; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -basic-aa -licm -S -verify-memoryssa | FileCheck %s declare i32 @strlen(i8*) readonly nounwind willreturn declare void @foo() ; Sink readonly function. define i32 @test1(i8* %P) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: br i1 false, label [[LOOP]], label [[OUT:%.*]] ; CHECK: Out: ; CHECK-NEXT: [[A_LE:%.*]] = call i32 @strlen(i8* [[P:%.*]]) #[[ATTR3:[0-9]+]] ; CHECK-NEXT: ret i32 [[A_LE]] ; br label %Loop Loop: ; preds = %Loop, %0 %A = call i32 @strlen( i8* %P ) readonly br i1 false, label %Loop, label %Out Out: ; preds = %Loop ret i32 %A } declare double @sin(double) readnone nounwind willreturn ; Sink readnone function out of loop with unknown memory behavior. define double @test2(double %X) { ; CHECK-LABEL: @test2( ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: call void @foo() ; CHECK-NEXT: br i1 true, label [[LOOP]], label [[OUT:%.*]] ; CHECK: Out: ; CHECK-NEXT: [[A_LE:%.*]] = call double @sin(double [[X:%.*]]) #[[ATTR4:[0-9]+]] ; CHECK-NEXT: ret double [[A_LE]] ; br label %Loop Loop: ; preds = %Loop, %0 call void @foo( ) %A = call double @sin( double %X ) readnone br i1 true, label %Loop, label %Out Out: ; preds = %Loop ret double %A } ; FIXME: Should be able to sink this case define i32 @test2b(i32 %X) { ; CHECK-LABEL: @test2b( ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: call void @foo() ; CHECK-NEXT: br i1 true, label [[LOOP]], label [[OUT:%.*]] ; CHECK: Out: ; CHECK-NEXT: [[A_LE:%.*]] = sdiv i32 10, [[X:%.*]] ; CHECK-NEXT: ret i32 [[A_LE]] ; br label %Loop Loop: ; preds = %Loop, %0 call void @foo( ) %A = sdiv i32 10, %X br i1 true, label %Loop, label %Out Out: ; preds = %Loop ret i32 %A } define double @test2c(double* %P) { ; CHECK-LABEL: @test2c( ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: call void @foo() ; CHECK-NEXT: br i1 true, label [[LOOP]], label [[OUT:%.*]] ; CHECK: Out: ; CHECK-NEXT: [[A_LE:%.*]] = load double, double* [[P:%.*]], align 8, !invariant.load !0 ; CHECK-NEXT: ret double [[A_LE]] ; br label %Loop Loop: ; preds = %Loop, %0 call void @foo( ) %A = load double, double* %P, !invariant.load !{} br i1 true, label %Loop, label %Out Out: ; preds = %Loop ret double %A } ; This testcase checks to make sure the sinker does not cause problems with ; critical edges. define void @test3() { ; CHECK-LABEL: @test3( ; CHECK-NEXT: Entry: ; CHECK-NEXT: br i1 false, label [[LOOP_PREHEADER:%.*]], label [[EXIT:%.*]] ; CHECK: Loop.preheader: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: br i1 false, label [[LOOP]], label [[EXIT_LOOPEXIT:%.*]] ; CHECK: Exit.loopexit: ; CHECK-NEXT: [[X_LE:%.*]] = add i32 0, 1 ; CHECK-NEXT: br label [[EXIT]] ; CHECK: Exit: ; CHECK-NEXT: [[Y:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[X_LE]], [[EXIT_LOOPEXIT]] ] ; CHECK-NEXT: ret void ; Entry: br i1 false, label %Loop, label %Exit Loop: %X = add i32 0, 1 br i1 false, label %Loop, label %Exit Exit: %Y = phi i32 [ 0, %Entry ], [ %X, %Loop ] ret void } ; If the result of an instruction is only used outside of the loop, sink ; the instruction to the exit blocks instead of executing it on every ; iteration of the loop. ; define i32 @test4(i32 %N) { ; CHECK-LABEL: @test4( ; CHECK-NEXT: Entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[LOOP]] ], [ [[N:%.*]], [[ENTRY:%.*]] ] ; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1 ; CHECK-NEXT: [[TMP_1:%.*]] = icmp ne i32 [[N_ADDR_0_PN]], 1 ; CHECK-NEXT: br i1 [[TMP_1]], label [[LOOP]], label [[OUT:%.*]] ; CHECK: Out: ; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[LOOP]] ] ; CHECK-NEXT: [[TMP_6_LE:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA]] ; CHECK-NEXT: [[TMP_7_LE:%.*]] = sub i32 [[TMP_6_LE]], [[N]] ; CHECK-NEXT: ret i32 [[TMP_7_LE]] ; Entry: br label %Loop Loop: ; preds = %Loop, %Entry %N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ] %tmp.6 = mul i32 %N, %N_addr.0.pn ; <i32> [#uses=1] %tmp.7 = sub i32 %tmp.6, %N ; <i32> [#uses=1] %dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1] %tmp.1 = icmp ne i32 %N_addr.0.pn, 1 ; <i1> [#uses=1] br i1 %tmp.1, label %Loop, label %Out Out: ; preds = %Loop ret i32 %tmp.7 } ; To reduce register pressure, if a load is hoistable out of the loop, and the ; result of the load is only used outside of the loop, sink the load instead of ; hoisting it! ; @X = global i32 5 ; <i32*> [#uses=1] define i32 @test5(i32 %N) { ; CHECK-LABEL: @test5( ; CHECK-NEXT: Entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[LOOP]] ], [ [[N:%.