITSymbolFlags.
using SymbolFlagsMap = DenseMap<SymbolStringPtr, JITSymbolFlags>;
/// A map from JITDylibs to sets of symbols.
using SymbolDependenceMap = DenseMap<JITDylib *, SymbolNameSet>;
/// Lookup flags that apply to each dylib in the search order for a lookup.
///
/// If MatchHiddenSymbolsOnly is used (the default) for a given dylib, then
/// only symbols in that Dylib's interface will be searched. If
/// MatchHiddenSymbols is used then symbols with hidden visibility will match
/// as well.
enum class JITDylibLookupFlags { MatchExportedSymbolsOnly, MatchAllSymbols };
/// Lookup flags that apply to each symbol in a lookup.
///
/// If RequiredSymbol is used (the default) for a given symbol then that symbol
/// must be found during the lookup or the lookup will fail returning a
/// SymbolNotFound error. If WeaklyReferencedSymbol is used and the given
/// symbol is not found then the query will continue, and no result for the
/// missing symbol will be present in the result (assuming the rest of the
/// lookup succeeds).
enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol };
/// Describes the kind of lookup being performed. The lookup kind is passed to
/// symbol generators (if they're invoked) to help them determine what
/// definitions to generate.
///
/// Static -- Lookup is being performed as-if at static link time (e.g.
/// generators representing static archives should pull in new
/// definitions).
///
/// DLSym -- Lookup is being performed as-if at runtime (e.g. generators
/// representing static archives should not pull in new definitions).
enum class LookupKind { Static, DLSym };
/// A list of (JITDylib*, JITDylibLookupFlags) pairs to be used as a search
/// order during symbol lookup.
using JITDylibSearchOrder =
std::vector<std::pair<JITDylib *, JITDylibLookupFlags>>;
/// Convenience function for creating a search order from an ArrayRef of
/// JITDylib*, all with the same flags.
inline JITDylibSearchOrder makeJITDylibSearchOrder(
ArrayRef<JITDylib *> JDs,
JITDylibLookupFlags Flags = JITDylibLookupFlags::MatchExportedSymbolsOnly) {
JITDylibSearchOrder O;
O.reserve(JDs.size());
for (auto *JD : JDs)
O.push_back(std::make_pair(JD, Flags));
return O;
}
/// A set of symbols to look up, each associated with a SymbolLookupFlags
/// value.
///
/// This class is backed by a vector and optimized for fast insertion,
/// deletion and iteration. It does not guarantee a stable order between
/// operations, and will not automatically detect duplicate elements (they
/// can be manually checked by calling the validate method).
class SymbolLookupSet {
public:
using value_type = std::pair<SymbolStringPtr, SymbolLookupFlags>;
using UnderlyingVector = std::vector<value_type>;
using iterator = UnderlyingVector::iterator;
using const_iterator = UnderlyingVector::const_iterator;
SymbolLookupSet() = default;
explicit SymbolLookupSet(
SymbolStringPtr Name,
SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) {
add(std::move(Name), Flags);
}
/// Construct a SymbolLookupSet from an initializer list of SymbolStringPtrs.
explicit SymbolLookupSet(
std::initializer_list<SymbolStringPtr> Names,
SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) {
Symbols.reserve(Names.size());
for (auto &Name : Names)
add(std::move(Name), Flags);
}
/// Construct a SymbolLookupSet from a SymbolNameSet with the given
/// Flags used for each value.
explicit SymbolLookupSet(
const SymbolNameSet &Names,
SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) {
Symbols.reserve(Names.size());
for (const auto &Name : Names)
add(Name, Flags);
}
/// Construct a SymbolLookupSet from a vector of symbols with the given Flags
/// used for each value.
/// If the ArrayRef contains duplicates it is up to the client to remove these
/// before using this instance for lookup.
explicit SymbolLookupSet(
ArrayRef<SymbolStringPtr> Names,
SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) {
Symbols.reserve(Names.size());
for (const auto &Name : Names)
add(Name, Flags);
}
/// Construct a SymbolLookupSet from DenseMap keys.
template <typename KeyT>
static SymbolLookupSet
fromMapKeys(const DenseMap<SymbolStringPtr, KeyT> &M,
SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) {
SymbolLookupSet Result;
Result.Symbols.reserve(M.size());
for (const auto &KV : M)
Result.add(KV.first, Flags);
return Result;
}
/// Add an element to the set. The client is responsible for checking that
/// duplicates are not added.
SymbolLookupSet &
add(SymbolStringPtr Name,
SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) {
Symbols.push_back(std::make_pair(std::move(Name), Flags));
return *this;
}
/// Quickly append one lookup set to another.
SymbolLookupSet &append(SymbolLookupSet Other) {
Symbols.reserve(Symbols.size() + Other.size());
for (auto &KV : Other)
Symbols.push_back(std::move(KV));
return *this;
}
bool empty() const { return Symbols.empty(); }
UnderlyingVector::size_type size() const { return Symbols.size(); }
iterator begin() { return Symbols.begin(); }
iterator end() { return Symbols.end(); }
const_iterator begin() const { return Symbols.begin(); }
const_iterator end() const { return Symbols.end(); }
/// Removes the Ith element of the vector, replacing it with the last element.
void remove(UnderlyingVector::size_type I) {
std::swap(Symbols[I], Symbols.back());
Symbols.pop_back();
}
/// Removes the element pointed to by the given iterator. This iterator and
/// all subsequent ones (including end()) are invalidated.
void remove(iterator I) { remove(I - begin()); }
/// Removes all elements matching the given predicate, which must be callable
/// as bool(const SymbolStringPtr &, SymbolLookupFlags Flags).
template <typename PredFn> void remove_if(PredFn &&Pred) {
UnderlyingVector::size_type I = 0;
while (I != Symbols.size()) {
const auto &Name = Symbols[I].first;
auto Flags = Symbols[I].second;
if (Pred(Name, Flags))
remove(I);
else
++I;
}
}
/// Loop over the elements of this SymbolLookupSet, applying the Body function
/// to each one. Body must be callable as
/// bool(const SymbolStringPtr &, SymbolLookupFlags).
/// If Body returns true then the element just passed in is removed from the
/// set. If Body returns false then the element is retained.
template <typename BodyFn>
auto forEachWithRemoval(BodyFn &&Body) -> std::enable_if_t<
std::is_same<decltype(Body(std::declval<const SymbolStringPtr &>(),
std::declval<SymbolLookupFlags>())),
bool>::value> {
UnderlyingVector::size_type I = 0;
while (I != Symbols.size()) {
const auto &Name = Symbols[I].first;
auto Flags = Symbols[I].second;
if (Body(Name, Flags))
remove(I);
else
++I;
}
}
/// Loop over the elements of this SymbolLookupSet, applying the Body function
/// to each one. Body must be callable as
/// Expected<bool>(const SymbolStringPtr &, SymbolLookupFlags).
/// If Body returns a failure value, the loop exits immediately. If Body
/// returns true then the element just passed in is removed from the set. If
/// Body returns false then the element is retained.
template <typename BodyFn>
auto forEachWithRemoval(BodyFn &&Body) -> std::enable_if_t<
std::is_same<decltype(Body(std::declval<const SymbolStringPtr &>(),
std::declval<SymbolLookupFlags>())),
Expected<bool>>::value,
Error> {
UnderlyingVector::size_type I = 0;
while (I != Symbols.size()) {
const auto &Name = Symbols[I].first;
auto Flags = Symbols[I].second;
auto Remove = Body(Name, Flags);
if (!Remove)
return Remove.takeError();
if (*Remove)
remove(I);
else
++I;
}
return Error::success();
}
/// Construct a SymbolNameVector from this instance by dropping the Flags
/// values.
