//===-- R600Instructions.td - R600 Instruction defs -------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // TableGen definitions for instructions which are available on R600 family // GPUs. // //===----------------------------------------------------------------------===// include "R600InstrFormats.td" // FIXME: Should not be arbitrarily split from other R600 inst classes. class R600WrapperInst <dag outs, dag ins, string asm = "", list<dag> pattern = []> : AMDGPUInst<outs, ins, asm, pattern>, PredicateControl { let SubtargetPredicate = isR600toCayman; let Namespace = "R600"; } class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern = []> : InstR600 <outs, ins, asm, pattern, NullALU> { } def MEMxi : Operand<iPTR> { let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index); let PrintMethod = "printMemOperand"; } def MEMrr : Operand<iPTR> { let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index); } // Operands for non-registers class InstFlag<string PM = "printOperand", int Default = 0> : OperandWithDefaultOps <i32, (ops (i32 Default))> { let PrintMethod = PM; } // src_sel for ALU src operands, see also ALU_CONST, ALU_PARAM registers def SEL : OperandWithDefaultOps <i32, (ops (i32 -1))>; def BANK_SWIZZLE : OperandWithDefaultOps <i32, (ops (i32 0))> { let PrintMethod = "printBankSwizzle"; } def LITERAL : InstFlag<"printLiteral">; def WRITE : InstFlag <"printWrite", 1>; def OMOD : InstFlag <"printOMOD">; def REL : InstFlag <"printRel">; def CLAMP : InstFlag <"printClamp">; def NEG : InstFlag <"printNeg">; def ABS : InstFlag <"printAbs">; def UEM : InstFlag <"printUpdateExecMask">; def UP : InstFlag <"printUpdatePred">; // XXX: The r600g finalizer in Mesa expects last to be one in most cases. // Once we start using the packetizer in this backend we should have this // default to 0. def LAST : InstFlag<"printLast", 1>; def RSel : Operand<i32> { let PrintMethod = "printRSel"; } def CT: Operand<i32> { let PrintMethod = "printCT"; } def FRAMEri : Operand<iPTR> { let MIOperandInfo = (ops R600_Reg32:$ptr, i32imm:$index); } def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>; def ADDRGA_CONST_OFFSET : ComplexPattern<i32, 1, "SelectGlobalValueConstantOffset", [], []>; def ADDRGA_VAR_OFFSET : ComplexPattern<i32, 2, "SelectGlobalValueVariableOffset", [], []>; def ADDRIndirect : ComplexPattern<iPTR, 2, "SelectADDRIndirect", [], []>; def R600_Pred : PredicateOperand<i32, (ops R600_Predicate), (ops PRED_SEL_OFF)>; let isTerminator = 1, isReturn = 1, hasCtrlDep = 1, usesCustomInserter = 1, Namespace = "R600" in { def RETURN : ILFormat<(outs), (ins variable_ops), "RETURN", [(AMDGPUendpgm)] >; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { // Class for instructions with only one source register. // If you add new ins to this instruction, make sure they are listed before // $literal, because the backend currently assumes that the last operand is // a literal. Also be sure to update the enum R600Op1OperandIndex::ROI in // R600Defines.h, R600InstrInfo::buildDefaultInstruction(), // and R600InstrInfo::getOperandIdx(). class R600_1OP <bits<11> inst, string opName, list<dag> pattern, InstrItinClass itin = AnyALU> : InstR600 <(outs R600_Reg32:$dst), (ins WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp, R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel, LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal, BANK_SWIZZLE:$bank_swizzle), !strconcat(" ", opName, "$clamp $last $dst$write$dst_rel$omod, " "$src0_neg$src0_abs$src0$src0_abs$src0_rel, " "$pred_sel $bank_swizzle"), pattern, itin>, R600ALU_Word0, R600ALU_Word1_OP2 <inst> { let src1 = 0; let src1_rel = 0; let src1_neg = 0; let src1_abs = 0; let update_exec_mask = 0; let update_pred = 0; let HasNativeOperands = 1; let Op1 = 1; let ALUInst = 1; let DisableEncoding = "$literal"; let UseNamedOperandTable = 1; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } class R600_1OP_Helper <bits<11> inst, string opName, SDPatternOperator node, InstrItinClass itin = AnyALU> : R600_1OP <inst, opName, [(set R600_Reg32:$dst, (node R600_Reg32:$src0))], itin >; // If you add or change the operands for R600_2OP instructions, you must // also update the R600Op2OperandIndex::ROI enum in R600Defines.h, // R600InstrInfo::buildDefaultInstruction(), and R600InstrInfo::getOperandIdx(). class R600_2OP <bits<11> inst, string opName, list<dag> pattern, InstrItinClass itin = AnyALU> : InstR600 <(outs R600_Reg32:$dst), (ins UEM:$update_exec_mask, UP:$update_pred, WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp, R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel, R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, ABS:$src1_abs, SEL:$src1_sel, LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal, BANK_SWIZZLE:$bank_swizzle), !strconcat(" ", opName, "$clamp $last $update_exec_mask$update_pred$dst$write$dst_rel$omod, " "$src0_neg$src0_abs$src0$src0_abs$src0_rel, " "$src1_neg$src1_abs$src1$src1_abs$src1_rel, " "$pred_sel $bank_swizzle"), pattern, itin>, R600ALU_Word0, R600ALU_Word1_OP2 <inst> { let HasNativeOperands = 1; let Op2 = 1; let ALUInst = 1; let DisableEncoding = "$literal"; let UseNamedOperandTable = 1; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } class R600_2OP_Helper <bits<11> inst, string opName, SDPatternOperator node = null_frag, InstrItinClass itin = AnyALU> : R600_2OP <inst, opName, [(set R600_Reg32:$dst, (node R600_Reg32:$src0, R600_Reg32:$src1))], itin >; // If you add our change the operands for R600_3OP instructions, you must // also update the R600Op3OperandIndex::ROI enum in R600Defines.h, // R600InstrInfo::buildDefaultInstruction(), and // R600InstrInfo::getOperandIdx(). class R600_3OP <bits<5> inst, string opName, list<dag> pattern, InstrItinClass itin = AnyALU> : InstR600 <(outs R600_Reg32:$dst), (ins REL:$dst_rel, CLAMP:$clamp, R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, SEL:$src0_sel, R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, SEL:$src1_sel, R600_Reg32:$src2, NEG:$src2_neg, REL:$src2_rel, SEL:$src2_sel, LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal, BANK_SWIZZLE:$bank_swizzle), !strconcat(" ", opName, "$clamp $last $dst$dst_rel, " "$src0_neg$src0$src0_rel, " "$src1_neg$src1$src1_rel, " "$src2_neg$src2$src2_rel, " "$pred_sel" "$bank_swizzle"), pattern, itin>, R600ALU_Word0, R600ALU_Word1_OP3<inst>{ let HasNativeOperands = 1; let DisableEncoding = "$literal"; let Op3 = 1; let UseNamedOperandTable = 1; let ALUInst = 1; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } } // End mayLoad = 1, mayStore = 0, hasSideEffects = 0 class EG_CF_RAT <bits <8> cfinst, bits <6> ratinst, bits<4> ratid, bits<4> mask, dag outs, dag ins, string asm, list<dag> pattern> : InstR600ISA <outs, ins, asm, pattern>, CF_ALLOC_EXPORT_WORD0_RAT, CF_ALLOC_EXPORT_WORD1_BUF { let rat_id = ratid; let rat_inst = ratinst; let rim = 0; // XXX: Have a separate instruction for non-indexed writes. let type = 1; let rw_rel = 0; let elem_size = 0; let array_size = 0; let comp_mask = mask; let burst_count = 0; let vpm = 0; let cf_inst = cfinst; let mark = 0; let barrier = 1; let Inst{31-0} = Word0; let Inst{63-32} = Word1; let IsExport = 1; } class VTX_READ <string name, dag outs, list<dag> pattern> : InstR600ISA <outs, (ins MEMxi:$src_gpr, i8imm:$buffer_id), !strconcat(" ", name, ", #$buffer_id"), pattern>, VTX_WORD1_GPR { // Static fields let DST_REL = 0; // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL, // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored, // however, based on my testing if USE_CONST_FIELDS is set, then all // these fields need to be set to 0. let USE_CONST_FIELDS = 0; let NUM_FORMAT_ALL = 1; let FORMAT_COMP_ALL = 0; let SRF_MODE_ALL = 0; let Inst{63-32} = Word1; // LLVM can only encode 64-bit instructions, so these fields are manually // encoded in R600CodeEmitter // // bits<16> OFFSET; // bits<2> ENDIAN_SWAP = 0; // bits<1> CONST_BUF_NO_STRIDE = 0; // bits<1> MEGA_FETCH = 0; // bits<1> ALT_CONST = 0; // bits<2> BUFFER_INDEX_MODE = 0; // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding // is done in R600CodeEmitter // // Inst{79-64} = OFFSET; // Inst{81-80} = ENDIAN_SWAP; // Inst{82} = CONST_BUF_NO_STRIDE; // Inst{83} = MEGA_FETCH; // Inst{84} = ALT_CONST; // Inst{86-85} = BUFFER_INDEX_MODE; // Inst{95-86} = 0; Reserved // VTX_WORD3 (Padding) // // Inst{127-96} = 0; let VTXInst = 1; } // Legacy. def atomic_cmp_swap_global_noret : PatFrag< (ops node:$ptr, node:$cmp, node:$value), (atomic_cmp_swap node:$ptr, node:$cmp, node:$value), [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (SDValue(N, 0).use_empty());}]>; def atomic_cmp_swap_global_ret : PatFrag< (ops node:$ptr, node:$cmp, node:$value), (atomic_cmp_swap node:$ptr, node:$cmp, node:$value), [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (!SDValue(N, 0).use_empty());}]>; def mskor_global : PatFrag<(ops node:$val, node:$ptr), (AMDGPUstore_mskor node:$val, node:$ptr), [{ return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; }]>; // FIXME: These are deprecated class AZExtLoadBase <SDPatternOperator ld_node>: PatFrag<(ops node:$ptr), (ld_node node:$ptr), [{ LoadSDNode *L = cast<LoadSDNode>(N); return L->getExtensionType() == ISD::ZEXTLOAD || L->getExtensionType() == ISD::EXTLOAD; }]>; def az_extload : AZExtLoadBase <unindexedload>; def az_extloadi8 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8; }]>; def az_extloadi16 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16; }]>; def az_extloadi32 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32; }]>; let AddressSpaces = LoadAddress_local.AddrSpaces in { def az_extloadi8_local : PatFrag<(ops node:$ptr), (az_extloadi8 node:$ptr)>; def az_extloadi16_local : PatFrag<(ops node:$ptr), (az_extloadi16 node:$ptr)>; } class LoadParamFrag <PatFrag load_type> : PatFrag < (ops node:$ptr), (load_type node:$ptr), [{ return isConstantLoad(cast<LoadSDNode>(N), 0) || (cast<LoadSDNode>(N)->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS); }] >; def vtx_id3_az_extloadi8 : LoadParamFrag<az_extloadi8>; def vtx_id3_az_extloadi16 : LoadParamFrag<az_extloadi16>; def vtx_id3_load : LoadParamFrag<load>; class LoadVtxId1 <PatFrag load> : PatFrag < (ops node:$ptr), (load node:$ptr), [{ const MemSDNode *LD = cast<MemSDNode>(N); return LD->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || (LD->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS && !isa<GlobalValue>(getUnderlyingObject( LD->getMemOperand()->getValue()))); }]>; def vtx_id1_az_extloadi8 : LoadVtxId1 <az_extloadi8>; def vtx_id1_az_extloadi16 : LoadVtxId1 <az_extloadi16>; def vtx_id1_load : LoadVtxId1 <load>; class LoadVtxId2 <PatFrag load> : PatFrag < (ops node:$ptr), (load node:$ptr), [{ const MemSDNode *LD = cast<MemSDNode>(N); return LD->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS && isa<GlobalValue>(getUnderlyingObject( LD->getMemOperand()->getValue())); }]>; def vtx_id2_az_extloadi8 : LoadVtxId2 <az_extloadi8>; def vtx_id2_az_extloadi16 : LoadVtxId2 <az_extloadi16>; def vtx_id2_load : LoadVtxId2 <load>; //===----------------------------------------------------------------------===// // R600 SDNodes //===----------------------------------------------------------------------===// let Namespace = "R600" in { def INTERP_PAIR_XY : AMDGPUShaderInst < (outs R600_TReg32_X:$dst0, R600_TReg32_Y:$dst1), (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2), "INTERP_PAIR_XY $src0 $src1 $src2 : $dst0 dst1", []>; def INTERP_PAIR_ZW : AMDGPUShaderInst < (outs R600_TReg32_Z:$dst0, R600_TReg32_W:$dst1), (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2), "INTERP_PAIR_ZW $src0 $src1 $src2 : $dst0 dst1", []>; } def CONST_ADDRESS: SDNode<"AMDGPUISD::CONST_ADDRESS", SDTypeProfile<1, -1, [SDTCisInt<0>, SDTCisPtrTy<1>]>, [SDNPVariadic] >; def DOT4 : SDNode<"AMDGPUISD::DOT4", SDTypeProfile<1, 8, [SDTCisFP<0>, SDTCisVT<1, f32>, SDTCisVT<2, f32>, SDTCisVT<3, f32>, SDTCisVT<4, f32>, SDTCisVT<5, f32>, SDTCisVT<6, f32>, SDTCisVT<7, f32>, SDTCisVT<8, f32>]>, [] >; def COS_HW : SDNode<"AMDGPUISD::COS_HW", SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]> >; def SIN_HW : SDNode<"AMDGPUISD::SIN_HW", SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]> >; def TEXTURE_FETCH_Type : SDTypeProfile<1, 19, [SDTCisFP<0>]>; def TEXTURE_FETCH: SDNode<"AMDGPUISD::TEXTURE_FETCH", TEXTURE_FETCH_Type, []>; multiclass TexPattern<bits<32> TextureOp, Instruction inst, ValueType vt = v4f32> { def : R600Pat<(TEXTURE_FETCH (i32 TextureOp), vt:$SRC_GPR, (i32 imm:$srcx), (i32 imm:$srcy), (i32 imm:$srcz), (i32 imm:$srcw), (i32 imm:$offsetx), (i32 imm:$offsety), (i32 imm:$offsetz), (i32 imm:$DST_SEL_X), (i32 imm:$DST_SEL_Y), (i32 imm:$DST_SEL_Z), (i32 imm:$DST_SEL_W), (i32 imm:$RESOURCE_ID), (i32 imm:$SAMPLER_ID), (i32 imm:$COORD_TYPE_X), (i32 imm:$COORD_TYPE_Y), (i32 imm:$COORD_TYPE_Z), (i32 imm:$COORD_TYPE_W)), (inst