*]], [[ENTRY:%.*]] ] ; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1 ; CHECK-NEXT: [[TMP_1:%.*]] = icmp ne i32 [[N_ADDR_0_PN]], 1 ; CHECK-NEXT: br i1 [[TMP_1]], label [[LOOP]], label [[OUT:%.*]] ; CHECK: Out: ; CHECK-NEXT: [[TMP_6_LE:%.*]] = load i32, i32* @X, align 4 ; CHECK-NEXT: ret i32 [[TMP_6_LE]] ; Entry: br label %Loop Loop: ; preds = %Loop, %Entry %N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ] %tmp.6 = load i32, i32* @X ; <i32> [#uses=1] %dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1] %tmp.1 = icmp ne i32 %N_addr.0.pn, 1 ; <i1> [#uses=1] br i1 %tmp.1, label %Loop, label %Out Out: ; preds = %Loop ret i32 %tmp.6 } ; The loop sinker was running from the bottom of the loop to the top, causing ; it to miss opportunities to sink instructions that depended on sinking other ; instructions from the loop. Instead they got hoisted, which is better than ; leaving them in the loop, but increases register pressure pointlessly. %Ty = type { i32, i32 } @X2 = external global %Ty define i32 @test6() { ; CHECK-LABEL: @test6( ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: br i1 false, label [[LOOP]], label [[OUT:%.*]] ; CHECK: Out: ; CHECK-NEXT: [[DEAD_LE:%.*]] = getelementptr [[TY:%.*]], %Ty* @X2, i64 0, i32 0 ; CHECK-NEXT: [[SUNK2_LE:%.*]] = load i32, i32* [[DEAD_LE]], align 4 ; CHECK-NEXT: ret i32 [[SUNK2_LE]] ; br label %Loop Loop: %dead = getelementptr %Ty, %Ty* @X2, i64 0, i32 0 %sunk2 = load i32, i32* %dead br i1 false, label %Loop, label %Out Out: ; preds = %Loop ret i32 %sunk2 } ; This testcase ensures that we can sink instructions from loops with ; multiple exits. ; define i32 @test7(i32 %N, i1 %C) { ; CHECK-LABEL: @test7( ; CHECK-NEXT: Entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[CONTLOOP:%.*]] ], [ [[N:%.*]], [[ENTRY:%.*]] ] ; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1 ; CHECK-NEXT: br i1 [[C:%.*]], label [[CONTLOOP]], label [[OUT1:%.*]] ; CHECK: ContLoop: ; CHECK-NEXT: [[TMP_1:%.*]] = icmp ne i32 [[N_ADDR_0_PN]], 1 ; CHECK-NEXT: br i1 [[TMP_1]], label [[LOOP]], label [[OUT2:%.*]] ; CHECK: Out1: ; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[LOOP]] ] ; CHECK-NEXT: [[TMP_6_LE:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA]] ; CHECK-NEXT: [[TMP_7_LE2:%.*]] = sub i32 [[TMP_6_LE]], [[N]] ; CHECK-NEXT: ret i32 [[TMP_7_LE2]] ; CHECK: Out2: ; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA5:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[CONTLOOP]] ] ; CHECK-NEXT: [[TMP_6_LE4:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA5]] ; CHECK-NEXT: [[TMP_7_LE:%.*]] = sub i32 [[TMP_6_LE4]], [[N]] ; CHECK-NEXT: ret i32 [[TMP_7_LE]] ; Entry: br label %Loop Loop: ; preds = %ContLoop, %Entry %N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ] %tmp.6 = mul i32 %N, %N_addr.0.pn %tmp.7 = sub i32 %tmp.6, %N ; <i32> [#uses=2] %dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1] br i1 %C, label %ContLoop, label %Out1 ContLoop: %tmp.1 = icmp ne i32 %N_addr.0.pn, 1 br i1 %tmp.1, label %Loop, label %Out2 Out1: ; preds = %Loop ret i32 %tmp.7 Out2: ; preds = %ContLoop ret i32 %tmp.7 } ; This testcase checks to make sure we can sink values which are only live on ; some exits out of the loop, and that we can do so without breaking dominator ; info. define i32 @test8(i1 %C1, i1 %C2, i32* %P, i32* %Q) { ; CHECK-LABEL: @test8( ; CHECK-NEXT: Entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: br i1 [[C1:%.*]], label [[CONT:%.*]], label [[EXIT1:%.*]] ; CHECK: Cont: ; CHECK-NEXT: [[X:%.*]] = load i32, i32* [[P:%.*]], align 4 ; CHECK-NEXT: store i32 [[X]], i32* [[Q:%.*]], align 4 ; CHECK-NEXT: br i1 [[C2:%.*]], label [[LOOP]], label [[EXIT2:%.*]] ; CHECK: exit1: ; CHECK-NEXT: ret i32 0 ; CHECK: exit2: ; CHECK-NEXT: [[X_LCSSA:%.*]] = phi i32 [ [[X]], [[CONT]] ] ; CHECK-NEXT: [[V_LE:%.