SymbolNameVector getSymbolNames() const {
SymbolNameVector Names;
Names.reserve(Symbols.size());
for (auto &KV : Symbols)
Names.push_back(KV.first);
return Names;
}
/// Sort the lookup set by pointer value. This sort is fast but sensitive to
/// allocation order and so should not be used where a consistent order is
/// required.
void sortByAddress() { llvm::sort(Symbols, llvm::less_first()); }
/// Sort the lookup set lexicographically. This sort is slow but the order
/// is unaffected by allocation order.
void sortByName() {
llvm::sort(Symbols, [](const value_type &LHS, const value_type &RHS) {
return *LHS.first < *RHS.first;
});
}
/// Remove any duplicate elements. If a SymbolLookupSet is not duplicate-free
/// by construction, this method can be used to turn it into a proper set.
void removeDuplicates() {
sortByAddress();
auto LastI = std::unique(Symbols.begin(), Symbols.end());
Symbols.erase(LastI, Symbols.end());
}
#ifndef NDEBUG
/// Returns true if this set contains any duplicates. This should only be used
/// in assertions.
bool containsDuplicates() {
if (Symbols.size() < 2)
return false;
sortByAddress();
for (UnderlyingVector::size_type I = 1; I != Symbols.size(); ++I)
if (Symbols[I].first == Symbols[I - 1].first)
return true;
return false;
}
#endif
private:
UnderlyingVector Symbols;
};
struct SymbolAliasMapEntry {
SymbolAliasMapEntry() = default;
SymbolAliasMapEntry(SymbolStringPtr Aliasee, JITSymbolFlags AliasFlags)
: Aliasee(std::move(Aliasee)), AliasFlags(AliasFlags) {}
SymbolStringPtr Aliasee;
JITSymbolFlags AliasFlags;
};
/// A map of Symbols to (Symbol, Flags) pairs.
using SymbolAliasMap = DenseMap<SymbolStringPtr, SymbolAliasMapEntry>;
/// Callback to notify client that symbols have been resolved.
using SymbolsResolvedCallback = unique_function<void(Expected<SymbolMap>)>;
/// Callback to register the dependencies for a given query.
using RegisterDependenciesFunction =
std::function<void(const SymbolDependenceMap &)>;
/// This can be used as the value for a RegisterDependenciesFunction if there
/// are no dependants to register with.
extern RegisterDependenciesFunction NoDependenciesToRegister;
class ResourceTrackerDefunct : public ErrorInfo<ResourceTrackerDefunct> {
public:
static char ID;
ResourceTrackerDefunct(ResourceTrackerSP RT);
std::error_code convertToErrorCode() const override;
void log(raw_ostream &OS) const override;
private:
ResourceTrackerSP RT;
};
/// Used to notify a JITDylib that the given set of symbols failed to
/// materialize.
class FailedToMaterialize : public ErrorInfo<FailedToMaterialize> {
public:
static char ID;
FailedToMaterialize(std::shared_ptr<SymbolStringPool> SSP,
std::shared_ptr<SymbolDependenceMap> Symbols);
~FailedToMaterialize();
std::error_code convertToErrorCode() const override;
void log(raw_ostream &OS) const override;
const SymbolDependenceMap &getSymbols() const { return *Symbols; }
private:
std::shared_ptr<SymbolStringPool> SSP;
std::shared_ptr<SymbolDependenceMap> Symbols;
};
/// Used to notify clients when symbols can not be found during a lookup.
class SymbolsNotFound : public ErrorInfo<SymbolsNotFound> {
public:
static char ID;
SymbolsNotFound(std::shared_ptr<SymbolStringPool> SSP, SymbolNameSet Symbols);
SymbolsNotFound(std::shared_ptr<SymbolStringPool> SSP,
SymbolNameVector Symbols);
std::error_code convertToErrorCode() const override;
void log(raw_ostream &OS) const override;
std::shared_ptr<SymbolStringPool> getSymbolStringPool() { return SSP; }
const SymbolNameVector &getSymbols() const { return Symbols; }
private:
std::shared_ptr<SymbolStringPool> SSP;
SymbolNameVector Symbols;
};
/// Used to notify clients that a set of symbols could not be removed.
class SymbolsCouldNotBeRemoved : public ErrorInfo<SymbolsCouldNotBeRemoved> {
public:
static char ID;
SymbolsCouldNotBeRemoved(std::shared_ptr<SymbolStringPool> SSP,
SymbolNameSet Symbols);
std::error_code convertToErrorCode() const override;
void log(raw_ostream &OS) const override;
std::shared_ptr<SymbolStringPool> getSymbolStringPool() { return SSP; }
const SymbolNameSet &getSymbols() const { return Symbols; }
private:
std::shared_ptr<SymbolStringPool> SSP;
SymbolNameSet Symbols;
};
/// Errors of this type should be returned if a module fails to include
/// definitions that are claimed by the module's associated
/// MaterializationResponsibility. If this error is returned it is indicative of
/// a broken transformation / compiler / object cache.
class MissingSymbolDefinitions : public ErrorInfo<MissingSymbolDefinitions> {
public:
static char ID;
MissingSymbolDefinitions(std::shared_ptr<SymbolStringPool> SSP,
std::string ModuleName, SymbolNameVector Symbols)
: SSP(std::move(SSP)), ModuleName(std::move(ModuleName)),
Symbols(std::move(Symbols)) {}
std::error_code convertToErrorCode() const override;
void log(raw_ostream &OS) const override;
std::shared_ptr<SymbolStringPool> getSymbolStringPool() { return SSP; }
const std::string &getModuleName() const { return ModuleName; }
const SymbolNameVector &getSymbols() const { return Symbols; }
private:
std::shared_ptr<SymbolStringPool> SSP;
std::string ModuleName;
SymbolNameVector Symbols;
};
/// Errors of this type should be returned if a module contains definitions for
/// symbols that are not claimed by the module's associated
/// MaterializationResponsibility. If this error is returned it is indicative of
/// a broken transformation / compiler / object cache.
class UnexpectedSymbolDefinitions : public ErrorInfo<UnexpectedSymbolDefinitions> {
public:
static char ID;
UnexpectedSymbolDefinitions(std::shared_ptr<SymbolStringPool> SSP,
std::string ModuleName, SymbolNameVector Symbols)
: SSP(std::move(SSP)), ModuleName(std::move(ModuleName)),
Symbols(std::move(Symbols)) {}
std::error_code convertToErrorCode() const override;
void log(raw_ostream &OS) const override;
std::shared_ptr<SymbolStringPool> getSymbolStringPool() { return SSP; }
const std::string &getModuleName() const { return ModuleName; }
const SymbolNameVector &getSymbols() const { return Symbols; }
private:
std::shared_ptr<SymbolStringPool> SSP;
std::string ModuleName;
SymbolNameVector Symbols;
};
/// Tracks responsibility for materialization, and mediates interactions between
/// MaterializationUnits and JDs.
///
/// An instance of this class is passed to MaterializationUnits when their
/// materialize method is called. It allows MaterializationUnits to resolve and
/// emit symbols, or abandon materialization by notifying any unmaterialized
/// symbols of an error.
class MaterializationResponsibility {
friend class ExecutionSession;
friend class JITDylib;
public:
MaterializationResponsibility(MaterializationResponsibility &&) = delete;
MaterializationResponsibility &
operator=(MaterializationResponsibility &&) = delete;
/// Destruct a MaterializationResponsibility instance. In debug mode
/// this asserts that all symbols being tracked have been either
/// emitted or notified of an error.
~MaterializationResponsibility();
/// Returns the ResourceTracker for this instance.
template <typename Func> Error withResourceKeyDo(Func &&F) const;
/// Returns the target JITDylib that these symbols are being materialized
/// into.
JITDylib &getTargetJITDylib() const { return JD; }
/// Returns the ExecutionSession for this instance.
ExecutionSession &getExecutionSession() const;
/// Returns the symbol flags map for this responsibility instance.
/// Note: The returned flags may have transient flags (Lazy, Materializing)
/// set. These should be stripped with JITSymbolFlags::stripTransientFlags
/// before using.
const SymbolFlagsMap &getSymbols() const { return SymbolFlags; }
/// Returns the initialization pseudo-symbol, if any. This symbol will also
/// be present in the SymbolFlagsMap for this MaterializationResponsibility
/// object.
const SymbolStringPtr &getInitializerSymbol() const { return InitSymbol; }
/// Returns the names of any symbols covered by this
/// MaterializationResponsibility object that have queries pending. This
/// information can be used to return responsibility for unrequested symbols
/// back to the JITDylib via the delegate method.
SymbolNameSet getRequestedSymbols() const;
/// Notifies the target JITDylib that the given symbols have been resolved.
/// This will update the given symbols' addresses in the JITDylib, and notify
/// any pending queries on the given symbols of their resolution. The given
/// symbols must be ones covered by this MaterializationResponsibility
/// instance. Individual calls to this method may resolve a subset of the
/// symbols, but all symbols must have been resolved prior to calling emit.
///
/// This method will return an error if any symbols being resolved have been
/// moved to the error state due to the failure of a dependency. If this
/// method returns an error then clients should log it and call
/// failMaterialize. If no dependencies have been registered for the
/// symbols covered by this MaterializationResponsibiility then this method
/// is guaranteed to return Error::success() and can be wrapped with cantFail.
Error notifyResolved(const SymbolMap &Symbols);
/// Notifies the target JITDylib (and any pending queries on that JITDylib)
/// that all symbols covered by this MaterializationResponsibility instance
/// have been emitted.
///
/// This method will return an error if any symbols being resolved have been
/// moved to the error state due to the failure of a dependency. If this
/// method returns an error then clients should log it and call
/// failMaterialize. If no dependencies have been registered for the
/// symbols covered by this MaterializationResponsibiility then this method
/// is guaranteed to return Error::success() and can be wrapped with cantFail.
Error notifyEmitted();
/// Attempt to claim responsibility for new definitions. This method can be
/// used to claim responsibility for symbols that are added to a
/// materialization unit during the compilation process (e.g. literal pool
/// symbols). Symbol linkage rules are the same as for symbols that are
/// defined up front: duplicate strong definitions will result in errors.
