#ifndef LLVM_IR_CFG_H
#define LLVM_IR_CFG_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Value.h"
#include <cassert>
#include <cstddef>
#include <iterator>
namespace llvm {
class Instruction;
class Use;
template <class Ptr, class USE_iterator> class PredIterator {
public:
  using iterator_category = std::forward_iterator_tag;
  using value_type = Ptr;
  using difference_type = std::ptrdiff_t;
  using pointer = Ptr *;
  using reference = Ptr *;
private:
  using Self = PredIterator<Ptr, USE_iterator>;
  USE_iterator It;
  inline void advancePastNonTerminators() {
        while (!It.atEnd()) {
      if (auto *Inst = dyn_cast<Instruction>(*It))
        if (Inst->isTerminator())
          break;
      ++It;
    }
  }
public:
  PredIterator() = default;
  explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
    advancePastNonTerminators();
  }
  inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
  inline bool operator==(const Self& x) const { return It == x.It; }
  inline bool operator!=(const Self& x) const { return !operator==(x); }
  inline reference operator*() const {
    assert(!It.atEnd() && "pred_iterator out of range!");
    return cast<Instruction>(*It)->getParent();
  }
  inline pointer *operator->() const { return &operator*(); }
  inline Self& operator++() {       assert(!It.atEnd() && "pred_iterator out of range!");
    ++It; advancePastNonTerminators();
    return *this;
  }
  inline Self operator++(int) {     Self tmp = *this; ++*this; return tmp;
  }
      unsigned getOperandNo() const {
    return It.getOperandNo();
  }
      Use &getUse() const {
    return It.getUse();
  }
};
using pred_iterator = PredIterator<BasicBlock, Value::user_iterator>;
using const_pred_iterator =
    PredIterator<const BasicBlock, Value::const_user_iterator>;
using pred_range = iterator_range<pred_iterator>;
using const_pred_range = iterator_range<const_pred_iterator>;
inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
inline const_pred_iterator pred_begin(const BasicBlock *BB) {
  return const_pred_iterator(BB);
}
inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
inline const_pred_iterator pred_end(const BasicBlock *BB) {
  return const_pred_iterator(BB, true);
}
inline bool pred_empty(const BasicBlock *BB) {
  return pred_begin(BB) == pred_end(BB);
}
inline unsigned pred_size(const BasicBlock *BB) {
  return std::distance(pred_begin(BB), pred_end(BB));
}
inline pred_range predecessors(BasicBlock *BB) {
  return pred_range(pred_begin(BB), pred_end(BB));
}
inline const_pred_range predecessors(const BasicBlock *BB) {
  return const_pred_range(pred_begin(BB), pred_end(BB));
}
template <class InstructionT, class BlockT>
class SuccIterator
    : public iterator_facade_base<SuccIterator<InstructionT, BlockT>,
                                  std::random_access_iterator_tag, BlockT, int,
                                  BlockT *, BlockT *> {
public:
  using difference_type = int;
  using pointer = BlockT *;
  using reference = BlockT *;
private:
  InstructionT *Inst;
  int Idx;
  using Self = SuccIterator<InstructionT, BlockT>;
  inline bool index_is_valid(int Idx) {
            return Idx >= 0 && (Idx == 0 || Idx <= (int)Inst->getNumSuccessors());
  }
    class SuccessorProxy {
    Self It;
  public:
    explicit SuccessorProxy(const Self &It) : It(It) {}
    SuccessorProxy(const SuccessorProxy &) = default;
    SuccessorProxy &operator=(SuccessorProxy RHS) {
      *this = reference(RHS);
      return *this;
    }
    SuccessorProxy &operator=(reference RHS) {
      It.Inst->setSuccessor(It.Idx, RHS);
      return *this;
    }
    operator reference() const { return *It; }
  };
public:
    explicit inline SuccIterator(InstructionT *Inst) : Inst(Inst), Idx(0) {}
    inline SuccIterator(InstructionT *Inst, bool) : Inst(Inst) {
    if (Inst)
      Idx = Inst->getNumSuccessors();
    else
                                          Idx = 0;
  }
      int getSuccessorIndex() const { return Idx; }
  inline bool operator==(const Self &x) const { return Idx == x.Idx; }
  inline BlockT *operator*() const { return Inst->getSuccessor(Idx); }
    inline BlockT *operator->() const { return operator*(); }
  inline bool operator<(const Self &RHS) const {
    assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
    return Idx < RHS.Idx;
  }
  int operator-(const Self &RHS) const {
    assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
    return Idx - RHS.Idx;
  }
  inline Self &operator+=(int RHS) {
    int NewIdx = Idx + RHS;
    assert(index_is_valid(NewIdx) && "Iterator index out of bound");
    Idx = NewIdx;
    return *this;
  }
  inline Self &operator-=(int RHS) { return operator+=(-RHS); }
      inline SuccessorProxy operator[](int Offset) {
    Self TmpIt = *this;