*]] = add i32 [[X_LCSSA]], 1 ; CHECK-NEXT: ret i32 [[V_LE]] ; Entry: br label %Loop Loop: ; preds = %Cont, %Entry br i1 %C1, label %Cont, label %exit1 Cont: ; preds = %Loop %X = load i32, i32* %P ; <i32> [#uses=2] store i32 %X, i32* %Q %V = add i32 %X, 1 ; <i32> [#uses=1] br i1 %C2, label %Loop, label %exit2 exit1: ; preds = %Loop ret i32 0 exit2: ; preds = %Cont ret i32 %V } define void @test9() { ; CHECK-LABEL: @test9( ; CHECK-NEXT: loopentry.2.i: ; CHECK-NEXT: br i1 false, label [[NO_EXIT_1_I_PREHEADER:%.*]], label [[LOOPENTRY_3_I_PREHEADER:%.*]] ; CHECK: no_exit.1.i.preheader: ; CHECK-NEXT: br label [[NO_EXIT_1_I:%.*]] ; CHECK: no_exit.1.i: ; CHECK-NEXT: br i1 false, label [[RETURN_I:%.*]], label [[ENDIF_8_I:%.*]] ; CHECK: endif.8.i: ; CHECK-NEXT: br i1 false, label [[NO_EXIT_1_I]], label [[LOOPENTRY_3_I_PREHEADER_LOOPEXIT:%.*]] ; CHECK: loopentry.3.i.preheader.loopexit: ; CHECK-NEXT: [[INC_1_I_LE:%.*]] = add i32 0, 1 ; CHECK-NEXT: br label [[LOOPENTRY_3_I_PREHEADER]] ; CHECK: loopentry.3.i.preheader: ; CHECK-NEXT: [[ARG_NUM_0_I_PH13000:%.*]] = phi i32 [ 0, [[LOOPENTRY_2_I:%.*]] ], [ [[INC_1_I_LE]], [[LOOPENTRY_3_I_PREHEADER_LOOPEXIT]] ] ; CHECK-NEXT: ret void ; CHECK: return.i: ; CHECK-NEXT: ret void ; loopentry.2.i: br i1 false, label %no_exit.1.i.preheader, label %loopentry.3.i.preheader no_exit.1.i.preheader: ; preds = %loopentry.2.i br label %no_exit.1.i no_exit.1.i: ; preds = %endif.8.i, %no_exit.1.i.preheader br i1 false, label %return.i, label %endif.8.i endif.8.i: ; preds = %no_exit.1.i %inc.1.i = add i32 0, 1 ; <i32> [#uses=1] br i1 false, label %no_exit.1.i, label %loopentry.3.i.preheader.loopexit loopentry.3.i.preheader.loopexit: ; preds = %endif.8.i br label %loopentry.3.i.preheader loopentry.3.i.preheader: ; preds = %loopentry.3.i.preheader.loopexit, %loopentry.2.i %arg_num.0.i.ph13000 = phi i32 [ 0, %loopentry.2.i ], [ %inc.1.i, %loopentry.3.i.preheader.loopexit ] ; <i32> [#uses=0] ret void return.i: ; preds = %no_exit.1.i ret void } ; Potentially trapping instructions may be sunk as long as they are guaranteed ; to be executed. define i32 @test10(i32 %N) { ; CHECK-LABEL: @test10( ; CHECK-NEXT: Entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[LOOP]] ], [ [[N:%.*]], [[ENTRY:%.*]] ] ; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1 ; CHECK-NEXT: [[TMP_1:%.*]] = icmp ne i32 [[N_ADDR_0_PN]], 0 ; CHECK-NEXT: br i1 [[TMP_1]], label [[LOOP]], label [[OUT:%.*]] ; CHECK: Out: ; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[LOOP]] ] ; CHECK-NEXT: [[TMP_6_LE:%.*]] = sdiv i32 [[N]], [[N_ADDR_0_PN_LCSSA]] ; CHECK-NEXT: ret i32 [[TMP_6_LE]] ; Entry: br label %Loop Loop: ; preds = %Loop, %Entry %N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ] ; <i32> [#uses=3] %tmp.6 = sdiv i32 %N, %N_addr.0.pn ; <i32> [#uses=1] %dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1] %tmp.1 = icmp ne i32 %N_addr.0.pn, 0 ; <i1> [#uses=1] br i1 %tmp.1, label %Loop, label %Out Out: ; preds = %Loop ret i32 %tmp.6 } ; Should delete, not sink, dead instructions. define void @test11() { ; CHECK-LABEL: @test11( ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: br i1 false, label [[LOOP]], label [[OUT:%.*]] ; CHECK: Out: ; CHECK-NEXT: ret void ; br label %Loop Loop: %dead1 = getelementptr %Ty, %Ty* @X2, i64 0, i32 0 %dead2 = getelementptr %Ty, %Ty* @X2, i64 0, i32 1 br i1 false, label %Loop, label %Out Out: ret void } @c = common global [1 x i32] zeroinitializer, align 4 ; Test a *many* way nested loop with multiple exit blocks both of which exit ; multiple loop nests. This exercises LCSSA corner cases. define i32 @PR18753(i1* %a, i1* %b, i1* %c, i1* %d) { ; CHECK-LABEL: @PR18753( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[L1_HEADER:%.*]] ; CHECK: l1.header: ; CHECK-NEXT: [[IV:%.*]] = phi i64 [ [[IV_NEXT:%.*]], [[L1_LATCH:%.*]] ], [ 0, [[ENTRY:%.*]] ] ; CHECK-NEXT: [[ARRAYIDX_I:%.*]] = getelementptr inbounds [1 x i32], [1 x i32]* @c, i64 0, i64 [[IV]] ; CHECK-NEXT: br label [[L2_HEADER:%.*]] ; CHECK: l2.header: ; CHECK-NEXT: [[X0:%.*]] = load i1, i1* [[C:%.*]], align 4 ; CHECK-NEXT: br i1 [[X0]], label [[L1_LATCH]], label [[L3_PREHEADER:%.*]] ; CHECK: l3.preheader: ; CHECK-NEXT: br label [[L3_HEADER:%.*]] ; CHECK: l3.header: ; CHECK-NEXT: [[X1:%.*]] = load i1, i1* [[D:%.