R600_Reg128:$SRC_GPR, imm:$srcx, imm:$srcy, imm:$srcz, imm:$srcw, imm:$offsetx, imm:$offsety, imm:$offsetz, imm:$DST_SEL_X, imm:$DST_SEL_Y, imm:$DST_SEL_Z, imm:$DST_SEL_W, imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$COORD_TYPE_X, imm:$COORD_TYPE_Y, imm:$COORD_TYPE_Z, imm:$COORD_TYPE_W)>; } //===----------------------------------------------------------------------===// // Interpolation Instructions //===----------------------------------------------------------------------===// let Namespace = "R600" in { def INTERP_VEC_LOAD : AMDGPUShaderInst < (outs R600_Reg128:$dst), (ins i32imm:$src0), "INTERP_LOAD $src0 : $dst">; } def INTERP_XY : R600_2OP <0xD6, "INTERP_XY", []> { let bank_swizzle = 5; } def INTERP_ZW : R600_2OP <0xD7, "INTERP_ZW", []> { let bank_swizzle = 5; } def INTERP_LOAD_P0 : R600_1OP <0xE0, "INTERP_LOAD_P0", []>; //===----------------------------------------------------------------------===// // Export Instructions //===----------------------------------------------------------------------===// class ExportWord0 { field bits<32> Word0; bits<13> arraybase; bits<2> type; bits<7> gpr; bits<2> elem_size; let Word0{12-0} = arraybase; let Word0{14-13} = type; let Word0{21-15} = gpr; let Word0{22} = 0; // RW_REL let Word0{29-23} = 0; // INDEX_GPR let Word0{31-30} = elem_size; } class ExportSwzWord1 { field bits<32> Word1; bits<3> sw_x; bits<3> sw_y; bits<3> sw_z; bits<3> sw_w; bits<1> eop; bits<8> inst; let Word1{2-0} = sw_x; let Word1{5-3} = sw_y; let Word1{8-6} = sw_z; let Word1{11-9} = sw_w; } class ExportBufWord1 { field bits<32> Word1; bits<12> arraySize; bits<4> compMask; bits<1> eop; bits<8> inst; let Word1{11-0} = arraySize; let Word1{15-12} = compMask; } multiclass ExportPattern<Instruction ExportInst, bits<8> cf_inst> { def : R600Pat<(R600_EXPORT (v4f32 R600_Reg128:$src), (i32 imm:$base), (i32 imm:$type), (i32 imm:$swz_x), (i32 imm:$swz_y), (i32 imm:$swz_z), (i32 imm:$swz_w)), (ExportInst R600_Reg128:$src, imm:$type, imm:$base, imm:$swz_x, imm:$swz_y, imm:$swz_z, imm:$swz_w, cf_inst, 0) >; } multiclass SteamOutputExportPattern<Instruction ExportInst, bits<8> buf0inst, bits<8> buf1inst, bits<8> buf2inst, bits<8> buf3inst> { // Stream0 def : R600Pat<(int_r600_store_stream_output (v4f32 R600_Reg128:$src), (i32 imm:$arraybase), (i32 0), (i32 imm:$mask)), (ExportInst R600_Reg128:$src, 0, imm:$arraybase, 4095, imm:$mask, buf0inst, 0)>; // Stream1 def : R600Pat<(int_r600_store_stream_output (v4f32 R600_Reg128:$src), (i32 imm:$arraybase), (i32 1), (i32 imm:$mask)), (ExportInst $src, 0, imm:$arraybase, 4095, imm:$mask, buf1inst, 0)>; // Stream2 def : R600Pat<(int_r600_store_stream_output (v4f32 R600_Reg128:$src), (i32 imm:$arraybase), (i32 2), (i32 imm:$mask)), (ExportInst $src, 0, imm:$arraybase, 4095, imm:$mask, buf2inst, 0)>; // Stream3 def : R600Pat<(int_r600_store_stream_output (v4f32 R600_Reg128:$src), (i32 imm:$arraybase), (i32 3), (i32 imm:$mask)), (ExportInst $src, 0, imm:$arraybase, 4095, imm:$mask, buf3inst, 0)>; } // Export Instructions should not be duplicated by TailDuplication pass // (which assumes that duplicable instruction are affected by exec mask) let usesCustomInserter = 1, isNotDuplicable = 1 in { class ExportSwzInst : InstR600ISA<( outs), (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase, RSel:$sw_x, RSel:$sw_y, RSel:$sw_z, RSel:$sw_w, i32imm:$inst, i32imm:$eop), !strconcat("EXPORT", " $gpr.$sw_x$sw_y$sw_z$sw_w"), []>, ExportWord0, ExportSwzWord1 { let elem_size = 3; let Inst{31-0} = Word0; let Inst{63-32} = Word1; let IsExport = 1; } } // End usesCustomInserter = 1 class ExportBufInst : InstR600ISA<( outs), (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase, i32imm:$arraySize, i32imm:$compMask, i32imm:$inst, i32imm:$eop), !strconcat("EXPORT", " $gpr"), []>, ExportWord0, ExportBufWord1 { let elem_size = 0; let Inst{31-0} = Word0; let Inst{63-32} = Word1; let IsExport = 1; } //===----------------------------------------------------------------------===// // Control Flow Instructions //===----------------------------------------------------------------------===// def KCACHE : InstFlag<"printKCache">; class ALU_CLAUSE<bits<4> inst, string OpName> : R600WrapperInst <(outs), (ins i32imm:$ADDR, i32imm:$KCACHE_BANK0, i32imm:$KCACHE_BANK1, KCACHE:$KCACHE_MODE0, KCACHE:$KCACHE_MODE1, i32imm:$KCACHE_ADDR0, i32imm:$KCACHE_ADDR1, i32imm:$COUNT, i32imm:$Enabled), !strconcat(OpName, " $COUNT, @$ADDR, " "KC0[$KCACHE_MODE0], KC1[$KCACHE_MODE1]"), [] >, CF_ALU_WORD0, CF_ALU_WORD1 { field bits<64> Inst; let CF_INST = inst; let ALT_CONST = 0; let WHOLE_QUAD_MODE = 0; let BARRIER = 1; let isCodeGenOnly = 1; let UseNamedOperandTable = 1; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } class CF_WORD0_R600 { field bits<32> Word0; bits<32> ADDR; let Word0 = ADDR; } class CF_CLAUSE_R600 <bits<7> inst, dag ins, string AsmPrint> : R600WrapperInst <(outs), ins, AsmPrint, [] >, CF_WORD0_R600, CF_WORD1_R600 { field bits<64> Inst; bits<4> CNT; let CF_INST = inst; let BARRIER = 1; let CF_CONST = 0; let VALID_PIXEL_MODE = 0; let COND = 0; let COUNT = CNT{2-0}; let CALL_COUNT = 0; let COUNT_3 = CNT{3}; let END_OF_PROGRAM = 0; let WHOLE_QUAD_MODE = 0; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } class CF_CLAUSE_EG <bits<8> inst, dag ins, string AsmPrint> : R600WrapperInst <(outs), ins, AsmPrint, [] >, CF_WORD0_EG, CF_WORD1_EG { field bits<64> Inst; let CF_INST = inst; let BARRIER = 1; let JUMPTABLE_SEL = 0; let CF_CONST = 0; let VALID_PIXEL_MODE = 0; let COND = 0; let END_OF_PROGRAM = 0; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } def CF_ALU : ALU_CLAUSE<8, "ALU">; def CF_ALU_PUSH_BEFORE : ALU_CLAUSE<9, "ALU_PUSH_BEFORE">; def CF_ALU_POP_AFTER : ALU_CLAUSE<10, "ALU_POP_AFTER">; def CF_ALU_CONTINUE : ALU_CLAUSE<13, "ALU_CONTINUE">; def CF_ALU_BREAK : ALU_CLAUSE<14, "ALU_BREAK">; def CF_ALU_ELSE_AFTER : ALU_CLAUSE<15, "ALU_ELSE_AFTER">; def FETCH_CLAUSE : R600WrapperInst <(outs), (ins i32imm:$addr), "Fetch clause starting at $addr:", [] > { field bits<8> Inst; bits<8> num; let Inst = num; let isCodeGenOnly = 1; } def ALU_CLAUSE : R600WrapperInst <(outs), (ins i32imm:$addr), "ALU clause starting at $addr:", [] > { field bits<8> Inst; bits<8> num; let Inst = num; let isCodeGenOnly = 1; } def LITERALS : R600WrapperInst <(outs), (ins LITERAL:$literal1, LITERAL:$literal2), "$literal1, $literal2", [] > { let isCodeGenOnly = 1; field bits<64> Inst; bits<32> literal1; bits<32> literal2; let Inst{31-0} = literal1; let