/// Duplicate weak definitions will be discarded (in which case they will
/// not be added to this responsibility instance).
///
/// This method can be used by materialization units that want to add
/// additional symbols at materialization time (e.g. stubs, compile
/// callbacks, metadata).
Error defineMaterializing(SymbolFlagsMap SymbolFlags);
/// Define the given symbols as non-existent, removing it from the symbol
/// table and notifying any pending queries. Queries that lookup up the
/// symbol using the SymbolLookupFlags::WeaklyReferencedSymbol flag will
/// behave as if the symbol had not been matched in the first place. Queries
/// that required this symbol will fail with a missing symbol definition
/// error.
///
/// This method is intended to support cleanup of special symbols like
/// initializer symbols: Queries using
/// SymbolLookupFlags::WeaklyReferencedSymbol can be used to trigger their
/// emission, and this method can be used to remove them from the JITDylib
/// once materialization is complete.
void defineNonExistent(ArrayRef<SymbolStringPtr> Symbols);
/// Notify all not-yet-emitted covered by this MaterializationResponsibility
/// instance that an error has occurred.
/// This will remove all symbols covered by this MaterializationResponsibilty
/// from the target JITDylib, and send an error to any queries waiting on
/// these symbols.
void failMaterialization();
/// Transfers responsibility to the given MaterializationUnit for all
/// symbols defined by that MaterializationUnit. This allows
/// materializers to break up work based on run-time information (e.g.
/// by introspecting which symbols have actually been looked up and
/// materializing only those).
Error replace(std::unique_ptr<MaterializationUnit> MU);
/// Delegates responsibility for the given symbols to the returned
/// materialization responsibility. Useful for breaking up work between
/// threads, or different kinds of materialization processes.
Expected<std::unique_ptr<MaterializationResponsibility>>
delegate(const SymbolNameSet &Symbols);
void addDependencies(const SymbolStringPtr &Name,
const SymbolDependenceMap &Dependencies);
/// Add dependencies that apply to all symbols covered by this instance.
void addDependenciesForAll(const SymbolDependenceMap &Dependencies);
private:
/// Create a MaterializationResponsibility for the given JITDylib and
/// initial symbols.
MaterializationResponsibility(ResourceTrackerSP RT,
SymbolFlagsMap SymbolFlags,
SymbolStringPtr InitSymbol)
: JD(RT->getJITDylib()), RT(std::move(RT)),
SymbolFlags(std::move(SymbolFlags)), InitSymbol(std::move(InitSymbol)) {
assert(!this->SymbolFlags.empty() && "Materializing nothing?");
}
JITDylib &JD;
ResourceTrackerSP RT;
SymbolFlagsMap SymbolFlags;
SymbolStringPtr InitSymbol;
};
/// A MaterializationUnit represents a set of symbol definitions that can
/// be materialized as a group, or individually discarded (when
/// overriding definitions are encountered).
///
/// MaterializationUnits are used when providing lazy definitions of symbols to
/// JITDylibs. The JITDylib will call materialize when the address of a symbol
/// is requested via the lookup method. The JITDylib will call discard if a
/// stronger definition is added or already present.
class MaterializationUnit {
friend class ExecutionSession;
friend class JITDylib;
public:
static char ID;
struct Interface {
Interface() = default;
Interface(SymbolFlagsMap InitalSymbolFlags, SymbolStringPtr InitSymbol)
: SymbolFlags(std::move(InitalSymbolFlags)),
InitSymbol(std::move(InitSymbol)) {
assert((!this->InitSymbol || this->SymbolFlags.count(this->InitSymbol)) &&
"If set, InitSymbol should appear in InitialSymbolFlags map");
}
SymbolFlagsMap SymbolFlags;
SymbolStringPtr InitSymbol;
};
MaterializationUnit(Interface I)
: SymbolFlags(std::move(I.SymbolFlags)),
InitSymbol(std::move(I.InitSymbol)) {}
virtual ~MaterializationUnit() = default;
/// Return the name of this materialization unit. Useful for debugging
/// output.
virtual StringRef getName() const = 0;
/// Return the set of symbols that this source provides.
const SymbolFlagsMap &getSymbols() const { return SymbolFlags; }
/// Returns the initialization symbol for this MaterializationUnit (if any).
const SymbolStringPtr &getInitializerSymbol() const { return InitSymbol; }
/// Implementations of this method should materialize all symbols
/// in the materialzation unit, except for those that have been
/// previously discarded.
virtual void
materialize(std::unique_ptr<MaterializationResponsibility> R) = 0;
/// Called by JITDylibs to notify MaterializationUnits that the given symbol
/// has been overridden.
void doDiscard(const JITDylib &JD, const SymbolStringPtr &Name) {
SymbolFlags.erase(Name);
discard(JD, std::move(Name));
}
protected:
SymbolFlagsMap SymbolFlags;
SymbolStringPtr InitSymbol;
private:
virtual void anchor();
/// Implementations of this method should discard the given symbol
/// from the source (e.g. if the source is an LLVM IR Module and the
/// symbol is a function, delete the function body or mark it available
/// externally).
virtual void discard(const JITDylib &JD, const SymbolStringPtr &Name) = 0;
};
/// A MaterializationUnit implementation for pre-existing absolute symbols.
///
/// All symbols will be resolved and marked ready as soon as the unit is
/// materialized.
class AbsoluteSymbolsMaterializationUnit : public MaterializationUnit {
public:
AbsoluteSymbolsMaterializationUnit(SymbolMap Symbols);
StringRef getName() const override;
private:
void materialize(std::unique_ptr<MaterializationResponsibility> R) override;
void discard(const JITDylib &JD, const SymbolStringPtr &Name) override;
static MaterializationUnit::Interface extractFlags(const SymbolMap &Symbols);
SymbolMap Symbols;
};
/// Create an AbsoluteSymbolsMaterializationUnit with the given symbols.
/// Useful for inserting absolute symbols into a JITDylib. E.g.:
/// \code{.cpp}
/// JITDylib &JD = ...;
/// SymbolStringPtr Foo = ...;
/// JITEvaluatedSymbol FooSym = ...;
/// if (auto Err = JD.define(absoluteSymbols({{Foo, FooSym}})))
/// return Err;
/// \endcode
///
inline std::unique_ptr<AbsoluteSymbolsMaterializationUnit>
absoluteSymbols(SymbolMap Symbols) {
return std::make_unique<AbsoluteSymbolsMaterializationUnit>(
std::move(Symbols));
}
/// A materialization unit for symbol aliases. Allows existing symbols to be
/// aliased with alternate flags.
class ReExportsMaterializationUnit : public MaterializationUnit {
public:
/// SourceJD is allowed to be nullptr, in which case the source JITDylib is
/// taken to be whatever JITDylib these definitions are materialized in (and
/// MatchNonExported has no effect). This is useful for defining aliases
/// within a JITDylib.
///
/// Note: Care must be taken that no sets of aliases form a cycle, as such
/// a cycle will result in a deadlock when any symbol in the cycle is
/// resolved.
ReExportsMaterializationUnit(JITDylib *SourceJD,
JITDylibLookupFlags SourceJDLookupFlags,
SymbolAliasMap Aliases);
StringRef getName() const override;
private:
void materialize(std::unique_ptr<MaterializationResponsibility> R) override;
void discard(const JITDylib &JD, const SymbolStringPtr &Name) override;
static MaterializationUnit::Interface
extractFlags(const SymbolAliasMap &Aliases);
JITDylib *SourceJD = nullptr;
JITDylibLookupFlags SourceJDLookupFlags;
SymbolAliasMap Aliases;
};
/// Create a ReExportsMaterializationUnit with the given aliases.
/// Useful for defining symbol aliases.: E.g., given a JITDylib JD containing
/// symbols "foo" and "bar", we can define aliases "baz" (for "foo") and "qux"
/// (for "bar") with: \code{.cpp}
/// SymbolStringPtr Baz = ...;
/// SymbolStringPtr Qux = ...;
/// if (auto Err = JD.define(symbolAliases({
/// {Baz, { Foo, JITSymbolFlags::Exported }},
/// {Qux, { Bar, JITSymbolFlags::Weak }}}))
/// return Err;
/// \endcode
inline std::unique_ptr<ReExportsMaterializationUnit>
symbolAliases(SymbolAliasMap Aliases) {
return std::make_unique<ReExportsMaterializationUnit>(
nullptr, JITDylibLookupFlags::MatchAllSymbols, std::move(Aliases));
}
/// Create a materialization unit for re-exporting symbols from another JITDylib
/// with alternative names/flags.
/// SourceJD will be searched using the given JITDylibLookupFlags.
inline std::unique_ptr<ReExportsMaterializationUnit>
reexports(JITDylib &SourceJD, SymbolAliasMap Aliases,
JITDylibLookupFlags SourceJDLookupFlags =
JITDylibLookupFlags::MatchExportedSymbolsOnly) {
return std::make_unique<ReExportsMaterializationUnit>(
&SourceJD, SourceJDLookupFlags, std::move(Aliases));
}
/// Build a SymbolAliasMap for the common case where you want to re-export
/// symbols from another JITDylib with the same linkage/flags.