*]], align 4 ; CHECK-NEXT: br i1 [[X1]], label [[L2_LATCH:%.*]], label [[L4_PREHEADER:%.*]] ; CHECK: l4.preheader: ; CHECK-NEXT: br label [[L4_HEADER:%.*]] ; CHECK: l4.header: ; CHECK-NEXT: [[X2:%.*]] = load i1, i1* [[A:%.*]], align 1 ; CHECK-NEXT: br i1 [[X2]], label [[L3_LATCH:%.*]], label [[L4_BODY:%.*]] ; CHECK: l4.body: ; CHECK-NEXT: call void @f(i32* [[ARRAYIDX_I]]) ; CHECK-NEXT: [[X3:%.*]] = load i1, i1* [[B:%.*]], align 1 ; CHECK-NEXT: br i1 [[X3]], label [[L4_LATCH:%.*]], label [[EXIT:%.*]] ; CHECK: l4.latch: ; CHECK-NEXT: call void @g() ; CHECK-NEXT: [[X4:%.*]] = load i1, i1* [[B]], align 4 ; CHECK-NEXT: br i1 [[X4]], label [[L4_HEADER]], label [[EXIT]] ; CHECK: l3.latch: ; CHECK-NEXT: br label [[L3_HEADER]] ; CHECK: l2.latch: ; CHECK-NEXT: br label [[L2_HEADER]] ; CHECK: l1.latch: ; CHECK-NEXT: [[IV_NEXT]] = add nsw i64 [[IV]], 1 ; CHECK-NEXT: br label [[L1_HEADER]] ; CHECK: exit: ; CHECK-NEXT: [[IV_LCSSA:%.*]] = phi i64 [ [[IV]], [[L4_LATCH]] ], [ [[IV]], [[L4_BODY]] ] ; CHECK-NEXT: [[L_LE:%.*]] = trunc i64 [[IV_LCSSA]] to i32 ; CHECK-NEXT: ret i32 [[L_LE]] ; entry: br label %l1.header l1.header: %iv = phi i64 [ %iv.next, %l1.latch ], [ 0, %entry ] %arrayidx.i = getelementptr inbounds [1 x i32], [1 x i32]* @c, i64 0, i64 %iv br label %l2.header l2.header: %x0 = load i1, i1* %c, align 4 br i1 %x0, label %l1.latch, label %l3.preheader l3.preheader: br label %l3.header l3.header: %x1 = load i1, i1* %d, align 4 br i1 %x1, label %l2.latch, label %l4.preheader l4.preheader: br label %l4.header l4.header: %x2 = load i1, i1* %a br i1 %x2, label %l3.latch, label %l4.body l4.body: call void @f(i32* %arrayidx.i) %x3 = load i1, i1* %b %l = trunc i64 %iv to i32 br i1 %x3, label %l4.latch, label %exit l4.latch: call void @g() %x4 = load i1, i1* %b, align 4 br i1 %x4, label %l4.header, label %exit l3.latch: br label %l3.header l2.latch: br label %l2.header l1.latch: %iv.next = add nsw i64 %iv, 1 br label %l1.header exit: %lcssa = phi i32 [ %l, %l4.latch ], [ %l, %l4.body ] ret i32 %lcssa } ; @test12 moved to sink-promote.ll, as it tests sinking and promotion. ; Test that we don't crash when trying to sink stores and there's no preheader ; available (which is used for creating loads that may be used by the SSA ; updater) define void @test13() { ; CHECK-LABEL: @test13( ; CHECK-NEXT: br label [[LAB59:%.*]] ; CHECK: lab19: ; CHECK-NEXT: br i1 false, label [[LAB20:%.*]], label [[LAB38_LOOPEXIT:%.*]] ; CHECK: lab20: ; CHECK-NEXT: br label [[LAB60:%.*]] ; CHECK: lab21: ; CHECK-NEXT: br i1 undef, label [[LAB22:%.*]], label [[LAB38:%.*]] ; CHECK: lab22: ; CHECK-NEXT: br label [[LAB38]] ; CHECK: lab38.loopexit: ; CHECK-NEXT: br label [[LAB38]] ; CHECK: lab38: ; CHECK-NEXT: ret void ; CHECK: lab59: ; CHECK-NEXT: indirectbr i8* undef, [label [[LAB60]], label %lab38] ; CHECK: lab60: ; CHECK-NEXT: store i32 2145244101, i32* undef, align 4 ; CHECK-NEXT: indirectbr i8* undef, [label [[LAB21:%.*]], label %lab19] ; br label %lab59 lab19: br i1 undef, label %lab20, label %lab38 lab20: br label %lab60 lab21: br i1 undef, label %lab22, label %lab38 lab22: br label %lab38 lab38: ret void lab59: indirectbr i8* undef, [label %lab60, label %lab38] lab60: store i32 2145244101, i32* undef, align 4 indirectbr i8* undef, [label %lab21, label %lab19] } ; Check if LICM can sink a sinkable instruction the exit blocks through ; a non-trivially replacable PHI node. define i32 @test14(i32 %N, i32 %N2, i1 %C) { ; CHECK-LABEL: @test14( ; CHECK-NEXT: Entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[CONTLOOP:%.*]] ], [ [[N:%.*]], [[ENTRY:%.*]] ] ; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1 ; CHECK-NEXT: br i1 [[C:%.*]], label [[CONTLOOP]], label [[OUT12_SPLIT_LOOP_EXIT1:%.*]] ; CHECK: ContLoop: ; CHECK-NEXT: [[TMP_1:%.*]] = icmp ne i32 [[N_ADDR_0_PN]], 1 ; CHECK-NEXT: br i1 [[TMP_1]], label [[LOOP]], label [[OUT12_SPLIT_LOOP_EXIT:%.*]] ; CHECK: Out12.split.loop.exit: ; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA4:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[CONTLOOP]] ] ; CHECK-NEXT: [[SINK_MUL_LE3:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA4]] ; CHECK-NEXT: br label [[OUT12:%.