Inst{63-32} = literal2; } def PAD : R600WrapperInst <(outs), (ins), "PAD", [] > { field bits<64> Inst; } //===----------------------------------------------------------------------===// // Common Instructions R600, R700, Evergreen, Cayman //===----------------------------------------------------------------------===// let isCodeGenOnly = 1, isPseudo = 1 in { let Namespace = "R600", usesCustomInserter = 1 in { class FABS <RegisterClass rc> : AMDGPUShaderInst < (outs rc:$dst), (ins rc:$src0), "FABS $dst, $src0", [(set f32:$dst, (fabs f32:$src0))] >; class FNEG <RegisterClass rc> : AMDGPUShaderInst < (outs rc:$dst), (ins rc:$src0), "FNEG $dst, $src0", [(set f32:$dst, (fneg f32:$src0))] >; } // usesCustomInserter = 1 multiclass RegisterLoadStore <RegisterClass dstClass, Operand addrClass, ComplexPattern addrPat> { let UseNamedOperandTable = 1 in { def RegisterLoad : AMDGPUShaderInst < (outs dstClass:$dst), (ins addrClass:$addr, i32imm:$chan), "RegisterLoad $dst, $addr", [(set i32:$dst, (AMDGPUregister_load addrPat:$addr, (i32 timm:$chan)))] > { let isRegisterLoad = 1; } def RegisterStore : AMDGPUShaderInst < (outs), (ins dstClass:$val, addrClass:$addr, i32imm:$chan), "RegisterStore $val, $addr", [(AMDGPUregister_store i32:$val, addrPat:$addr, (i32 timm:$chan))] > { let isRegisterStore = 1; } } } } // End isCodeGenOnly = 1, isPseudo = 1 def ADD : R600_2OP_Helper <0x0, "ADD", fadd>; // Non-IEEE MUL: 0 * anything = 0 def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE">; def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>; // TODO: Do these actually match the regular fmin/fmax behavior? def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax_legacy>; def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin_legacy>; // According to https://msdn.microsoft.com/en-us/library/windows/desktop/cc308050%28v=vs.85%29.aspx // DX10 min/max returns the other operand if one is NaN, // this matches http://llvm.org/docs/LangRef.html#llvm-minnum-intrinsic def MAX_DX10 : R600_2OP_Helper <0x5, "MAX_DX10", fmaxnum>; def MIN_DX10 : R600_2OP_Helper <0x6, "MIN_DX10", fminnum>; // For the SET* instructions there is a naming conflict in TargetSelectionDAG.td, // so some of the instruction names don't match the asm string. // XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics. def SETE : R600_2OP < 0x08, "SETE", [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OEQ))] >; def SGT : R600_2OP < 0x09, "SETGT", [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGT))] >; def SGE : R600_2OP < 0xA, "SETGE", [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGE))] >; def SNE : R600_2OP < 0xB, "SETNE", [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_UNE_NE))] >; def SETE_DX10 : R600_2OP < 0xC, "SETE_DX10", [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OEQ))] >; def SETGT_DX10 : R600_2OP < 0xD, "SETGT_DX10", [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGT))] >; def SETGE_DX10 : R600_2OP < 0xE, "SETGE_DX10", [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGE))] >; // FIXME: This should probably be COND_ONE def SETNE_DX10 : R600_2OP < 0xF, "SETNE_DX10", [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_UNE_NE))] >; // FIXME: Need combine for AMDGPUfract def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>; def TRUNC : R600_1OP_Helper <0x11, "TRUNC", ftrunc>; def CEIL : R600_1OP_Helper <0x12, "CEIL", fceil>; def RNDNE : R600_1OP_Helper <0x13, "RNDNE", frint>; def FLOOR : R600_1OP_Helper <0x14, "FLOOR", ffloor>; def MOV : R600_1OP <0x19, "MOV", []>; // This is a hack to get rid of DUMMY_CHAIN nodes. // Most DUMMY_CHAINs should be eliminated during legalization, but undef // values can sneak in some to selection. let isPseudo = 1, isCodeGenOnly = 1 in { def DUMMY_CHAIN : R600WrapperInst < (outs), (ins), "DUMMY_CHAIN", [(R600dummy_chain)] >; } // end let isPseudo = 1, isCodeGenOnly = 1 let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in { class MOV_IMM <Operand immType> : R600WrapperInst < (outs R600_Reg32:$dst), (ins immType:$imm), "", [] > { let Namespace = "R600"; } } // end let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 def MOV_IMM_I32 : MOV_IMM<i32imm>; def : R600Pat < (imm:$val), (MOV_IMM_I32 imm:$val) >; def MOV_IMM_GLOBAL_ADDR : MOV_IMM<i32imm>; def : R600Pat < (AMDGPUconstdata_ptr tglobaladdr:$addr), (MOV_IMM_GLOBAL_ADDR tglobaladdr:$addr) >; def MOV_IMM_F32 : MOV_IMM<f32imm>; def : R600Pat < (fpimm:$val), (MOV_IMM_F32 fpimm:$val) >; def PRED_SETE : R600_2OP <0x20, "PRED_SETE", []>; def PRED_SETGT : R600_2OP <0x21, "PRED_SETGT", []>; def PRED_SETGE : R600_2OP <0x22, "PRED_SETGE", []>; def PRED_SETNE : R600_2OP <0x23, "PRED_SETNE", []>; let hasSideEffects = 1 in { def KILLGT : R600_2OP <0x2D, "KILLGT", []>; } // end hasSideEffects def AND_INT : R600_2OP_Helper <0x30, "AND_INT", and>; def OR_INT : R600_2OP_Helper <0x31, "OR_INT", or>; def XOR_INT : R600_2OP_Helper <0x32, "XOR_INT", xor>; def NOT_INT : R600_1OP_Helper <0x33, "NOT_INT", not>; def ADD_INT : R600_2OP_Helper <0x34, "ADD_INT", add>; def SUB_INT : R600_2OP_Helper <0x35, "SUB_INT", sub>; def MAX_INT : R600_2OP_Helper <0x36, "MAX_INT", smax>; def MIN_INT : R600_2OP_Helper <0x37, "MIN_INT", smin>; def MAX_UINT : R600_2OP_Helper <0x38, "MAX_UINT", umax>; def MIN_UINT : R600_2OP_Helper <0x39, "MIN_UINT", umin>; def SETE_INT : R600_2OP < 0x3A, "SETE_INT", [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETEQ))] >; def SETGT_INT : R600_2OP < 0x3B, "SETGT_INT", [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGT))] >; def SETGE_INT : R600_2OP < 0x3C, "SETGE_INT", [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGE))] >; def SETNE_INT : R600_2OP < 0x3D, "SETNE_INT", [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETNE))] >; def SETGT_UINT : R600_2OP < 0x3E, "SETGT_UINT", [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGT))] >; def SETGE_UINT : R600_2OP < 0x3F, "SETGE_UINT", [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGE))] >; def PRED_SETE_INT : R600_2OP <0x42, "PRED_SETE_INT", []>; def PRED_SETGT_INT : R600_2OP <0x43, "PRED_SETGE_INT", []>; def PRED_SETGE_INT : R600_2OP <0x44, "PRED_SETGE_INT", []>; def PRED_SETNE_INT : R600_2OP <0x45, "PRED_SETNE_INT", []>; def CNDE_INT : R600_3OP < 0x1C, "CNDE_INT", [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_EQ))] >; def CNDGE_INT : R600_3OP < 0x1E, "CNDGE_INT", [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGE))] >; def CNDGT_INT : R600_3OP < 0x1D, "CNDGT_INT", [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGT))] >; //===----------------------------------------------------------------------===// // Texture instructions //===----------------------------------------------------------------------===// let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { class R600_TEX <bits<11> inst, string opName> : InstR600 <(outs R600_Reg128:$DST_GPR), (ins R600_Reg128:$SRC_GPR, RSel:$srcx, RSel:$srcy, RSel:$srcz, RSel:$srcw, i32imm:$offsetx, i32imm:$offsety, i32imm:$offsetz, RSel:$DST_SEL_X, RSel:$DST_SEL_Y, RSel:$DST_SEL_Z, RSel:$DST_SEL_W, i32imm:$RESOURCE_ID, i32imm:$SAMPLER_ID, CT:$COORD_TYPE_X, CT:$COORD_TYPE_Y, CT:$COORD_TYPE_Z, CT:$COORD_TYPE_W), !strconcat(" ", opName, " $DST_GPR.