Expected<SymbolAliasMap>
buildSimpleReexportsAliasMap(JITDylib &SourceJD, const SymbolNameSet &Symbols);
/// Represents the state that a symbol has reached during materialization.
enum class SymbolState : uint8_t {
Invalid, /// No symbol should be in this state.
NeverSearched, /// Added to the symbol table, never queried.
Materializing, /// Queried, materialization begun.
Resolved, /// Assigned address, still materializing.
Emitted, /// Emitted to memory, but waiting on transitive dependencies.
Ready = 0x3f /// Ready and safe for clients to access.
};
/// A symbol query that returns results via a callback when results are
/// ready.
///
/// makes a callback when all symbols are available.
class AsynchronousSymbolQuery {
friend class ExecutionSession;
friend class InProgressFullLookupState;
friend class JITDylib;
friend class JITSymbolResolverAdapter;
friend class MaterializationResponsibility;
public:
/// Create a query for the given symbols. The NotifyComplete
/// callback will be called once all queried symbols reach the given
/// minimum state.
AsynchronousSymbolQuery(const SymbolLookupSet &Symbols,
SymbolState RequiredState,
SymbolsResolvedCallback NotifyComplete);
/// Notify the query that a requested symbol has reached the required state.
void notifySymbolMetRequiredState(const SymbolStringPtr &Name,
JITEvaluatedSymbol Sym);
/// Returns true if all symbols covered by this query have been
/// resolved.
bool isComplete() const { return OutstandingSymbolsCount == 0; }
private:
void handleComplete(ExecutionSession &ES);
SymbolState getRequiredState() { return RequiredState; }
void addQueryDependence(JITDylib &JD, SymbolStringPtr Name);
void removeQueryDependence(JITDylib &JD, const SymbolStringPtr &Name);
void dropSymbol(const SymbolStringPtr &Name);
void handleFailed(Error Err);
void detach();
SymbolsResolvedCallback NotifyComplete;
SymbolDependenceMap QueryRegistrations;
SymbolMap ResolvedSymbols;
size_t OutstandingSymbolsCount;
SymbolState RequiredState;
};
/// Wraps state for a lookup-in-progress.
/// DefinitionGenerators can optionally take ownership of a LookupState object
/// to suspend a lookup-in-progress while they search for definitions.
class LookupState {
friend class OrcV2CAPIHelper;
friend class ExecutionSession;
public:
LookupState();
LookupState(LookupState &&);
LookupState &operator=(LookupState &&);
~LookupState();
/// Continue the lookup. This can be called by DefinitionGenerators
/// to re-start a captured query-application operation.
void continueLookup(Error Err);
private:
LookupState(std::unique_ptr<InProgressLookupState> IPLS);
// For C API.
void reset(InProgressLookupState *IPLS);
std::unique_ptr<InProgressLookupState> IPLS;
};
/// Definition generators can be attached to JITDylibs to generate new
/// definitions for otherwise unresolved symbols during lookup.
class DefinitionGenerator {
public:
virtual ~DefinitionGenerator();
/// DefinitionGenerators should override this method to insert new
/// definitions into the parent JITDylib. K specifies the kind of this
/// lookup. JD specifies the target JITDylib being searched, and
/// JDLookupFlags specifies whether the search should match against
/// hidden symbols. Finally, Symbols describes the set of unresolved
/// symbols and their associated lookup flags.
virtual Error tryToGenerate(LookupState &LS, LookupKind K, JITDylib &JD,
JITDylibLookupFlags JDLookupFlags,
const SymbolLookupSet &LookupSet) = 0;
};
/// Represents a JIT'd dynamic library.
///
/// This class aims to mimic the behavior of a regular dylib or shared object,
/// but without requiring the contained program representations to be compiled
/// up-front. The JITDylib's content is defined by adding MaterializationUnits,
/// and contained MaterializationUnits will typically rely on the JITDylib's
/// links-against order to resolve external references (similar to a regular
/// dylib).
///
/// The JITDylib object is a thin wrapper that references state held by the
/// ExecutionSession. JITDylibs can be removed, clearing this underlying state
/// and leaving the JITDylib object in a defunct state. In this state the
/// JITDylib's name is guaranteed to remain accessible. If the ExecutionSession
/// is still alive then other operations are callable but will return an Error
/// or null result (depending on the API). It is illegal to call any operation
/// other than getName on a JITDylib after the ExecutionSession has been torn
/// down.
///
/// JITDylibs cannot be moved or copied. Their address is stable, and useful as
/// a key in some JIT data structures.
class JITDylib : public ThreadSafeRefCountedBase<JITDylib>,
public jitlink::JITLinkDylib {
friend class AsynchronousSymbolQuery;
friend class ExecutionSession;
friend class Platform;
friend class MaterializationResponsibility;
public:
JITDylib(const JITDylib &) = delete;
JITDylib &operator=(const JITDylib &) = delete;
JITDylib(JITDylib &&) = delete;
JITDylib &operator=(JITDylib &&) = delete;
~JITDylib();
/// Get a reference to the ExecutionSession for this JITDylib.
///
/// It is legal to call this method on a defunct JITDylib, however the result
/// will only usable if the ExecutionSession is still alive. If this JITDylib
/// is held by an error that may have torn down the JIT then the result
/// should not be used.
ExecutionSession &getExecutionSession() const { return ES; }
/// Dump current JITDylib state to OS.
///
/// It is legal to call this method on a defunct JITDylib.
void dump(raw_ostream &OS);
/// Calls remove on all trackers currently associated with this JITDylib.
/// Does not run static deinits.
///
/// Note that removal happens outside the session lock, so new code may be
/// added concurrently while the clear is underway, and the newly added
/// code will *not* be cleared. Adding new code concurrently with a clear
/// is usually a bug and should be avoided.
///
/// It is illegal to call this method on a defunct JITDylib and the client
/// is responsible for ensuring that they do not do so.
Error clear();
/// Get the default resource tracker for this JITDylib.
///
/// It is illegal to call this method on a defunct JITDylib and the client
/// is responsible for ensuring that they do not do so.
ResourceTrackerSP getDefaultResourceTracker();
/// Create a resource tracker for this JITDylib.
///
/// It is illegal to call this method on a defunct JITDylib and the client
/// is responsible for ensuring that they do not do so.
ResourceTrackerSP createResourceTracker();
/// Adds a definition generator to this JITDylib and returns a referenece to
/// it.
///
/// When JITDylibs are searched during lookup, if no existing definition of
/// a symbol is found, then any generators that have been added are run (in
/// the order that they were added) to potentially generate a definition.
///
/// It is illegal to call this method on a defunct JITDylib and the client
/// is responsible for ensuring that they do not do so.
template <typename GeneratorT>
GeneratorT &addGenerator(std::unique_ptr<GeneratorT> DefGenerator);
/// Remove a definition generator from this JITDylib.
///
/// The given generator must exist in this JITDylib's generators list (i.e.
/// have been added and not yet removed).
///
/// It is illegal to call this method on a defunct JITDylib and the client
/// is responsible for ensuring that they do not do so.
void removeGenerator(DefinitionGenerator &G);
/// Set the link order to be used when fixing up definitions in JITDylib.
/// This will replace the previous link order, and apply to any symbol
/// resolutions made for definitions in this JITDylib after the call to
/// setLinkOrder (even if the definition itself was added before the
/// call).
///
/// If LinkAgainstThisJITDylibFirst is true (the default) then this JITDylib
/// will add itself to the beginning of the LinkOrder (Clients should not
/// put this JITDylib in the list in this case, to avoid redundant lookups).
///
/// If LinkAgainstThisJITDylibFirst is false then the link order will be used
/// as-is. The primary motivation for this feature is to support deliberate
/// shadowing of symbols in this JITDylib by a facade JITDylib. For example,
/// the facade may resolve function names to stubs, and the stubs may compile
/// lazily by looking up symbols in this dylib. Adding the facade dylib
/// as the first in the link order (instead of this dylib) ensures that
/// definitions within this dylib resolve to the lazy-compiling stubs,
/// rather than immediately materializing the definitions in this dylib.
///
/// It is illegal to call this method on a defunct JITDylib and the client
/// is responsible for ensuring that they do not do so.
void setLinkOrder(JITDylibSearchOrder NewSearchOrder,
bool LinkAgainstThisJITDylibFirst = true);
/// Add the given JITDylib to the link order for definitions in this
/// JITDylib.
///
/// It is illegal to call this method on a defunct JITDylib and the client
/// is responsible for ensuring that they do not do so.
void addToLinkOrder(JITDylib &JD,
JITDylibLookupFlags JDLookupFlags =
JITDylibLookupFlags::MatchExportedSymbolsOnly);
/// Replace OldJD with NewJD in the link order if OldJD is present.