*]] ; CHECK: Out12.split.loop.exit1: ; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[LOOP]] ] ; CHECK-NEXT: [[SINK_MUL_LE:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA]] ; CHECK-NEXT: [[SINK_SUB_LE:%.*]] = sub i32 [[SINK_MUL_LE]], [[N]] ; CHECK-NEXT: br label [[OUT12]] ; CHECK: Out12: ; CHECK-NEXT: [[TMP:%.*]] = phi i32 [ [[SINK_MUL_LE3]], [[OUT12_SPLIT_LOOP_EXIT]] ], [ [[SINK_SUB_LE]], [[OUT12_SPLIT_LOOP_EXIT1]] ] ; CHECK-NEXT: ret i32 [[TMP]] ; Entry: br label %Loop Loop: %N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ] %sink.mul = mul i32 %N, %N_addr.0.pn %sink.sub = sub i32 %sink.mul, %N %dec = add i32 %N_addr.0.pn, -1 br i1 %C, label %ContLoop, label %Out12 ContLoop: %tmp.1 = icmp ne i32 %N_addr.0.pn, 1 br i1 %tmp.1, label %Loop, label %Out12 Out12: %tmp = phi i32 [%sink.mul, %ContLoop], [%sink.sub, %Loop] ret i32 %tmp } ; In this test, splitting predecessors is not really required because the ; operations of sinkable instructions (sub and mul) are same. In this case, we ; can sink the same sinkable operations and modify the PHI to pass the operands ; to the shared operations. As of now, we split predecessors of non-trivially ; replicalbe PHIs by default in LICM because all incoming edges of a ; non-trivially replacable PHI in LCSSA is critical. define i32 @test15(i32 %N, i32 %N2, i1 %C) { ; CHECK-LABEL: @test15( ; CHECK-NEXT: Entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[CONTLOOP:%.*]] ], [ [[N:%.*]], [[ENTRY:%.*]] ] ; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1 ; CHECK-NEXT: br i1 [[C:%.*]], label [[CONTLOOP]], label [[OUT12_SPLIT_LOOP_EXIT1:%.*]] ; CHECK: ContLoop: ; CHECK-NEXT: [[TMP_1:%.*]] = icmp ne i32 [[N_ADDR_0_PN]], 1 ; CHECK-NEXT: br i1 [[TMP_1]], label [[LOOP]], label [[OUT12_SPLIT_LOOP_EXIT:%.*]] ; CHECK: Out12.split.loop.exit: ; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA5:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[CONTLOOP]] ] ; CHECK-NEXT: [[SINK_MUL_LE4:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA5]] ; CHECK-NEXT: [[SINK_SUB2_LE:%.*]] = sub i32 [[SINK_MUL_LE4]], [[N2:%.*]] ; CHECK-NEXT: br label [[OUT12:%.*]] ; CHECK: Out12.split.loop.exit1: ; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[LOOP]] ] ; CHECK-NEXT: [[SINK_MUL_LE:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA]] ; CHECK-NEXT: [[SINK_SUB_LE:%.*]] = sub i32 [[SINK_MUL_LE]], [[N]] ; CHECK-NEXT: br label [[OUT12]] ; CHECK: Out12: ; CHECK-NEXT: [[TMP:%.*]] = phi i32 [ [[SINK_SUB2_LE]], [[OUT12_SPLIT_LOOP_EXIT]] ], [ [[SINK_SUB_LE]], [[OUT12_SPLIT_LOOP_EXIT1]] ] ; CHECK-NEXT: ret i32 [[TMP]] ; Entry: br label %Loop Loop: %N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ] %sink.mul = mul i32 %N, %N_addr.0.pn %sink.sub = sub i32 %sink.mul, %N %sink.sub2 = sub i32 %sink.mul, %N2 %dec = add i32 %N_addr.0.pn, -1 br i1 %C, label %ContLoop, label %Out12 ContLoop: %tmp.1 = icmp ne i32 %N_addr.0.pn, 1 br i1 %tmp.1, label %Loop, label %Out12 Out12: %tmp = phi i32 [%sink.sub2, %ContLoop], [%sink.sub, %Loop] ret i32 %tmp } ; Sink through a non-trivially replacable PHI node which use the same sinkable ; instruction multiple times. define i32 @test16(i1 %c, i8** %P, i32* %P2, i64 %V) { ; CHECK-LABEL: @test16( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP_PH:%.*]] ; CHECK: loop.ph: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: [[IV:%.*]] = phi i64 [ 0, [[LOOP_PH]] ], [ [[NEXT:%.*]], [[CONTLOOP:%.*]] ] ; CHECK-NEXT: [[L2:%.*]] = call i32 @getv() ; CHECK-NEXT: switch i32 [[L2]], label [[CONTLOOP]] [ ; CHECK-NEXT: i32 32, label [[OUT_SPLIT_LOOP_EXIT1:%.*]] ; CHECK-NEXT: i32 46, label [[OUT_SPLIT_LOOP_EXIT1]] ; CHECK-NEXT: i32 95, label [[OUT_SPLIT_LOOP_EXIT1]] ; CHECK-NEXT: ] ; CHECK: ContLoop: ; CHECK-NEXT: [[NEXT]] = add nuw i64 [[IV]], 1 ; CHECK-NEXT: [[C1:%.*]] = call i1 @getc() ; CHECK-NEXT: br i1 [[C1]], label [[LOOP]], label [[OUT_SPLIT_LOOP_EXIT:%.*]] ; CHECK: Out.split.loop.exit: ; CHECK-NEXT: [[IDX_PH:%.*]] = phi i32 [ [[L2]], [[CONTLOOP]] ] ; CHECK-NEXT: br label [[OUT:%.*]] ; CHECK: Out.split.loop.exit1: ; CHECK-NEXT: [[IV_LCSSA:%.*]] = phi i64 [ [[IV]], [[LOOP]] ], [ [[IV]], [[LOOP]] ], [ [[IV]], [[LOOP]] ] ; CHECK-NEXT: [[L2_LCSSA:%.