$DST_SEL_X$DST_SEL_Y$DST_SEL_Z$DST_SEL_W, " "$SRC_GPR.$srcx$srcy$srcz$srcw " "RID:$RESOURCE_ID SID:$SAMPLER_ID " "CT:$COORD_TYPE_X$COORD_TYPE_Y$COORD_TYPE_Z$COORD_TYPE_W"), [], NullALU>, TEX_WORD0, TEX_WORD1, TEX_WORD2 { let Inst{31-0} = Word0; let Inst{63-32} = Word1; let TEX_INST = inst{4-0}; let SRC_REL = 0; let DST_REL = 0; let LOD_BIAS = 0; let INST_MOD = 0; let FETCH_WHOLE_QUAD = 0; let ALT_CONST = 0; let SAMPLER_INDEX_MODE = 0; let RESOURCE_INDEX_MODE = 0; let TEXInst = 1; } } // End mayLoad = 0, mayStore = 0, hasSideEffects = 0 def TEX_SAMPLE : R600_TEX <0x10, "TEX_SAMPLE">; def TEX_SAMPLE_C : R600_TEX <0x18, "TEX_SAMPLE_C">; def TEX_SAMPLE_L : R600_TEX <0x11, "TEX_SAMPLE_L">; def TEX_SAMPLE_C_L : R600_TEX <0x19, "TEX_SAMPLE_C_L">; def TEX_SAMPLE_LB : R600_TEX <0x12, "TEX_SAMPLE_LB">; def TEX_SAMPLE_C_LB : R600_TEX <0x1A, "TEX_SAMPLE_C_LB">; def TEX_LD : R600_TEX <0x03, "TEX_LD">; def TEX_LDPTR : R600_TEX <0x03, "TEX_LDPTR"> { let INST_MOD = 1; } def TEX_GET_TEXTURE_RESINFO : R600_TEX <0x04, "TEX_GET_TEXTURE_RESINFO">; def TEX_GET_GRADIENTS_H : R600_TEX <0x07, "TEX_GET_GRADIENTS_H">; def TEX_GET_GRADIENTS_V : R600_TEX <0x08, "TEX_GET_GRADIENTS_V">; def TEX_SET_GRADIENTS_H : R600_TEX <0x0B, "TEX_SET_GRADIENTS_H">; def TEX_SET_GRADIENTS_V : R600_TEX <0x0C, "TEX_SET_GRADIENTS_V">; def TEX_SAMPLE_G : R600_TEX <0x14, "TEX_SAMPLE_G">; def TEX_SAMPLE_C_G : R600_TEX <0x1C, "TEX_SAMPLE_C_G">; defm : TexPattern<0, TEX_SAMPLE>; defm : TexPattern<1, TEX_SAMPLE_C>; defm : TexPattern<2, TEX_SAMPLE_L>; defm : TexPattern<3, TEX_SAMPLE_C_L>; defm : TexPattern<4, TEX_SAMPLE_LB>; defm : TexPattern<5, TEX_SAMPLE_C_LB>; defm : TexPattern<6, TEX_LD, v4i32>; defm : TexPattern<7, TEX_GET_TEXTURE_RESINFO, v4i32>; defm : TexPattern<8, TEX_GET_GRADIENTS_H>; defm : TexPattern<9, TEX_GET_GRADIENTS_V>; defm : TexPattern<10, TEX_LDPTR, v4i32>; //===----------------------------------------------------------------------===// // Helper classes for common instructions //===----------------------------------------------------------------------===// class MUL_LIT_Common <bits<5> inst> : R600_3OP < inst, "MUL_LIT", [] >; class MULADD_Common <bits<5> inst> : R600_3OP < inst, "MULADD", [] >; class MULADD_IEEE_Common <bits<5> inst> : R600_3OP < inst, "MULADD_IEEE", [(set f32:$dst, (any_fmad f32:$src0, f32:$src1, f32:$src2))] >; class FMA_Common <bits<5> inst> : R600_3OP < inst, "FMA", [(set f32:$dst, (fma f32:$src0, f32:$src1, f32:$src2))], VecALU > { let OtherPredicates = [FMA]; } class CNDE_Common <bits<5> inst> : R600_3OP < inst, "CNDE", [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OEQ))] >; class CNDGT_Common <bits<5> inst> : R600_3OP < inst, "CNDGT", [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGT))] > { let Itinerary = VecALU; } class CNDGE_Common <bits<5> inst> : R600_3OP < inst, "CNDGE", [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGE))] > { let Itinerary = VecALU; } let isCodeGenOnly = 1, isPseudo = 1, Namespace = "R600" in { class R600_VEC2OP<list<dag> pattern> : InstR600 <(outs R600_Reg32:$dst), (ins // Slot X UEM:$update_exec_mask_X, UP:$update_pred_X, WRITE:$write_X, OMOD:$omod_X, REL:$dst_rel_X, CLAMP:$clamp_X, R600_TReg32_X:$src0_X, NEG:$src0_neg_X, REL:$src0_rel_X, ABS:$src0_abs_X, SEL:$src0_sel_X, R600_TReg32_X:$src1_X, NEG:$src1_neg_X, REL:$src1_rel_X, ABS:$src1_abs_X, SEL:$src1_sel_X, R600_Pred:$pred_sel_X, // Slot Y UEM:$update_exec_mask_Y, UP:$update_pred_Y, WRITE:$write_Y, OMOD:$omod_Y, REL:$dst_rel_Y, CLAMP:$clamp_Y, R600_TReg32_Y:$src0_Y, NEG:$src0_neg_Y, REL:$src0_rel_Y, ABS:$src0_abs_Y, SEL:$src0_sel_Y, R600_TReg32_Y:$src1_Y, NEG:$src1_neg_Y, REL:$src1_rel_Y, ABS:$src1_abs_Y, SEL:$src1_sel_Y, R600_Pred:$pred_sel_Y, // Slot Z UEM:$update_exec_mask_Z, UP:$update_pred_Z, WRITE:$write_Z, OMOD:$omod_Z, REL:$dst_rel_Z, CLAMP:$clamp_Z, R600_TReg32_Z:$src0_Z, NEG:$src0_neg_Z, REL:$src0_rel_Z, ABS:$src0_abs_Z, SEL:$src0_sel_Z, R600_TReg32_Z:$src1_Z, NEG:$src1_neg_Z, REL:$src1_rel_Z, ABS:$src1_abs_Z, SEL:$src1_sel_Z, R600_Pred:$pred_sel_Z, // Slot W UEM:$update_exec_mask_W, UP:$update_pred_W, WRITE:$write_W, OMOD:$omod_W, REL:$dst_rel_W, CLAMP:$clamp_W, R600_TReg32_W:$src0_W, NEG:$src0_neg_W, REL:$src0_rel_W, ABS:$src0_abs_W, SEL:$src0_sel_W, R600_TReg32_W:$src1_W, NEG:$src1_neg_W, REL:$src1_rel_W, ABS:$src1_abs_W, SEL:$src1_sel_W, R600_Pred:$pred_sel_W, LITERAL:$literal0, LITERAL:$literal1), "", pattern, AnyALU> { let UseNamedOperandTable = 1; } } def DOT_4 : R600_VEC2OP<[(set R600_Reg32:$dst, (DOT4 R600_TReg32_X:$src0_X, R600_TReg32_X:$src1_X, R600_TReg32_Y:$src0_Y, R600_TReg32_Y:$src1_Y, R600_TReg32_Z:$src0_Z, R600_TReg32_Z:$src1_Z, R600_TReg32_W:$src0_W, R600_TReg32_W:$src1_W))]>; class DOT4_Common <bits<11> inst> : R600_2OP <inst, "DOT4", []>; let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { multiclass CUBE_Common <bits<11> inst> { def _pseudo : InstR600 < (outs R600_Reg128:$dst), (ins R600_Reg128:$src0), "CUBE $dst $src0", [(set v4f32:$dst, (int_r600_cube v4f32:$src0))], VecALU > { let isPseudo = 1; let UseNamedOperandTable = 1; } def _real : R600_2OP <inst, "CUBE", []>; } } // End mayLoad = 0, mayStore = 0, hasSideEffects = 0 class EXP_IEEE_Common <bits<11> inst> : R600_1OP_Helper < inst, "EXP_IEEE", fexp2 > { let Itinerary = TransALU; } class FLT_TO_INT_Common <bits<11> inst> : R600_1OP_Helper < inst, "FLT_TO_INT", fp_to_sint > { let Itinerary = TransALU; } class INT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper < inst, "INT_TO_FLT", sint_to_fp > { let Itinerary = TransALU; } class FLT_TO_UINT_Common <bits<11> inst> : R600_1OP_Helper < inst, "FLT_TO_UINT", fp_to_uint > { let Itinerary = TransALU; } class UINT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper < inst, "UINT_TO_FLT", uint_to_fp > { let Itinerary = TransALU; } class LOG_CLAMPED_Common <bits<11> inst> : R600_1OP < inst, "LOG_CLAMPED", [] >; class LOG_IEEE_Common <bits<11> inst> : R600_1OP_Helper < inst, "LOG_IEEE", flog2 > { let Itinerary = TransALU; } class LSHL_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHL", shl>; class LSHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHR", srl>; class ASHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "ASHR", sra>; class MULHI_INT_Common <bits<11> inst> : R600_2OP_Helper < inst, "MULHI_INT", mulhs> { let Itinerary = TransALU; } class MULHI_INT24_Common <bits<11> inst> : R600_2OP_Helper < inst, "MULHI_INT24", AMDGPUmulhi_i24> { let Itinerary = VecALU; } class MULHI_UINT_Common <bits<11> inst> : R600_2OP_Helper < inst, "MULHI", mulhu> { let Itinerary = TransALU; } class MULHI_UINT24_Common <bits<11> inst> : R600_2OP_Helper < inst, "MULHI_UINT24", AMDGPUmulhi_u24> { let Itinerary = VecALU; } class MULLO_INT_Common <bits<11> inst> : R600_2OP_Helper < inst, "MULLO_INT", mul> { let Itinerary = TransALU; } class MULLO_UINT_Common <bits<11> inst> : R600_2OP <inst, "MULLO_UINT", []> { let Itinerary = TransALU; } class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP < inst, "RECIP_CLAMPED", [] > { let Itinerary = TransALU; } class RECIP_IEEE_Common <bits<11> inst> : R600_1OP < inst, "RECIP_IEEE", [(set f32:$dst, (AMDGPUrcp f32:$src0))] > { let Itinerary = TransALU; } class RECIP_UINT_Common <bits<11> inst> : R600_1OP_Helper < inst, "RECIP_UINT", AMDGPUurecip > { let Itinerary = TransALU; } // Clamped to maximum. class RECIPSQRT_CLAMPED_Common <bits<11> inst> : R600_1OP_Helper < inst, "RECIPSQRT_CLAMPED", AMDGPUrsq_clamp > { let Itinerary = TransALU; } class RECIPSQRT_IEEE_Common <bits<11> inst> : R600_1OP_Helper < inst, "RECIPSQRT_IEEE", AMDGPUrsq> { let Itinerary = TransALU; } // TODO: There is also RECIPSQRT_FF which clamps to zero. class SIN_Common <bits<11> inst> : R600_1OP < inst, "SIN", [(set f32:$dst, (SIN_HW f32:$src0))]>{ let Trig = 1; let Itinerary = TransALU; } class COS_Common <bits<11> inst> : R600_1OP < inst, "COS", [(set f32:$dst, (COS_HW f32:$src0))]> { let Trig = 1; let Itinerary = TransALU; } def FABS_R600 : FABS<R600_Reg32>; def FNEG_R600 : FNEG<R600_Reg32>; //===----------------------------------------------------------------------===// // Helper patterns for complex intrinsics //===----------------------------------------------------------------------===// // FIXME: Should be predicated on unsafe fp math. multiclass DIV_Common <InstR600 recip_ieee> { def : R600Pat< (fdiv f32:$src0, f32:$src1), (MUL_IEEE $src0, (recip_ieee $src1)) >; def : RcpPat<recip_ieee, f32>; } class SqrtPat<Instruction RsqInst, Instruction RecipInst> : R600Pat < (fsqrt f32:$src), (RecipInst (RsqInst $src)) >; //===----------------------------------------------------------------------===// // R600 / R700 Instructions //===----------------------------------------------------------------------===// let Predicates = [isR600] in { def MUL_LIT_r600 : MUL_LIT_Common<0x0C>; def MULADD_r600 : MULADD_Common<0x10>; def MULADD_IEEE_r600 : MULADD_IEEE_Common<0x14>; def CNDE_r600 : CNDE_Common<0x18>; def CNDGT_r600 : CNDGT_Common<0x19>; def CNDGE_r600 : CNDGE_Common<0x1A>; def DOT4_r600 : DOT4_Common<0x50>; defm CUBE_r600 : CUBE_Common<0x52>; def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>; def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>; def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>; def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>; def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>; def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>; def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>; def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>; def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>; def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>; def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>; def SIN_r600 : SIN_Common<0x6E>; def COS_r600 : COS_Common<0x6F>; def ASHR_r600 : ASHR_Common<0x70>; def LSHR_r600 : LSHR_Common<0x71>; def LSHL_r600 : LSHL_Common<0x72>; def MULLO_INT_r600 : MULLO_INT_Common<0x73>; def MULHI_INT_r600 : MULHI_INT_Common<0x74>; def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>; def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>; def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>; defm DIV_r600 : DIV_Common<RECIP_IEEE_r600>; def : POW_Common <LOG_IEEE_r600, EXP_IEEE_r600, MUL>; def : SqrtPat<RECIPSQRT_IEEE_r600, RECIP_IEEE_r600>; def R600_ExportSwz : ExportSwzInst { let Word1{20-17} = 0; // BURST_COUNT let Word1{21} = eop; let Word1{22} = 0; // VALID_PIXEL_MODE let Word1{30-23} = inst; let Word1{31} = 1; // BARRIER } defm : ExportPattern<R600_ExportSwz, 39>; def R600_ExportBuf : ExportBufInst { let Word1{20-17} = 0; // BURST_COUNT let Word1{21} = eop; let Word1{22} = 0; // VALID_PIXEL_MODE let Word1{30-23} = inst; let Word1{31} = 1; // BARRIER } defm : SteamOutputExportPattern<R600_ExportBuf, 0x20, 0x21, 0x22, 0x23>; def CF_TC_R600 : CF_CLAUSE_R600<1, (ins i32imm:$ADDR, i32imm:$CNT), "TEX $CNT @$ADDR"> { let POP_COUNT = 0; } def CF_VC_R600 : CF_CLAUSE_R600<2, (ins i32imm:$ADDR, i32imm:$CNT), "VTX $CNT @$ADDR"> { let POP_COUNT = 0; } def WHILE_LOOP_R600 : CF_CLAUSE_R600<6, (ins i32imm:$ADDR), "LOOP_START_DX10 @$ADDR"> { let POP_COUNT = 0; let CNT = 0; } def END_LOOP_R600 : CF_CLAUSE_R600<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> { let POP_COUNT = 0; let CNT = 0; } def LOOP_BREAK_R600 : CF_CLAUSE_R600<9, (ins i32imm:$ADDR), "LOOP_BREAK @$ADDR"> { let POP_COUNT = 0; let CNT = 0; } def CF_CONTINUE_R600 : CF_CLAUSE_R600<8, (ins i32imm:$ADDR), "CONTINUE @$ADDR"> { let POP_COUNT = 0; let CNT = 0; } def CF_JUMP_R600 : CF_CLAUSE_R600<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "JUMP @$ADDR POP:$POP_COUNT"> { let CNT = 0; } def CF_PUSH_ELSE_R600 : CF_CLAUSE_R600<12, (ins i32imm:$ADDR), "PUSH_ELSE @$ADDR"> { let CNT = 0; let POP_COUNT = 0; // FIXME? } def CF_ELSE_R600 : CF_CLAUSE_R600<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "ELSE @$ADDR POP:$POP_COUNT"> { let CNT = 0; } def CF_CALL_FS_R600 : CF_CLAUSE_R600<19, (ins), "CALL_FS"> { let ADDR = 0; let CNT = 0; let POP_COUNT = 0; } def POP_R600 : CF_CLAUSE_R600<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "POP @$ADDR POP:$POP_COUNT"> { let CNT = 0; } def