/// Otherwise this operation is a no-op.
///
/// It is illegal to call this method on a defunct JITDylib and the client
/// is responsible for ensuring that they do not do so.
void replaceInLinkOrder(JITDylib &OldJD, JITDylib &NewJD,
JITDylibLookupFlags JDLookupFlags =
JITDylibLookupFlags::MatchExportedSymbolsOnly);
/// Remove the given JITDylib from the link order for this JITDylib if it is
/// present. Otherwise this operation is a no-op.
///
/// It is illegal to call this method on a defunct JITDylib and the client
/// is responsible for ensuring that they do not do so.
void removeFromLinkOrder(JITDylib &JD);
/// Do something with the link order (run under the session lock).
///
/// It is illegal to call this method on a defunct JITDylib and the client
/// is responsible for ensuring that they do not do so.
template <typename Func>
auto withLinkOrderDo(Func &&F)
-> decltype(F(std::declval<const JITDylibSearchOrder &>()));
/// Define all symbols provided by the materialization unit to be part of this
/// JITDylib.
///
/// If RT is not specified then the default resource tracker will be used.
///
/// This overload always takes ownership of the MaterializationUnit. If any
/// errors occur, the MaterializationUnit consumed.
///
/// It is illegal to call this method on a defunct JITDylib and the client
/// is responsible for ensuring that they do not do so.
template <typename MaterializationUnitType>
Error define(std::unique_ptr<MaterializationUnitType> &&MU,
ResourceTrackerSP RT = nullptr);
/// Define all symbols provided by the materialization unit to be part of this
/// JITDylib.
///
/// This overload only takes ownership of the MaterializationUnit no error is
/// generated. If an error occurs, ownership remains with the caller. This
/// may allow the caller to modify the MaterializationUnit to correct the
/// issue, then re-call define.
///
/// It is illegal to call this method on a defunct JITDylib and the client
/// is responsible for ensuring that they do not do so.
template <typename MaterializationUnitType>
Error define(std::unique_ptr<MaterializationUnitType> &MU,
ResourceTrackerSP RT = nullptr);
/// Tries to remove the given symbols.
///
/// If any symbols are not defined in this JITDylib this method will return
/// a SymbolsNotFound error covering the missing symbols.
///
/// If all symbols are found but some symbols are in the process of being
/// materialized this method will return a SymbolsCouldNotBeRemoved error.
///
/// On success, all symbols are removed. On failure, the JITDylib state is
/// left unmodified (no symbols are removed).
///
/// It is illegal to call this method on a defunct JITDylib and the client
/// is responsible for ensuring that they do not do so.
Error remove(const SymbolNameSet &Names);
/// Returns the given JITDylibs and all of their transitive dependencies in
/// DFS order (based on linkage relationships). Each JITDylib will appear
/// only once.
///
/// If any JITDylib in the order is defunct then this method will return an
/// error, otherwise returns the order.
static Expected<std::vector<JITDylibSP>>
getDFSLinkOrder(ArrayRef<JITDylibSP> JDs);
/// Returns the given JITDylibs and all of their transitive dependencies in
/// reverse DFS order (based on linkage relationships). Each JITDylib will
/// appear only once.
///
/// If any JITDylib in the order is defunct then this method will return an
/// error, otherwise returns the order.
static Expected<std::vector<JITDylibSP>>
getReverseDFSLinkOrder(ArrayRef<JITDylibSP> JDs);
/// Return this JITDylib and its transitive dependencies in DFS order
/// based on linkage relationships.
///
/// If any JITDylib in the order is defunct then this method will return an
/// error, otherwise returns the order.
Expected<std::vector<JITDylibSP>> getDFSLinkOrder();
/// Rteurn this JITDylib and its transitive dependencies in reverse DFS order
/// based on linkage relationships.
///
/// If any JITDylib in the order is defunct then this method will return an
/// error, otherwise returns the order.
Expected<std::vector<JITDylibSP>> getReverseDFSLinkOrder();
private:
using AsynchronousSymbolQuerySet =
std::set<std::shared_ptr<AsynchronousSymbolQuery>>;
using AsynchronousSymbolQueryList =
std::vector<std::shared_ptr<AsynchronousSymbolQuery>>;
struct UnmaterializedInfo {
UnmaterializedInfo(std::unique_ptr<MaterializationUnit> MU,
ResourceTracker *RT)
: MU(std::move(MU)), RT(RT) {}
std::unique_ptr<MaterializationUnit> MU;
ResourceTracker *RT;
};
using UnmaterializedInfosMap =
DenseMap<SymbolStringPtr, std::shared_ptr<UnmaterializedInfo>>;
using UnmaterializedInfosList =
std::vector<std::shared_ptr<UnmaterializedInfo>>;
struct MaterializingInfo {
SymbolDependenceMap Dependants;
SymbolDependenceMap UnemittedDependencies;
void addQuery(std::shared_ptr<AsynchronousSymbolQuery> Q);
void removeQuery(const AsynchronousSymbolQuery &Q);
AsynchronousSymbolQueryList takeQueriesMeeting(SymbolState RequiredState);
AsynchronousSymbolQueryList takeAllPendingQueries() {
return std::move(PendingQueries);
}
bool hasQueriesPending() const { return !PendingQueries.empty(); }
const AsynchronousSymbolQueryList &pendingQueries() const {
return PendingQueries;
}
private:
AsynchronousSymbolQueryList PendingQueries;
};
using MaterializingInfosMap = DenseMap<SymbolStringPtr, MaterializingInfo>;
class SymbolTableEntry {
public:
SymbolTableEntry() = default;
SymbolTableEntry(JITSymbolFlags Flags)
: Flags(Flags), State(static_cast<uint8_t>(SymbolState::NeverSearched)),
MaterializerAttached(false), PendingRemoval(false) {}
JITTargetAddress getAddress() const { return Addr; }
JITSymbolFlags getFlags() const { return Flags; }
SymbolState getState() const { return static_cast<SymbolState>(State); }
bool hasMaterializerAttached() const { return MaterializerAttached; }
bool isPendingRemoval() const { return PendingRemoval; }
void setAddress(JITTargetAddress Addr) { this->Addr = Addr; }
void setFlags(JITSymbolFlags Flags) { this->Flags = Flags; }
void setState(SymbolState State) {
assert(static_cast<uint8_t>(State) < (1 << 6) &&
"State does not fit in bitfield");
this->State = static_cast<uint8_t>(State);
}
void setMaterializerAttached(bool MaterializerAttached) {
this->MaterializerAttached = MaterializerAttached;
}
void setPendingRemoval(bool PendingRemoval) {
this->PendingRemoval = PendingRemoval;
}
JITEvaluatedSymbol getSymbol() const {
return JITEvaluatedSymbol(Addr, Flags);
}
private:
JITTargetAddress Addr = 0;
JITSymbolFlags Flags;
uint8_t State : 6;
uint8_t MaterializerAttached : 1;
uint8_t PendingRemoval : 1;
};
using SymbolTable = DenseMap<SymbolStringPtr, SymbolTableEntry>;
JITDylib(ExecutionSession &ES, std::string Name);
std::pair<AsynchronousSymbolQuerySet, std::shared_ptr<SymbolDependenceMap>>
removeTracker(ResourceTracker &RT);
void transferTracker(ResourceTracker &DstRT, ResourceTracker &SrcRT);
Error defineImpl(MaterializationUnit &MU);
void installMaterializationUnit(std::unique_ptr<MaterializationUnit> MU,
ResourceTracker &RT);
void detachQueryHelper(AsynchronousSymbolQuery &Q,
const SymbolNameSet &QuerySymbols);
void transferEmittedNodeDependencies(MaterializingInfo &DependantMI,
const SymbolStringPtr &DependantName,
MaterializingInfo &EmittedMI);
Expected<SymbolFlagsMap> defineMaterializing(SymbolFlagsMap SymbolFlags);
Error replace(MaterializationResponsibility &FromMR,
std::unique_ptr<MaterializationUnit> MU);
Expected<std::unique_ptr<MaterializationResponsibility>>
delegate(MaterializationResponsibility &FromMR, SymbolFlagsMap SymbolFlags,
SymbolStringPtr InitSymbol);
SymbolNameSet getRequestedSymbols(const SymbolFlagsMap &SymbolFlags) const;
void addDependencies(const SymbolStringPtr &Name,
const SymbolDependenceMap &Dependants);
Error resolve(MaterializationResponsibility &MR, const SymbolMap &Resolved);
Error emit(MaterializationResponsibility &MR, const SymbolFlagsMap &Emitted);
void unlinkMaterializationResponsibility(MaterializationResponsibility &MR);
using FailedSymbolsWorklist =
std::vector<std::pair<JITDylib *, SymbolStringPtr>>;
static std::pair<AsynchronousSymbolQuerySet,
std::shared_ptr<SymbolDependenceMap>>
failSymbols(FailedSymbolsWorklist);
ExecutionSession &ES;
enum { Open, Closing, Closed } State = Open;
std::mutex GeneratorsMutex;
SymbolTable Symbols;
UnmaterializedInfosMap UnmaterializedInfos;
MaterializingInfosMap MaterializingInfos;
std::vector<std::shared_ptr<DefinitionGenerator>> DefGenerators;
JITDylibSearchOrder LinkOrder;
ResourceTrackerSP DefaultTracker;
// Map trackers to sets of symbols tracked.