*]] = phi i32 [ [[L2]], [[LOOP]] ], [ [[L2]], [[LOOP]] ], [ [[L2]], [[LOOP]] ] ; CHECK-NEXT: [[T_LE:%.*]] = trunc i64 [[IV_LCSSA]] to i32 ; CHECK-NEXT: [[SINKABLE_LE:%.*]] = mul i32 [[L2_LCSSA]], [[T_LE]] ; CHECK-NEXT: br label [[OUT]] ; CHECK: Out: ; CHECK-NEXT: [[IDX:%.*]] = phi i32 [ [[IDX_PH]], [[OUT_SPLIT_LOOP_EXIT]] ], [ [[SINKABLE_LE]], [[OUT_SPLIT_LOOP_EXIT1]] ] ; CHECK-NEXT: ret i32 [[IDX]] ; entry: br label %loop.ph loop.ph: br label %Loop Loop: %iv = phi i64 [ 0, %loop.ph ], [ %next, %ContLoop ] %l2 = call i32 @getv() %t = trunc i64 %iv to i32 %sinkable = mul i32 %l2, %t switch i32 %l2, label %ContLoop [ i32 32, label %Out i32 46, label %Out i32 95, label %Out ] ContLoop: %next = add nuw i64 %iv, 1 %c1 = call i1 @getc() br i1 %c1, label %Loop, label %Out Out: %idx = phi i32 [ %l2, %ContLoop ], [ %sinkable, %Loop ], [ %sinkable, %Loop ], [ %sinkable, %Loop ] ret i32 %idx } ; Sink a sinkable instruction through multiple non-trivially replacable PHIs in ; differect exit blocks. define i32 @test17(i32 %N, i32 %N2) { ; CHECK-LABEL: @test17( ; CHECK-NEXT: Entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[CONTLOOP3:%.*]] ], [ [[N:%.*]], [[ENTRY:%.*]] ] ; CHECK-NEXT: [[C0:%.*]] = call i1 @getc() ; CHECK-NEXT: br i1 [[C0]], label [[CONTLOOP1:%.*]], label [[OUTA_SPLIT_LOOP_EXIT3:%.*]] ; CHECK: ContLoop1: ; CHECK-NEXT: [[C1:%.*]] = call i1 @getc() ; CHECK-NEXT: br i1 [[C1]], label [[CONTLOOP2:%.*]], label [[OUTA_SPLIT_LOOP_EXIT:%.*]] ; CHECK: ContLoop2: ; CHECK-NEXT: [[C2:%.*]] = call i1 @getc() ; CHECK-NEXT: br i1 [[C2]], label [[CONTLOOP3]], label [[OUTB_SPLIT_LOOP_EXIT1:%.*]] ; CHECK: ContLoop3: ; CHECK-NEXT: [[C3:%.*]] = call i1 @getc() ; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1 ; CHECK-NEXT: br i1 [[C3]], label [[LOOP]], label [[OUTB_SPLIT_LOOP_EXIT:%.*]] ; CHECK: OutA.split.loop.exit: ; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[CONTLOOP1]] ] ; CHECK-NEXT: [[SINK_MUL_LE:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA]] ; CHECK-NEXT: br label [[OUTA:%.*]] ; CHECK: OutA.split.loop.exit3: ; CHECK-NEXT: [[TMP1_PH4:%.*]] = phi i32 [ [[N2:%.*]], [[LOOP]] ] ; CHECK-NEXT: br label [[OUTA]] ; CHECK: OutA: ; CHECK-NEXT: [[TMP1:%.*]] = phi i32 [ [[SINK_MUL_LE]], [[OUTA_SPLIT_LOOP_EXIT]] ], [ [[TMP1_PH4]], [[OUTA_SPLIT_LOOP_EXIT3]] ] ; CHECK-NEXT: br label [[OUT12:%.*]] ; CHECK: OutB.split.loop.exit: ; CHECK-NEXT: [[TMP2_PH:%.*]] = phi i32 [ [[DEC]], [[CONTLOOP3]] ] ; CHECK-NEXT: br label [[OUTB:%.*]] ; CHECK: OutB.split.loop.exit1: ; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA6:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[CONTLOOP2]] ] ; CHECK-NEXT: [[SINK_MUL_LE5:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA6]] ; CHECK-NEXT: br label [[OUTB]] ; CHECK: OutB: ; CHECK-NEXT: [[TMP2:%.*]] = phi i32 [ [[TMP2_PH]], [[OUTB_SPLIT_LOOP_EXIT]] ], [ [[SINK_MUL_LE5]], [[OUTB_SPLIT_LOOP_EXIT1]] ] ; CHECK-NEXT: br label [[OUT12]] ; CHECK: Out12: ; CHECK-NEXT: [[TMP:%.*]] = phi i32 [ [[TMP1]], [[OUTA]] ], [ [[TMP2]], [[OUTB]] ] ; CHECK-NEXT: ret i32 [[TMP]] ; Entry: br label %Loop Loop: %N_addr.0.pn = phi i32 [ %dec, %ContLoop3 ], [ %N, %Entry ] %sink.mul = mul i32 %N, %N_addr.0.pn %c0 = call i1 @getc() br i1 %c0 , label %ContLoop1, label %OutA ContLoop1: %c1 = call i1 @getc() br i1 %c1, label %ContLoop2, label %OutA ContLoop2: %c2 = call i1 @getc() br i1 %c2, label %ContLoop3, label %OutB ContLoop3: %c3 = call i1 @getc() %dec = add i32 %N_addr.0.pn, -1 br i1 %c3, label %Loop, label %OutB OutA: %tmp1 = phi i32 [%sink.mul, %ContLoop1], [%N2, %Loop] br label %Out12 OutB: %tmp2 = phi i32 [%sink.mul, %ContLoop2], [%dec, %ContLoop3] br label %Out12 Out12: %tmp = phi i32 [%tmp1, %OutA], [%tmp2, %OutB] ret i32 %tmp } ; Sink a sinkable instruction through both trivially and non-trivially replacable PHIs. define i32 @test18(i32 %N, i32 %N2) { ; CHECK-LABEL: @test18( ; CHECK-NEXT: Entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: [[IV:%.*]] = phi i32 [ [[DEC:%.*]], [[CONTLOOP:%.*]] ], [ [[N:%.*]], [[ENTRY:%.*]] ] ; CHECK-NEXT: [[C0:%.*]] = call i1 @getc() ; CHECK-NEXT: br i1 [[C0]], label [[CONTLOOP]], label [[OUT12_SPLIT_LOOP_EXIT1:%.*]] ; CHECK: ContLoop: ; CHECK-NEXT: [[DEC]] = add i32 [[IV]], -1 ; CHECK-NEXT: [[C1:%.