CF_END_R600 : CF_CLAUSE_R600<0, (ins), "CF_END"> { let CNT = 0; let POP_COUNT = 0; let ADDR = 0; let END_OF_PROGRAM = 1; } } //===----------------------------------------------------------------------===// // Register loads and stores - for indirect addressing //===----------------------------------------------------------------------===// let Namespace = "R600" in { defm R600_ : RegisterLoadStore <R600_Reg32, FRAMEri, ADDRIndirect>; } // Hardcode channel to 0 // NOTE: LSHR is not available here. LSHR is per family instruction def : R600Pat < (i32 (load_private ADDRIndirect:$addr) ), (R600_RegisterLoad FRAMEri:$addr, (i32 0)) >; def : R600Pat < (store_private i32:$val, ADDRIndirect:$addr), (R600_RegisterStore i32:$val, FRAMEri:$addr, (i32 0)) >; //===----------------------------------------------------------------------===// // Pseudo instructions //===----------------------------------------------------------------------===// let isPseudo = 1 in { def PRED_X : InstR600 < (outs R600_Predicate_Bit:$dst), (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags), "", [], NullALU> { let FlagOperandIdx = 3; } let isTerminator = 1, isBranch = 1 in { def JUMP_COND : InstR600 < (outs), (ins brtarget:$target, R600_Predicate_Bit:$p), "JUMP $target ($p)", [], AnyALU >; def JUMP : InstR600 < (outs), (ins brtarget:$target), "JUMP $target", [], AnyALU > { let isPredicable = 1; let isBarrier = 1; } } // End isTerminator = 1, isBranch = 1 let usesCustomInserter = 1 in { let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in { def MASK_WRITE : InstR600 < (outs), (ins R600_Reg32:$src), "MASK_WRITE $src", [], NullALU >; } // End mayLoad = 0, mayStore = 0, hasSideEffects = 1 def TXD: InstR600 < (outs R600_Reg128:$dst), (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget), "TXD $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget", [], NullALU > { let TEXInst = 1; } def TXD_SHADOW: InstR600 < (outs R600_Reg128:$dst), (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget), "TXD_SHADOW $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget", [], NullALU> { let TEXInst = 1; } } // End isPseudo = 1 } // End usesCustomInserter = 1 //===----------------------------------------------------------------------===// // Constant Buffer Addressing Support //===----------------------------------------------------------------------===// let usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "R600" in { def CONST_COPY : Instruction { let OutOperandList = (outs R600_Reg32:$dst); let InOperandList = (ins i32imm:$src); let Pattern = [(set R600_Reg32:$dst, (CONST_ADDRESS ADDRGA_CONST_OFFSET:$src))]; let AsmString = "CONST_COPY"; let hasSideEffects = 0; let isAsCheapAsAMove = 1; let Itinerary = NullALU; } } // end usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU" def TEX_VTX_CONSTBUF : InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$buffer_id), "VTX_READ_eg $dst, $ptr", [(set v4i32:$dst, (CONST_ADDRESS ADDRGA_VAR_OFFSET:$ptr, (i32 imm:$buffer_id)))]>, VTX_WORD1_GPR, VTX_WORD0_eg { let VC_INST = 0; let FETCH_TYPE = 2; let FETCH_WHOLE_QUAD = 0; let SRC_REL = 0; let SRC_SEL_X = 0; let DST_REL = 0; let USE_CONST_FIELDS = 0; let NUM_FORMAT_ALL = 2; let FORMAT_COMP_ALL = 1; let SRF_MODE_ALL = 1; let MEGA_FETCH_COUNT = 16; let DST_SEL_X = 0; let DST_SEL_Y = 1; let DST_SEL_Z = 2; let DST_SEL_W = 3; let DATA_FORMAT = 35; let Inst{31-0} = Word0; let Inst{63-32} = Word1; // LLVM can only encode 64-bit instructions, so these fields are manually // encoded in R600CodeEmitter // // bits<16> OFFSET; // bits<2> ENDIAN_SWAP = 0; // bits<1> CONST_BUF_NO_STRIDE = 0; // bits<1> MEGA_FETCH = 0; // bits<1> ALT_CONST = 0; // bits<2> BUFFER_INDEX_MODE = 0; // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding // is done in R600CodeEmitter // // Inst{79-64} = OFFSET; // Inst{81-80} = ENDIAN_SWAP; // Inst{82} = CONST_BUF_NO_STRIDE; // Inst{83} = MEGA_FETCH; // Inst{84} = ALT_CONST; // Inst{86-85} = BUFFER_INDEX_MODE; // Inst{95-86} = 0; Reserved // VTX_WORD3 (Padding) // // Inst{127-96} = 0; let VTXInst = 1; } def TEX_VTX_TEXBUF: InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$buffer_id), "TEX_VTX_EXPLICIT_READ $dst, $ptr">, VTX_WORD1_GPR, VTX_WORD0_eg { let VC_INST = 0; let FETCH_TYPE = 2; let FETCH_WHOLE_QUAD = 0; let SRC_REL = 0; let SRC_SEL_X = 0; let DST_REL = 0; let USE_CONST_FIELDS = 1; let NUM_FORMAT_ALL = 0; let FORMAT_COMP_ALL = 0; let SRF_MODE_ALL = 1; let MEGA_FETCH_COUNT = 16; let DST_SEL_X = 0; let DST_SEL_Y = 1; let DST_SEL_Z = 2; let DST_SEL_W = 3; let DATA_FORMAT = 0; let Inst{31-0} = Word0; let Inst{63-32} = Word1; // LLVM can only encode 64-bit instructions, so these fields are manually // encoded in R600CodeEmitter // // bits<16> OFFSET; // bits<2> ENDIAN_SWAP = 0; // bits<1> CONST_BUF_NO_STRIDE = 0; // bits<1> MEGA_FETCH = 0; // bits<1> ALT_CONST = 0; // bits<2> BUFFER_INDEX_MODE = 0; // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding // is done in R600CodeEmitter // // Inst{79-64} = OFFSET; // Inst{81-80} = ENDIAN_SWAP; // Inst{82} = CONST_BUF_NO_STRIDE; // Inst{83} = MEGA_FETCH; // Inst{84} = ALT_CONST; // Inst{86-85} = BUFFER_INDEX_MODE; // Inst{95-86} = 0; Reserved // VTX_WORD3 (Padding) // // Inst{127-96} = 0; let VTXInst = 1; } //===---------------------------------------------------------------------===// // Flow and Program control Instructions //===---------------------------------------------------------------------===// multiclass BranchConditional<SDNode Op, RegisterClass rci, RegisterClass rcf> { def _i32 : ILFormat<(outs), (ins brtarget:$target, rci:$src0), "; i32 Pseudo branch instruction", [(Op bb:$target, (i32 rci:$src0))]>; def _f32 : ILFormat<(outs), (ins brtarget:$target, rcf:$src0), "; f32 Pseudo branch instruction", [(Op bb:$target, (f32 rcf:$src0))]>; } // Only scalar types should generate flow control multiclass BranchInstr<string name> { def _i32 : ILFormat<(outs), (ins R600_Reg32:$src), !strconcat(name, " $src"), []>; def _f32 : ILFormat<(outs), (ins R600_Reg32:$src), !strconcat(name, " $src"), []>; } // Only scalar types should generate flow control multiclass BranchInstr2<string name> { def _i32 : ILFormat<(outs), (ins R600_Reg32:$src0, R600_Reg32:$src1), !strconcat(name, " $src0, $src1"), []>; def _f32 : ILFormat<(outs), (ins R600_Reg32:$src0, R600_Reg32:$src1), !strconcat(name, " $src0, $src1"), []>; } //===---------------------------------------------------------------------===// // Custom