DenseMap<ResourceTracker *, SymbolNameVector> TrackerSymbols;
DenseMap<ResourceTracker *, DenseSet<MaterializationResponsibility *>>
TrackerMRs;
};
/// Platforms set up standard symbols and mediate interactions between dynamic
/// initializers (e.g. C++ static constructors) and ExecutionSession state.
/// Note that Platforms do not automatically run initializers: clients are still
/// responsible for doing this.
class Platform {
public:
virtual ~Platform();
/// This method will be called outside the session lock each time a JITDylib
/// is created (unless it is created with EmptyJITDylib set) to allow the
/// Platform to install any JITDylib specific standard symbols (e.g
/// __dso_handle).
virtual Error setupJITDylib(JITDylib &JD) = 0;
/// This method will be called outside the session lock each time a JITDylib
/// is removed to allow the Platform to remove any JITDylib-specific data.
virtual Error teardownJITDylib(JITDylib &JD) = 0;
/// This method will be called under the ExecutionSession lock each time a
/// MaterializationUnit is added to a JITDylib.
virtual Error notifyAdding(ResourceTracker &RT,
const MaterializationUnit &MU) = 0;
/// This method will be called under the ExecutionSession lock when a
/// ResourceTracker is removed.
virtual Error notifyRemoving(ResourceTracker &RT) = 0;
/// A utility function for looking up initializer symbols. Performs a blocking
/// lookup for the given symbols in each of the given JITDylibs.
///
/// Note: This function is deprecated and will be removed in the near future.
static Expected<DenseMap<JITDylib *, SymbolMap>>
lookupInitSymbols(ExecutionSession &ES,
const DenseMap<JITDylib *, SymbolLookupSet> &InitSyms);
/// Performs an async lookup for the given symbols in each of the given
/// JITDylibs, calling the given handler once all lookups have completed.
static void
lookupInitSymbolsAsync(unique_function<void(Error)> OnComplete,
ExecutionSession &ES,
const DenseMap<JITDylib *, SymbolLookupSet> &InitSyms);
};
/// A materialization task.
class MaterializationTask : public RTTIExtends<MaterializationTask, Task> {
public:
static char ID;
MaterializationTask(std::unique_ptr<MaterializationUnit> MU,
std::unique_ptr<MaterializationResponsibility> MR)
: MU(std::move(MU)), MR(std::move(MR)) {}
void printDescription(raw_ostream &OS) override;
void run() override;
private:
std::unique_ptr<MaterializationUnit> MU;
std::unique_ptr<MaterializationResponsibility> MR;
};
/// An ExecutionSession represents a running JIT program.
class ExecutionSession {
friend class InProgressLookupFlagsState;
friend class InProgressFullLookupState;
friend class JITDylib;
friend class LookupState;
friend class MaterializationResponsibility;
friend class ResourceTracker;
public:
/// For reporting errors.
using ErrorReporter = std::function<void(Error)>;
/// Send a result to the remote.
using SendResultFunction = unique_function<void(shared::WrapperFunctionResult)>;
/// For dispatching ORC tasks (typically materialization tasks).
using DispatchTaskFunction = unique_function<void(std::unique_ptr<Task> T)>;
/// An asynchronous wrapper-function callable from the executor via
/// jit-dispatch.
using JITDispatchHandlerFunction = unique_function<void(
SendResultFunction SendResult,
const char *ArgData, size_t ArgSize)>;
/// A map associating tag names with asynchronous wrapper function
/// implementations in the JIT.
using JITDispatchHandlerAssociationMap =
DenseMap<SymbolStringPtr, JITDispatchHandlerFunction>;
/// Construct an ExecutionSession with the given ExecutorProcessControl
/// object.
ExecutionSession(std::unique_ptr<ExecutorProcessControl> EPC);
/// Destroy an ExecutionSession. Verifies that endSession was called prior to
/// destruction.
~ExecutionSession();
/// End the session. Closes all JITDylibs and disconnects from the
/// executor. Clients must call this method before destroying the session.
Error endSession();
/// Get the ExecutorProcessControl object associated with this
/// ExecutionSession.
ExecutorProcessControl &getExecutorProcessControl() { return *EPC; }
/// Get the SymbolStringPool for this instance.
std::shared_ptr<SymbolStringPool> getSymbolStringPool() {
return EPC->getSymbolStringPool();
}
/// Add a symbol name to the SymbolStringPool and return a pointer to it.
SymbolStringPtr intern(StringRef SymName) { return EPC->intern(SymName); }
/// Set the Platform for this ExecutionSession.
void setPlatform(std::unique_ptr<Platform> P) { this->P = std::move(P); }
/// Get the Platform for this session.
/// Will return null if no Platform has been set for this ExecutionSession.
Platform *getPlatform() { return P.get(); }
/// Run the given lambda with the session mutex locked.
template <typename Func> decltype(auto) runSessionLocked(Func &&F) {
std::lock_guard<std::recursive_mutex> Lock(SessionMutex);
return F();
}
/// Register the given ResourceManager with this ExecutionSession.
/// Managers will be notified of events in reverse order of registration.
void registerResourceManager(ResourceManager &RM);
/// Deregister the given ResourceManager with this ExecutionSession.
/// Manager must have been previously registered.
void deregisterResourceManager(ResourceManager &RM);
/// Return a pointer to the "name" JITDylib.
/// Ownership of JITDylib remains within Execution Session
JITDylib *getJITDylibByName(StringRef Name);
/// Add a new bare JITDylib to this ExecutionSession.
///
/// The JITDylib Name is required to be unique. Clients should verify that
/// names are not being re-used (E.g. by calling getJITDylibByName) if names
/// are based on user input.
///
/// This call does not install any library code or symbols into the newly
/// created JITDylib. The client is responsible for all configuration.
JITDylib &createBareJITDylib(std::string Name);
/// Add a new JITDylib to this ExecutionSession.
///
/// The JITDylib Name is required to be unique. Clients should verify that
/// names are not being re-used (e.g. by calling getJITDylibByName) if names
/// are based on user input.
///
/// If a Platform is attached then Platform::setupJITDylib will be called to
/// install standard platform symbols (e.g. standard library interposes).
/// If no Platform is attached this call is equivalent to createBareJITDylib.
Expected<JITDylib &> createJITDylib(std::string Name);
/// Closes the given JITDylib.
///
/// This method clears all resources held for the JITDylib, puts it in the
/// closed state, and clears all references held by the ExecutionSession and
/// other JITDylibs. No further code can be added to the JITDylib, and the
/// object will be freed once any remaining JITDylibSPs to it are destroyed.
///
/// This method does *not* run static destructors.
///
/// This method can only be called once for each JITDylib.
Error removeJITDylib(JITDylib &JD);
/// Set the error reporter function.
ExecutionSession &setErrorReporter(ErrorReporter ReportError) {
this->ReportError = std::move(ReportError);
return *this;
}
/// Report a error for this execution session.
///
/// Unhandled errors can be sent here to log them.
void reportError(Error Err) { ReportError(std::move(Err)); }
/// Set the task dispatch function.
ExecutionSession &setDispatchTask(DispatchTaskFunction DispatchTask) {
this->DispatchTask = std::move(DispatchTask);
return *this;
}
/// Search the given JITDylibs to find the flags associated with each of the
/// given symbols.
void lookupFlags(LookupKind K, JITDylibSearchOrder SearchOrder,
SymbolLookupSet Symbols,
unique_function<void(Expected<SymbolFlagsMap>)> OnComplete);
/// Blocking version of lookupFlags.
Expected<SymbolFlagsMap> lookupFlags(LookupKind K,
JITDylibSearchOrder SearchOrder,
SymbolLookupSet Symbols);
/// Search the given JITDylibs for the given symbols.
///
/// SearchOrder lists the JITDylibs to search. For each dylib, the associated
/// boolean indicates whether the search should match against non-exported
/// (hidden visibility) symbols in that dylib (true means match against
/// non-exported symbols, false means do not match).
///
/// The NotifyComplete callback will be called once all requested symbols
/// reach the required state.