*]] = call i1 @getc() ; CHECK-NEXT: br i1 [[C1]], label [[LOOP]], label [[OUT12_SPLIT_LOOP_EXIT:%.*]] ; CHECK: Out12.split.loop.exit: ; CHECK-NEXT: [[IV_LCSSA:%.*]] = phi i32 [ [[IV]], [[CONTLOOP]] ] ; CHECK-NEXT: [[TMP2_PH:%.*]] = phi i32 [ [[DEC]], [[CONTLOOP]] ] ; CHECK-NEXT: [[SINK_MUL_LE:%.*]] = mul i32 [[N]], [[IV_LCSSA]] ; CHECK-NEXT: [[SINK_SUB_LE4:%.*]] = sub i32 [[SINK_MUL_LE]], [[N2:%.*]] ; CHECK-NEXT: br label [[OUT12:%.*]] ; CHECK: Out12.split.loop.exit1: ; CHECK-NEXT: [[IV_LCSSA7:%.*]] = phi i32 [ [[IV]], [[LOOP]] ] ; CHECK-NEXT: [[SINK_MUL_LE6:%.*]] = mul i32 [[N]], [[IV_LCSSA7]] ; CHECK-NEXT: [[SINK_SUB_LE:%.*]] = sub i32 [[SINK_MUL_LE6]], [[N2]] ; CHECK-NEXT: br label [[OUT12]] ; CHECK: Out12: ; CHECK-NEXT: [[TMP1:%.*]] = phi i32 [ [[SINK_SUB_LE4]], [[OUT12_SPLIT_LOOP_EXIT]] ], [ [[SINK_SUB_LE]], [[OUT12_SPLIT_LOOP_EXIT1]] ] ; CHECK-NEXT: [[TMP2:%.*]] = phi i32 [ [[TMP2_PH]], [[OUT12_SPLIT_LOOP_EXIT]] ], [ [[SINK_SUB_LE]], [[OUT12_SPLIT_LOOP_EXIT1]] ] ; CHECK-NEXT: [[ADD:%.*]] = add i32 [[TMP1]], [[TMP2]] ; CHECK-NEXT: ret i32 [[ADD]] ; Entry: br label %Loop Loop: %iv = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ] %sink.mul = mul i32 %N, %iv %sink.sub = sub i32 %sink.mul, %N2 %c0 = call i1 @getc() br i1 %c0, label %ContLoop, label %Out12 ContLoop: %dec = add i32 %iv, -1 %c1 = call i1 @getc() br i1 %c1, label %Loop, label %Out12 Out12: %tmp1 = phi i32 [%sink.sub, %ContLoop], [%sink.sub, %Loop] %tmp2 = phi i32 [%dec, %ContLoop], [%sink.sub, %Loop] %add = add i32 %tmp1, %tmp2 ret i32 %add } ; Do not sink an instruction through a non-trivially replacable PHI, to avoid ; assert while splitting predecessors, if the terminator of predecessor is an ; indirectbr. define i32 @test19(i1 %cond, i1 %cond2, i8* %address, i32 %v1) nounwind { ; CHECK-LABEL: @test19( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INDIRECT_GOTO_DEST:%.*]] = select i1 [[COND:%.*]], i8* blockaddress(@test19, [[EXIT:%.*]]), i8* [[ADDRESS:%.*]] ; CHECK-NEXT: [[INDIRECT_GOTO_DEST2:%.*]] = select i1 [[COND2:%.*]], i8* blockaddress(@test19, [[EXIT]]), i8* [[ADDRESS]] ; CHECK-NEXT: br label [[L0:%.*]] ; CHECK: L0: ; CHECK-NEXT: [[V2:%.*]] = call i32 @getv() ; CHECK-NEXT: [[SINKABLE:%.*]] = mul i32 [[V1:%.*]], [[V2]] ; CHECK-NEXT: [[SINKABLE2:%.*]] = add i32 [[V1]], [[V2]] ; CHECK-NEXT: indirectbr i8* [[INDIRECT_GOTO_DEST]], [label [[L1:%.*]], label %exit] ; CHECK: L1: ; CHECK-NEXT: indirectbr i8* [[INDIRECT_GOTO_DEST2]], [label [[L0]], label %exit] ; CHECK: exit: ; CHECK-NEXT: [[R:%.*]] = phi i32 [ [[SINKABLE]], [[L0]] ], [ [[SINKABLE2]], [[L1]] ] ; CHECK-NEXT: ret i32 [[R]] ; entry: br label %L0 L0: %indirect.goto.dest = select i1 %cond, i8* blockaddress(@test19, %exit), i8* %address %v2 = call i32 @getv() %sinkable = mul i32 %v1, %v2 %sinkable2 = add i32 %v1, %v2 indirectbr i8* %indirect.goto.dest, [label %L1, label %exit] L1: %indirect.goto.dest2 = select i1 %cond2, i8* blockaddress(@test19, %exit), i8* %address indirectbr i8* %indirect.goto.dest2, [label %L0, label %exit] exit: %r = phi i32 [%sinkable, %L0], [%sinkable2, %L1] ret i32 %r } ; Do not sink through a non-trivially replacable PHI if splitting predecessors ; not allowed in SplitBlockPredecessors(). define void @test20(i32* %s, i1 %b, i32 %v1, i32 %v2) personality i32 (...)* @__CxxFrameHandler3 { ; CHECK-LABEL: @test20( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[WHILE_COND:%.*]] ; CHECK: while.cond: ; CHECK-NEXT: [[V:%.*]] = call i32 @getv() ; CHECK-NEXT: [[SINKABLE:%.*]] = mul i32 [[V]], [[V2:%.*]] ; CHECK-NEXT: [[SINKABLE2:%.*]] = add i32 [[V]], [[V2]] ; CHECK-NEXT: br i1 [[B:%.*]], label [[TRY_CONT:%.*]], label [[WHILE_BODY:%.*]] ; CHECK: while.body: ; CHECK-NEXT: invoke void @may_throw() ; CHECK-NEXT: to label [[WHILE_BODY2:%.*]] unwind label [[CATCH_DISPATCH:%.*]] ; CHECK: while.body2: ; CHECK-NEXT: invoke void @may_throw2() ; CHECK-NEXT: to label [[WHILE_COND]] unwind label [[CATCH_DISPATCH]] ; CHECK: catch.dispatch: ; CHECK-NEXT: [[DOTLCSSA1:%.*]] = phi i32 [ [[SINKABLE]], [[WHILE_BODY]] ], [ [[SINKABLE2]], [[WHILE_BODY2]] ] ; CHECK-NEXT: [[CP:%.*]] = cleanuppad within none [] ; CHECK-NEXT: store i32 [[DOTLCSSA1]], i32* [[S:%.