    TmpIt += Offset;
    return SuccessorProxy(TmpIt);
  }
    inline BlockT *getSource() {
    assert(Inst && "Source not available, if basic block was malformed");
    return Inst->getParent();
  }
};
using succ_iterator = SuccIterator<Instruction, BasicBlock>;
using const_succ_iterator = SuccIterator<const Instruction, const BasicBlock>;
using succ_range = iterator_range<succ_iterator>;
using const_succ_range = iterator_range<const_succ_iterator>;
inline succ_iterator succ_begin(Instruction *I) { return succ_iterator(I); }
inline const_succ_iterator succ_begin(const Instruction *I) {
  return const_succ_iterator(I);
}
inline succ_iterator succ_end(Instruction *I) { return succ_iterator(I, true); }
inline const_succ_iterator succ_end(const Instruction *I) {
  return const_succ_iterator(I, true);
}
inline bool succ_empty(const Instruction *I) {
  return succ_begin(I) == succ_end(I);
}
inline unsigned succ_size(const Instruction *I) {
  return std::distance(succ_begin(I), succ_end(I));
}
inline succ_range successors(Instruction *I) {
  return succ_range(succ_begin(I), succ_end(I));
}
inline const_succ_range successors(const Instruction *I) {
  return const_succ_range(succ_begin(I), succ_end(I));
}
inline succ_iterator succ_begin(BasicBlock *BB) {
  return succ_iterator(BB->getTerminator());
}
inline const_succ_iterator succ_begin(const BasicBlock *BB) {
  return const_succ_iterator(BB->getTerminator());
}
inline succ_iterator succ_end(BasicBlock *BB) {
  return succ_iterator(BB->getTerminator(), true);
}
inline const_succ_iterator succ_end(const BasicBlock *BB) {
  return const_succ_iterator(BB->getTerminator(), true);
}
inline bool succ_empty(const BasicBlock *BB) {
  return succ_begin(BB) == succ_end(BB);
}
inline unsigned succ_size(const BasicBlock *BB) {
  return std::distance(succ_begin(BB), succ_end(BB));
}
inline succ_range successors(BasicBlock *BB) {
  return succ_range(succ_begin(BB), succ_end(BB));
}
inline const_succ_range successors(const BasicBlock *BB) {
  return const_succ_range(succ_begin(BB), succ_end(BB));
}
template <> struct GraphTraits<BasicBlock*> {
  using NodeRef = BasicBlock *;
  using ChildIteratorType = succ_iterator;
  static NodeRef getEntryNode(BasicBlock *BB) { return BB; }
  static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
  static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
};
template <> struct GraphTraits<const BasicBlock*> {
  using NodeRef = const BasicBlock *;
  using ChildIteratorType = const_succ_iterator;
  static NodeRef getEntryNode(const BasicBlock *BB) { return BB; }
  static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
  static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
};
template <> struct GraphTraits<Inverse<BasicBlock*>> {
  using NodeRef = BasicBlock *;
  using ChildIteratorType = pred_iterator;
  static NodeRef getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
  static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
  static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
};
template <> struct GraphTraits<Inverse<const BasicBlock*>> {
  using NodeRef = const BasicBlock *;
  using ChildIteratorType = const_pred_iterator;
  static NodeRef getEntryNode(Inverse<const BasicBlock *> G) { return G.Graph; }
  static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
  static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
};
template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
  static NodeRef getEntryNode(Function *F) { return &F->getEntryBlock(); }
    using nodes_iterator = pointer_iterator<Function::iterator>;
  static nodes_iterator nodes_begin(Function *F) {
    return nodes_iterator(F->begin());
  }
  static nodes_iterator nodes_end(Function *F) {
    return nodes_iterator(F->end());
  }
  static size_t size(Function *F) { return F->size(); }
};
template <> struct GraphTraits<const Function*> :
  public GraphTraits<const BasicBlock*> {
  static NodeRef getEntryNode(const Function *F) { return &F->getEntryBlock(); }
    using nodes_iterator = pointer_iterator<Function::const_iterator>;
  static nodes_iterator nodes_begin(const Function *F) {
    return nodes_iterator(F->begin());
  }
  static nodes_iterator nodes_end(const Function *F) {
    return nodes_iterator(F->end());
  }
  static size_t size(const Function *F) { return F->size(); }
};
template <> struct GraphTraits<Inverse<Function*>> :
  public GraphTraits<Inverse<BasicBlock*>> {
  static NodeRef getEntryNode(Inverse<Function *> G) {
    return &G.Graph->getEntryBlock();
  }
};
template <> struct GraphTraits<Inverse<const Function*>> :
  public GraphTraits<Inverse<const BasicBlock*>> {
  static NodeRef getEntryNode(Inverse<const Function *> G) {
    return &G.Graph->getEntryBlock();
  }
};
} 
#endif