///
/// If all symbols are found, the RegisterDependencies function will be called
/// while the session lock is held. This gives clients a chance to register
/// dependencies for on the queried symbols for any symbols they are
/// materializing (if a MaterializationResponsibility instance is present,
/// this can be implemented by calling
/// MaterializationResponsibility::addDependencies). If there are no
/// dependenant symbols for this query (e.g. it is being made by a top level
/// client to get an address to call) then the value NoDependenciesToRegister
/// can be used.
void lookup(LookupKind K, const JITDylibSearchOrder &SearchOrder,
SymbolLookupSet Symbols, SymbolState RequiredState,
SymbolsResolvedCallback NotifyComplete,
RegisterDependenciesFunction RegisterDependencies);
/// Blocking version of lookup above. Returns the resolved symbol map.
/// If WaitUntilReady is true (the default), will not return until all
/// requested symbols are ready (or an error occurs). If WaitUntilReady is
/// false, will return as soon as all requested symbols are resolved,
/// or an error occurs. If WaitUntilReady is false and an error occurs
/// after resolution, the function will return a success value, but the
/// error will be reported via reportErrors.
Expected<SymbolMap> lookup(const JITDylibSearchOrder &SearchOrder,
SymbolLookupSet Symbols,
LookupKind K = LookupKind::Static,
SymbolState RequiredState = SymbolState::Ready,
RegisterDependenciesFunction RegisterDependencies =
NoDependenciesToRegister);
/// Convenience version of blocking lookup.
/// Searches each of the JITDylibs in the search order in turn for the given
/// symbol.
Expected<JITEvaluatedSymbol>
lookup(const JITDylibSearchOrder &SearchOrder, SymbolStringPtr Symbol,
SymbolState RequiredState = SymbolState::Ready);
/// Convenience version of blocking lookup.
/// Searches each of the JITDylibs in the search order in turn for the given
/// symbol. The search will not find non-exported symbols.
Expected<JITEvaluatedSymbol>
lookup(ArrayRef<JITDylib *> SearchOrder, SymbolStringPtr Symbol,
SymbolState RequiredState = SymbolState::Ready);
/// Convenience version of blocking lookup.
/// Searches each of the JITDylibs in the search order in turn for the given
/// symbol. The search will not find non-exported symbols.
Expected<JITEvaluatedSymbol>
lookup(ArrayRef<JITDylib *> SearchOrder, StringRef Symbol,
SymbolState RequiredState = SymbolState::Ready);
/// Materialize the given unit.
void dispatchTask(std::unique_ptr<Task> T) {
assert(T && "T must be non-null");
DEBUG_WITH_TYPE("orc", dumpDispatchInfo(*T));
DispatchTask(std::move(T));
}
/// Run a wrapper function in the executor.
///
/// The wrapper function should be callable as:
///
/// \code{.cpp}
/// CWrapperFunctionResult fn(uint8_t *Data, uint64_t Size);
/// \endcode{.cpp}
///
/// The given OnComplete function will be called to return the result.
template <typename... ArgTs>
void callWrapperAsync(ArgTs &&... Args) {
EPC->callWrapperAsync(std::forward<ArgTs>(Args)...);
}
/// Run a wrapper function in the executor. The wrapper function should be
/// callable as:
///
/// \code{.cpp}
/// CWrapperFunctionResult fn(uint8_t *Data, uint64_t Size);
/// \endcode{.cpp}
shared::WrapperFunctionResult callWrapper(ExecutorAddr WrapperFnAddr,
ArrayRef<char> ArgBuffer) {
return EPC->callWrapper(WrapperFnAddr, ArgBuffer);
}
/// Run a wrapper function using SPS to serialize the arguments and
/// deserialize the results.
template <typename SPSSignature, typename SendResultT, typename... ArgTs>
void callSPSWrapperAsync(ExecutorAddr WrapperFnAddr, SendResultT &&SendResult,
const ArgTs &...Args) {
EPC->callSPSWrapperAsync<SPSSignature, SendResultT, ArgTs...>(
WrapperFnAddr, std::forward<SendResultT>(SendResult), Args...);
}
/// Run a wrapper function using SPS to serialize the arguments and
/// deserialize the results.
///
/// If SPSSignature is a non-void function signature then the second argument
/// (the first in the Args list) should be a reference to a return value.
template <typename SPSSignature, typename... WrapperCallArgTs>
Error callSPSWrapper(ExecutorAddr WrapperFnAddr,
WrapperCallArgTs &&...WrapperCallArgs) {
return EPC->callSPSWrapper<SPSSignature, WrapperCallArgTs...>(
WrapperFnAddr, std::forward<WrapperCallArgTs>(WrapperCallArgs)...);
}
/// Wrap a handler that takes concrete argument types (and a sender for a
/// concrete return type) to produce an AsyncHandlerWrapperFunction. Uses SPS
/// to unpack the arguments and pack the result.
///
/// This function is intended to support easy construction of
/// AsyncHandlerWrapperFunctions that can be associated with a tag
/// (using registerJITDispatchHandler) and called from the executor.
template <typename SPSSignature, typename HandlerT>
static JITDispatchHandlerFunction wrapAsyncWithSPS(HandlerT &&H) {
return [H = std::forward<HandlerT>(H)](
SendResultFunction SendResult,
const char *ArgData, size_t ArgSize) mutable {
shared::WrapperFunction<SPSSignature>::handleAsync(ArgData, ArgSize, H,
std::move(SendResult));
};
}
/// Wrap a class method that takes concrete argument types (and a sender for
/// a concrete return type) to produce an AsyncHandlerWrapperFunction. Uses
/// SPS to unpack teh arguments and pack the result.
///
/// This function is intended to support easy construction of
/// AsyncHandlerWrapperFunctions that can be associated with a tag
/// (using registerJITDispatchHandler) and called from the executor.
template <typename SPSSignature, typename ClassT, typename... MethodArgTs>
static JITDispatchHandlerFunction
wrapAsyncWithSPS(ClassT *Instance, void (ClassT::*Method)(MethodArgTs...)) {
return wrapAsyncWithSPS<SPSSignature>(
[Instance, Method](MethodArgTs &&...MethodArgs) {
(Instance->*Method)(std::forward<MethodArgTs>(MethodArgs)...);
});
}
/// For each tag symbol name, associate the corresponding
/// AsyncHandlerWrapperFunction with the address of that symbol. The
/// handler becomes callable from the executor using the ORC runtime
/// __orc_rt_jit_dispatch function and the given tag.
///
/// Tag symbols will be looked up in JD using LookupKind::Static,
/// JITDylibLookupFlags::MatchAllSymbols (hidden tags will be found), and
/// LookupFlags::WeaklyReferencedSymbol. Missing tag definitions will not
/// cause an error, the handler will simply be dropped.
Error registerJITDispatchHandlers(JITDylib &JD,
JITDispatchHandlerAssociationMap WFs);
/// Run a registered jit-side wrapper function.
/// This should be called by the ExecutorProcessControl instance in response
/// to incoming jit-dispatch requests from the executor.
void
runJITDispatchHandler(SendResultFunction SendResult,
JITTargetAddress HandlerFnTagAddr,
ArrayRef<char> ArgBuffer);
/// Dump the state of all the JITDylibs in this session.
void dump(raw_ostream &OS);
private:
static void logErrorsToStdErr(Error Err) {
logAllUnhandledErrors(std::move(Err), errs(), "JIT session error: ");
}
static void runOnCurrentThread(std::unique_ptr<Task> T) { T->run(); }
void dispatchOutstandingMUs();
static std::unique_ptr<MaterializationResponsibility>
createMaterializationResponsibility(ResourceTracker &RT,
SymbolFlagsMap Symbols,
SymbolStringPtr InitSymbol) {
auto &JD = RT.getJITDylib();
std::unique_ptr<MaterializationResponsibility> MR(
new MaterializationResponsibility(&RT, std::move(Symbols),
std::move(InitSymbol)));
JD.TrackerMRs[&RT].insert(MR.get());
return MR;
}
Error removeResourceTracker(ResourceTracker &RT);
void transferResourceTracker(ResourceTracker &DstRT, ResourceTracker &SrcRT);
void destroyResourceTracker(ResourceTracker &RT);
// State machine functions for query application..
/// IL_updateCandidatesFor is called to remove already-defined symbols that
/// match a given query from the set of candidate symbols to generate
/// definitions for (no need to generate a definition if one already exists).