*]], align 4 ; CHECK-NEXT: cleanupret from [[CP]] unwind to caller ; CHECK: try.cont: ; CHECK-NEXT: ret void ; entry: br label %while.cond while.cond: %v = call i32 @getv() %sinkable = mul i32 %v, %v2 %sinkable2 = add i32 %v, %v2 br i1 %b, label %try.cont, label %while.body while.body: invoke void @may_throw() to label %while.body2 unwind label %catch.dispatch while.body2: invoke void @may_throw2() to label %while.cond unwind label %catch.dispatch catch.dispatch: %.lcssa1 = phi i32 [ %sinkable, %while.body ], [ %sinkable2, %while.body2 ] %cp = cleanuppad within none [] store i32 %.lcssa1, i32* %s cleanupret from %cp unwind to caller try.cont: ret void } ; The sinkable call should be sunk into an exit block split. After splitting ; the exit block, BlockColor for new blocks should be added properly so ; that we should be able to access valid ColorVector. define i32 @test21_pr36184(i8* %P) personality i32 (...)* @__CxxFrameHandler3 { ; CHECK-LABEL: @test21_pr36184( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP_PH:%.*]] ; CHECK: loop.ph: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: Loop: ; CHECK-NEXT: br i1 false, label [[CONTLOOP:%.*]], label [[OUT_SPLIT_LOOP_EXIT1:%.*]] ; CHECK: ContLoop: ; CHECK-NEXT: br i1 false, label [[LOOP]], label [[OUT_SPLIT_LOOP_EXIT:%.*]] ; CHECK: Out.split.loop.exit: ; CHECK-NEXT: [[IDX_PH:%.*]] = phi i32 [ 0, [[CONTLOOP]] ] ; CHECK-NEXT: br label [[OUT:%.*]] ; CHECK: Out.split.loop.exit1: ; CHECK-NEXT: [[SINKABLECALL_LE:%.*]] = call i32 @strlen(i8* [[P:%.*]]) #[[ATTR3]] ; CHECK-NEXT: br label [[OUT]] ; CHECK: Out: ; CHECK-NEXT: [[IDX:%.*]] = phi i32 [ [[IDX_PH]], [[OUT_SPLIT_LOOP_EXIT]] ], [ [[SINKABLECALL_LE]], [[OUT_SPLIT_LOOP_EXIT1]] ] ; CHECK-NEXT: ret i32 [[IDX]] ; entry: br label %loop.ph loop.ph: br label %Loop Loop: %sinkableCall = call i32 @strlen( i8* %P ) readonly br i1 undef, label %ContLoop, label %Out ContLoop: br i1 undef, label %Loop, label %Out Out: %idx = phi i32 [ %sinkableCall, %Loop ], [0, %ContLoop ] ret i32 %idx } ; We do not support splitting a landingpad block if BlockColors is not empty. define void @test22(i1 %b, i32 %v1, i32 %v2) personality i32 (...)* @__CxxFrameHandler3 { ; CHECK-LABEL: @test22( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[WHILE_COND:%.*]] ; CHECK: while.cond: ; CHECK-NEXT: br i1 [[B:%.*]], label [[TRY_CONT:%.*]], label [[WHILE_BODY:%.*]] ; CHECK: while.body: ; CHECK-NEXT: invoke void @may_throw() ; CHECK-NEXT: to label [[WHILE_BODY2:%.*]] unwind label [[LPADBB:%.*]] ; CHECK: while.body2: ; CHECK-NEXT: [[V:%.*]] = call i32 @getv() ; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[V]], [[V2:%.*]] ; CHECK-NEXT: invoke void @may_throw2() ; CHECK-NEXT: to label [[WHILE_COND]] unwind label [[LPADBB]] ; CHECK: lpadBB: ; CHECK-NEXT: [[DOTLCSSA1:%.*]] = phi i32 [ 0, [[WHILE_BODY]] ], [ [[MUL]], [[WHILE_BODY2]] ] ; CHECK-NEXT: [[TMP0:%.*]] = landingpad { i8*, i32 } ; CHECK-NEXT: catch i8* null ; CHECK-NEXT: br label [[LPADBBSUCC1:%.*]] ; CHECK: lpadBBSucc1: ; CHECK-NEXT: ret void ; CHECK: try.cont: ; CHECK-NEXT: ret void ; entry: br label %while.cond while.cond: br i1 %b, label %try.cont, label %while.body while.body: invoke void @may_throw() to label %while.body2 unwind label %lpadBB while.body2: %v = call i32 @getv() %mul = mul i32 %v, %v2 invoke void @may_throw2() to label %while.cond unwind label %lpadBB lpadBB: %.lcssa1 = phi i32 [ 0, %while.body ], [ %mul, %while.body2 ] landingpad { i8*, i32 } catch i8* null br label %lpadBBSucc1 lpadBBSucc1: ret void try.cont: ret void } define i32 @not_willreturn(i8* %p) { ; CHECK-LABEL: @not_willreturn( ; CHECK-NEXT: [[X:%.*]] = call i32 @getv() #[[ATTR5:[0-9]+]] ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: store volatile i8 0, i8* [[P:%.*]], align 1 ; CHECK-NEXT: br i1 true, label [[LOOP]], label [[OUT:%.*]] ; CHECK: out: ; CHECK-NEXT: [[X_LCSSA:%.*]] = phi i32 [ [[X]], [[LOOP]] ] ; CHECK-NEXT: ret i32 [[X_LCSSA]] ; br label %loop loop: %x = call i32 @getv() nounwind readnone store volatile i8 0, i8* %p br i1 true, label %loop, label %out out: ret i32 %x } declare void @may_throw() declare void @may_throw2() declare i32 @__CxxFrameHandler3(...) declare i32 @getv() declare i1 @getc() declare void @f(i32*) declare void @g()