Inserter for Branches and returns, this eventually will be a // separate pass //===---------------------------------------------------------------------===// let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1, Namespace = "R600" in { def BRANCH : ILFormat<(outs), (ins brtarget:$target), "; Pseudo unconditional branch instruction", [(br bb:$target)]>; defm BRANCH_COND : BranchConditional<IL_brcond, R600_Reg32, R600_Reg32>; } //===----------------------------------------------------------------------===// // Branch Instructions //===----------------------------------------------------------------------===// def IF_PREDICATE_SET : ILFormat<(outs), (ins R600_Reg32:$src), "IF_PREDICATE_SET $src", []>; let isTerminator=1 in { def BREAK : ILFormat< (outs), (ins), "BREAK", []>; def CONTINUE : ILFormat< (outs), (ins), "CONTINUE", []>; def DEFAULT : ILFormat< (outs), (ins), "DEFAULT", []>; def ELSE : ILFormat< (outs), (ins), "ELSE", []>; def ENDSWITCH : ILFormat< (outs), (ins), "ENDSWITCH", []>; def ENDMAIN : ILFormat< (outs), (ins), "ENDMAIN", []>; def END : ILFormat< (outs), (ins), "END", []>; def ENDFUNC : ILFormat< (outs), (ins), "ENDFUNC", []>; def ENDIF : ILFormat< (outs), (ins), "ENDIF", []>; def WHILELOOP : ILFormat< (outs), (ins), "WHILE", []>; def ENDLOOP : ILFormat< (outs), (ins), "ENDLOOP", []>; def FUNC : ILFormat< (outs), (ins), "FUNC", []>; def RETDYN : ILFormat< (outs), (ins), "RET_DYN", []>; // This opcode has custom swizzle pattern encoded in Swizzle Encoder defm IF_LOGICALNZ : BranchInstr<"IF_LOGICALNZ">; // This opcode has custom swizzle pattern encoded in Swizzle Encoder defm IF_LOGICALZ : BranchInstr<"IF_LOGICALZ">; // This opcode has custom swizzle pattern encoded in Swizzle Encoder defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">; // This opcode has custom swizzle pattern encoded in Swizzle Encoder defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">; // This opcode has custom swizzle pattern encoded in Swizzle Encoder defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">; // This opcode has custom swizzle pattern encoded in Swizzle Encoder defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">; defm IFC : BranchInstr2<"IFC">; defm BREAKC : BranchInstr2<"BREAKC">; defm CONTINUEC : BranchInstr2<"CONTINUEC">; } //===----------------------------------------------------------------------===// // Indirect addressing pseudo instructions //===----------------------------------------------------------------------===// let isPseudo = 1 in { class ExtractVertical <RegisterClass vec_rc> : InstR600 < (outs R600_Reg32:$dst), (ins vec_rc:$vec, R600_Reg32:$index), "", [], AnyALU >; let Constraints = "$dst = $vec" in { class InsertVertical <RegisterClass vec_rc> : InstR600 < (outs vec_rc:$dst), (ins vec_rc:$vec, R600_Reg32:$value, R600_Reg32:$index), "", [], AnyALU >; } // End Constraints = "$dst = $vec" } // End isPseudo = 1 def R600_EXTRACT_ELT_V2 : ExtractVertical <R600_Reg64Vertical>; def R600_EXTRACT_ELT_V4 : ExtractVertical <R600_Reg128Vertical>; def R600_INSERT_ELT_V2 : InsertVertical <R600_Reg64Vertical>; def R600_INSERT_ELT_V4 : InsertVertical <R600_Reg128Vertical>; class ExtractVerticalPat <Instruction inst, ValueType vec_ty, ValueType scalar_ty> : R600Pat < (scalar_ty (extractelt vec_ty:$vec, i32:$index)), (inst $vec, $index) >; def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2i32, i32>; def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2f32, f32>; def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4i32, i32>; def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4f32, f32>; class InsertVerticalPat <Instruction inst, ValueType vec_ty, ValueType scalar_ty> : R600Pat < (vec_ty (insertelt vec_ty:$vec, scalar_ty:$value, i32:$index)), (inst $vec, $value, $index) >; def : InsertVerticalPat <R600_INSERT_ELT_V2, v2i32, i32>; def : InsertVerticalPat <R600_INSERT_ELT_V2, v2f32, f32>; def : InsertVerticalPat <R600_INSERT_ELT_V4, v4i32, i32>; def : InsertVerticalPat <R600_INSERT_ELT_V4, v4f32, f32>; //===----------------------------------------------------------------------===// // ISel Patterns //===----------------------------------------------------------------------===// let SubtargetPredicate = isR600toCayman in { // CND*_INT Patterns for f32 True / False values class CND_INT_f32 <InstR600 cnd, CondCode cc> : R600Pat < (selectcc i32:$src0, 0, f32:$src1, f32:$src2, cc), (cnd $src0, $src1, $src2) >; def : CND_INT_f32 <CNDE_INT, SETEQ>; def : CND_INT_f32 <CNDGT_INT, SETGT>; def : CND_INT_f32 <CNDGE_INT, SETGE>; //CNDGE_INT extra pattern def : R600Pat < (selectcc i32:$src0, -1, i32:$src1, i32:$src2, COND_SGT), (CNDGE_INT $src0, $src1, $src2) >; // KIL Patterns def KIL : R600Pat < (int_r600_kill f32:$src0), (MASK_WRITE (KILLGT (f32 ZERO), $src0)) >; def : Extract_Element <f32, v4f32, 0, sub0>; def : Extract_Element <f32, v4f32, 1, sub1>; def : Extract_Element <f32, v4f32, 2, sub2>; def : Extract_Element <f32, v4f32, 3, sub3>; def : Insert_Element <f32, v4f32, 0, sub0>; def : Insert_Element <f32, v4f32, 1, sub1>; def : Insert_Element <f32, v4f32, 2, sub2>; def : Insert_Element <f32, v4f32, 3, sub3>; def : Extract_Element <i32, v4i32, 0, sub0>; def : Extract_Element <i32, v4i32, 1, sub1>; def : Extract_Element <i32, v4i32, 2, sub2>; def : Extract_Element <i32, v4i32, 3, sub3>; def : Insert_Element <i32, v4i32, 0, sub0>; def : Insert_Element <i32, v4i32, 1, sub1>; def : Insert_Element <i32, v4i32, 2, sub2>; def : Insert_Element <i32, v4i32, 3, sub3>; def : Extract_Element <f32, v2f32, 0, sub0>; def : Extract_Element <f32, v2f32, 1, sub1>; def : Insert_Element <f32, v2f32, 0, sub0>; def : Insert_Element <f32, v2f32, 1, sub1>; def : Extract_Element <i32, v2i32, 0, sub0>; def : Extract_Element <i32, v2i32, 1, sub1>; def : Insert_Element <i32, v2i32, 0, sub0>; def : Insert_Element <i32, v2i32, 1, sub1>; // bitconvert patterns def : BitConvert <i32, f32, R600_Reg32>; def : BitConvert <f32, i32, R600_Reg32>; def : BitConvert <v2f32, v2i32, R600_Reg64>; def : BitConvert <v2i32, v2f32, R600_Reg64>; def : BitConvert <v4f32, v4i32, R600_Reg128>; def : BitConvert <v4i32, v4f32, R600_Reg128>; // DWORDADDR pattern def : DwordAddrPat <i32, R600_Reg32>; } // End SubtargetPredicate = isR600toCayman def getLDSNoRetOp : InstrMapping { let FilterClass = "R600_LDS_1A1D"; let RowFields = ["BaseOp"]; let ColFields = ["DisableEncoding"]; let KeyCol = ["$dst"]; let ValueCols = [[""""]]; }