Error IL_updateCandidatesFor(JITDylib &JD, JITDylibLookupFlags JDLookupFlags,
SymbolLookupSet &Candidates,
SymbolLookupSet *NonCandidates);
/// OL_applyQueryPhase1 is an optionally re-startable loop for triggering
/// definition generation. It is called when a lookup is performed, and again
/// each time that LookupState::continueLookup is called.
void OL_applyQueryPhase1(std::unique_ptr<InProgressLookupState> IPLS,
Error Err);
/// OL_completeLookup is run once phase 1 successfully completes for a lookup
/// call. It attempts to attach the symbol to all symbol table entries and
/// collect all MaterializationUnits to dispatch. If this method fails then
/// all MaterializationUnits will be left un-materialized.
void OL_completeLookup(std::unique_ptr<InProgressLookupState> IPLS,
std::shared_ptr<AsynchronousSymbolQuery> Q,
RegisterDependenciesFunction RegisterDependencies);
/// OL_completeLookupFlags is run once phase 1 successfully completes for a
/// lookupFlags call.
void OL_completeLookupFlags(
std::unique_ptr<InProgressLookupState> IPLS,
unique_function<void(Expected<SymbolFlagsMap>)> OnComplete);
// State machine functions for MaterializationResponsibility.
void OL_destroyMaterializationResponsibility(
MaterializationResponsibility &MR);
SymbolNameSet OL_getRequestedSymbols(const MaterializationResponsibility &MR);
Error OL_notifyResolved(MaterializationResponsibility &MR,
const SymbolMap &Symbols);
Error OL_notifyEmitted(MaterializationResponsibility &MR);
Error OL_defineMaterializing(MaterializationResponsibility &MR,
SymbolFlagsMap SymbolFlags);
void OL_notifyFailed(MaterializationResponsibility &MR);
Error OL_replace(MaterializationResponsibility &MR,
std::unique_ptr<MaterializationUnit> MU);
Expected<std::unique_ptr<MaterializationResponsibility>>
OL_delegate(MaterializationResponsibility &MR, const SymbolNameSet &Symbols);
void OL_addDependencies(MaterializationResponsibility &MR,
const SymbolStringPtr &Name,
const SymbolDependenceMap &Dependencies);
void OL_addDependenciesForAll(MaterializationResponsibility &MR,
const SymbolDependenceMap &Dependencies);
#ifndef NDEBUG
void dumpDispatchInfo(Task &T);
#endif // NDEBUG
mutable std::recursive_mutex SessionMutex;
bool SessionOpen = true;
std::unique_ptr<ExecutorProcessControl> EPC;
std::unique_ptr<Platform> P;
ErrorReporter ReportError = logErrorsToStdErr;
DispatchTaskFunction DispatchTask = runOnCurrentThread;
std::vector<ResourceManager *> ResourceManagers;
std::vector<JITDylibSP> JDs;
// FIXME: Remove this (and runOutstandingMUs) once the linking layer works
// with callbacks from asynchronous queries.
mutable std::recursive_mutex OutstandingMUsMutex;
std::vector<std::pair<std::unique_ptr<MaterializationUnit>,
std::unique_ptr<MaterializationResponsibility>>>
OutstandingMUs;
mutable std::mutex JITDispatchHandlersMutex;
DenseMap<JITTargetAddress, std::shared_ptr<JITDispatchHandlerFunction>>
JITDispatchHandlers;
};
inline ExecutionSession &
MaterializationResponsibility::getExecutionSession() const {
return JD.getExecutionSession();
}
template <typename Func>
Error MaterializationResponsibility::withResourceKeyDo(Func &&F) const {
return JD.getExecutionSession().runSessionLocked([&]() -> Error {
if (RT->isDefunct())
return make_error<ResourceTrackerDefunct>(RT);
F(RT->getKeyUnsafe());
return Error::success();
});
}
template <typename GeneratorT>
GeneratorT &JITDylib::addGenerator(std::unique_ptr<GeneratorT> DefGenerator) {
auto &G = *DefGenerator;
ES.runSessionLocked([&] {
assert(State == Open && "Cannot add generator to closed JITDylib");
DefGenerators.push_back(std::move(DefGenerator));
});
return G;
}
template <typename Func>
auto JITDylib::withLinkOrderDo(Func &&F)
-> decltype(F(std::declval<const JITDylibSearchOrder &>())) {
assert(State == Open && "Cannot use link order of closed JITDylib");
return ES.runSessionLocked([&]() { return F(LinkOrder); });
}
template <typename MaterializationUnitType>
Error JITDylib::define(std::unique_ptr<MaterializationUnitType> &&MU,
ResourceTrackerSP RT) {
assert(MU && "Can not define with a null MU");
if (MU->getSymbols().empty()) {
// Empty MUs are allowable but pathological, so issue a warning.
DEBUG_WITH_TYPE("orc", {
dbgs() << "Warning: Discarding empty MU " << MU->getName() << " for "
<< getName() << "\n";
});
return Error::success();
} else
DEBUG_WITH_TYPE("orc", {
dbgs() << "Defining MU " << MU->getName() << " for " << getName()
<< " (tracker: ";
if (RT == getDefaultResourceTracker())
dbgs() << "default)";
else if (RT)
dbgs() << RT.get() << ")\n";
else
dbgs() << "0x0, default will be used)\n";
});
return ES.runSessionLocked([&, this]() -> Error {
assert(State == Open && "JD is defunct");
if (auto Err = defineImpl(*MU))
return Err;
if (!RT)
RT = getDefaultResourceTracker();
if (auto *P = ES.getPlatform()) {
if (auto Err = P->notifyAdding(*RT, *MU))
return Err;
}
installMaterializationUnit(std::move(MU), *RT);
return Error::success();
});
}
template <typename MaterializationUnitType>
Error JITDylib::define(std::unique_ptr<MaterializationUnitType> &MU,
ResourceTrackerSP RT) {
assert(MU && "Can not define with a null MU");
if (MU->getSymbols().empty()) {
// Empty MUs are allowable but pathological, so issue a warning.
DEBUG_WITH_TYPE("orc", {
dbgs() << "Warning: Discarding empty MU " << MU->getName() << getName()
<< "\n";
});
return Error::success();
} else
DEBUG_WITH_TYPE("orc", {
dbgs() << "Defining MU " << MU->getName() << " for " << getName()
<< " (tracker: ";
if (RT == getDefaultResourceTracker())
dbgs() << "default)";
else if (RT)
dbgs() << RT.get() << ")\n";
else
dbgs() << "0x0, default will be used)\n";
});
return ES.runSessionLocked([&, this]() -> Error {
assert(State == Open && "JD is defunct");
if (auto Err = defineImpl(*MU))
return Err;
if (!RT)
RT = getDefaultResourceTracker();
if (auto *P = ES.getPlatform()) {
if (auto Err = P->notifyAdding(*RT, *MU))
return Err;
}
installMaterializationUnit(std::move(MU), *RT);
return Error::success();
});
}
/// ReexportsGenerator can be used with JITDylib::addGenerator to automatically
/// re-export a subset of the source JITDylib's symbols in the target.
class ReexportsGenerator : public DefinitionGenerator {
public:
using SymbolPredicate = std::function<bool(SymbolStringPtr)>;
/// Create a reexports generator. If an Allow predicate is passed, only
/// symbols for which the predicate returns true will be reexported. If no
/// Allow predicate is passed, all symbols will be exported.
ReexportsGenerator(JITDylib &SourceJD,
JITDylibLookupFlags SourceJDLookupFlags,
SymbolPredicate Allow = SymbolPredicate());
Error tryToGenerate(LookupState &LS, LookupKind K, JITDylib &JD,
JITDylibLookupFlags JDLookupFlags,
const SymbolLookupSet &LookupSet) override;
private:
JITDylib &SourceJD;
JITDylibLookupFlags SourceJDLookupFlags;
SymbolPredicate Allow;
};
// --------------- IMPLEMENTATION --------------
// Implementations for inline functions/methods.
// ---------------------------------------------
inline MaterializationResponsibility::~MaterializationResponsibility() {
getExecutionSession().OL_destroyMaterializationResponsibility(*this);
}
inline SymbolNameSet MaterializationResponsibility::getRequestedSymbols() const {
return getExecutionSession().OL_getRequestedSymbols(*this);
}
inline Error MaterializationResponsibility::notifyResolved(
const SymbolMap &Symbols) {
return getExecutionSession().OL_notifyResolved(*this, Symbols);
}
inline Error MaterializationResponsibility::notifyEmitted() {
return getExecutionSession().OL_notifyEmitted(*this);
}
inline Error MaterializationResponsibility::defineMaterializing(
SymbolFlagsMap SymbolFlags) {
return getExecutionSession().OL_defineMaterializing(*this,
std::move(SymbolFlags));
}
inline void MaterializationResponsibility::failMaterialization() {
getExecutionSession().OL_notifyFailed(*this);
}
inline Error MaterializationResponsibility::replace(
std::unique_ptr<MaterializationUnit> MU) {
return getExecutionSession().OL_replace(*this, std::move(MU));
}
inline Expected<std::unique_ptr<MaterializationResponsibility>>
MaterializationResponsibility::delegate(const SymbolNameSet &Symbols) {
return getExecutionSession().OL_delegate(*this, Symbols);
}
inline void MaterializationResponsibility::addDependencies(
const SymbolStringPtr &Name, const SymbolDependenceMap &Dependencies) {
getExecutionSession().OL_addDependencies(*this, Name, Dependencies);
}
inline void MaterializationResponsibility::addDependenciesForAll(
const SymbolDependenceMap &Dependencies) {
getExecutionSession().OL_addDependenciesForAll(*this, Dependencies);
}
} // End namespace orc
} // End namespace llvm
#endif // LLVM_EXECUTIONENGINE_ORC_CORE_H