//===- TargetSelectionDAG.td - Common code for DAG isels ---*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the target-independent interfaces used by SelectionDAG // instruction selection generators. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Selection DAG Type Constraint definitions. // // Note that the semantics of these constraints are hard coded into tblgen. To // modify or add constraints, you have to hack tblgen. // class SDTypeConstraint<int opnum> { int OperandNum = opnum; } // SDTCisVT - The specified operand has exactly this VT. class SDTCisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> { ValueType VT = vt; } class SDTCisPtrTy<int OpNum> : SDTypeConstraint<OpNum>; // SDTCisInt - The specified operand has integer type. class SDTCisInt<int OpNum> : SDTypeConstraint<OpNum>; // SDTCisFP - The specified operand has floating-point type. class SDTCisFP<int OpNum> : SDTypeConstraint<OpNum>; // SDTCisVec - The specified operand has a vector type. class SDTCisVec<int OpNum> : SDTypeConstraint<OpNum>; // SDTCisSameAs - The two specified operands have identical types. class SDTCisSameAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { int OtherOperandNum = OtherOp; } // SDTCisVTSmallerThanOp - The specified operand is a VT SDNode, and its type is // smaller than the 'Other' operand. class SDTCisVTSmallerThanOp<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { int OtherOperandNum = OtherOp; } class SDTCisOpSmallerThanOp<int SmallOp, int BigOp> : SDTypeConstraint<SmallOp>{ int BigOperandNum = BigOp; } /// SDTCisEltOfVec - This indicates that ThisOp is a scalar type of the same /// type as the element type of OtherOp, which is a vector type. class SDTCisEltOfVec<int ThisOp, int OtherOp> : SDTypeConstraint<ThisOp> { int OtherOpNum = OtherOp; } /// SDTCisSubVecOfVec - This indicates that ThisOp is a vector type /// with length less that of OtherOp, which is a vector type. class SDTCisSubVecOfVec<int ThisOp, int OtherOp> : SDTypeConstraint<ThisOp> { int OtherOpNum = OtherOp; } // SDTCVecEltisVT - The specified operand is vector type with element type // of VT. class SDTCVecEltisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> { ValueType VT = vt; } // SDTCisSameNumEltsAs - The two specified operands have identical number // of elements. class SDTCisSameNumEltsAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { int OtherOperandNum = OtherOp; } // SDTCisSameSizeAs - The two specified operands have identical size. class SDTCisSameSizeAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { int OtherOperandNum = OtherOp; } //===----------------------------------------------------------------------===// // Selection DAG Type Profile definitions. // // These use the constraints defined above to describe the type requirements of // the various nodes. These are not hard coded into tblgen, allowing targets to // add their own if needed. // // SDTypeProfile - This profile describes the type requirements of a Selection // DAG node. class SDTypeProfile<int numresults, int numoperands, list<SDTypeConstraint> constraints> { int NumResults = numresults; int NumOperands = numoperands; list<SDTypeConstraint> Constraints = constraints; } // Builtin profiles. def SDTIntLeaf: SDTypeProfile<1, 0, [SDTCisInt<0>]>; // for 'imm'. def SDTFPLeaf : SDTypeProfile<1, 0, [SDTCisFP<0>]>; // for 'fpimm'. def SDTPtrLeaf: SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; // for '&g'. def SDTOther : SDTypeProfile<1, 0, [SDTCisVT<0, OtherVT>]>; // for 'vt'. def SDTUNDEF : SDTypeProfile<1, 0, []>; // for 'undef'. def SDTUnaryOp : SDTypeProfile<1, 1, []>; // for bitconvert. def SDTIntBinOp : SDTypeProfile<1, 2, [ // add, and, or, xor, udiv, etc. SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0> ]>; def SDTIntShiftOp : SDTypeProfile<1, 2, [ // shl, sra, srl SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2> ]>; def SDTIntShiftDOp: SDTypeProfile<1, 3, [ // fshl, fshr SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisInt<3> ]>; def SDTIntSatNoShOp : SDTypeProfile<1, 2, [ // ssat with no shift SDTCisSameAs<0, 1>, SDTCisInt<2> ]>; def SDTIntBinHiLoOp : SDTypeProfile<2, 2, [ // mulhi, mullo, sdivrem, udivrem SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>,SDTCisInt<0> ]>; def SDTIntScaledBinOp : SDTypeProfile<1, 3, [ // smulfix, sdivfix, etc SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisInt<3> ]>; def SDTFPBinOp : SDTypeProfile<1, 2, [ // fadd, fmul, etc. SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisFP<0> ]>; def SDTFPSignOp : SDTypeProfile<1, 2, [ // fcopysign. SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisFP<2> ]>; def SDTFPTernaryOp : SDTypeProfile<1, 3, [ // fmadd, fnmsub, etc. SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisFP<0> ]>; def SDTIntUnaryOp : SDTypeProfile<1, 1, [ // bitreverse SDTCisSameAs<0, 1>, SDTCisInt<0> ]>; def SDTIntBitCountUnaryOp : SDTypeProfile<1, 1, [ // ctlz, cttz SDTCisInt<0>, SDTCisInt<1> ]>; def SDTIntExtendOp : SDTypeProfile<1, 1, [ // sext, zext, anyext SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTIntTruncOp : SDTypeProfile<1, 1, [ // trunc SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<0, 1>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTFPUnaryOp : SDTypeProfile<1, 1, [ // fneg, fsqrt, etc SDTCisSameAs<0, 1>, SDTCisFP<0> ]>; def SDTFPRoundOp : SDTypeProfile<1, 1, [ // fpround SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<0, 1>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTFPExtendOp : SDTypeProfile<1, 1, [ // fpextend SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTIntToFPOp : SDTypeProfile<1, 1, [ // [su]int_to_fp SDTCisFP<0>, SDTCisInt<1>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTFPToIntOp : SDTypeProfile<1, 1, [ // fp_to_[su]int SDTCisInt<0>, SDTCisFP<1>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTFPToIntSatOp : SDTypeProfile<1, 2, [ // fp_to_[su]int_sat SDTCisInt<0>, SDTCisFP<1>, SDTCisSameNumEltsAs<0, 1>, SDTCisVT<2, OtherVT> ]>; def SDTExtInreg : SDTypeProfile<1, 2, [ // sext_inreg SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisVT<2, OtherVT>, SDTCisVTSmallerThanOp<2, 1> ]>; def SDTExtInvec : SDTypeProfile<1, 1, [ // sext_invec SDTCisInt<0>, SDTCisVec<0>, SDTCisInt<1>, SDTCisVec<1>, SDTCisOpSmallerThanOp<1, 0> ]>; def SDTSetCC : SDTypeProfile<1, 3, [ // setcc SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT> ]>; def SDTSelect : SDTypeProfile<1, 3, [ // select SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3> ]>; def SDTVSelect : SDTypeProfile<1, 3, [ // vselect SDTCisVec<0>, SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTSelectCC : SDTypeProfile<1, 5, [ // select_cc SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>, SDTCisSameAs<0, 3>, SDTCisVT<5, OtherVT> ]>; def SDTBr : SDTypeProfile<0, 1, [ // br SDTCisVT<0, OtherVT> ]>; def SDTBrCC : SDTypeProfile<0, 4, [ // brcc SDTCisVT<0, OtherVT>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT> ]>; def SDTBrcond : SDTypeProfile<0, 2, [ // brcond SDTCisInt<0>, SDTCisVT<1, OtherVT> ]>; def SDTBrind : SDTypeProfile<0, 1, [ // brind SDTCisPtrTy<0> ]>; def SDTCatchret : SDTypeProfile<0, 2, [ // catchret SDTCisVT<0, OtherVT>, SDTCisVT<1, OtherVT> ]>; def SDTNone : SDTypeProfile<0, 0, []>; // ret, trap def SDTUBSANTrap : SDTypeProfile<0, 1, []>; // ubsantrap def SDTLoad : SDTypeProfile<1, 1, [ // load SDTCisPtrTy<1> ]>; def SDTStore : SDTypeProfile<0, 2, [ // store SDTCisPtrTy<1> ]>; def SDTIStore : SDTypeProfile<1, 3, [ // indexed store SDTCisSameAs<0, 2>, SDTCisPtrTy<0>, SDTCisPtrTy<3> ]>; def SDTMaskedStore: SDTypeProfile<0, 4, [ // masked store SDTCisVec<0>, SDTCisPtrTy<1>, SDTCisPtrTy<2>, SDTCisVec<3>, SDTCisSameNumEltsAs<0, 3> ]>; def SDTMaskedLoad: SDTypeProfile<1, 4, [ // masked load SDTCisVec<0>, SDTCisPtrTy<1>, SDTCisPtrTy<2>, SDTCisVec<3>, SDTCisSameAs<0, 4>, SDTCisSameNumEltsAs<0, 3> ]>; def SDTMaskedGather : SDTypeProfile<1, 4, [ SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisVec<2>, SDTCisPtrTy<3>, SDTCisVec<4>, SDTCisSameNumEltsAs<0, 2>, SDTCisSameNumEltsAs<0, 4> ]>; def SDTMaskedScatter : SDTypeProfile<0, 4, [ SDTCisVec<0>, SDTCisVec<1>, SDTCisPtrTy<2>, SDTCisVec<3>, SDTCisSameNumEltsAs<0, 1>, SDTCisSameNumEltsAs<0, 3> ]>; def SDTVecShuffle : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2> ]>; def SDTVecSlice : SDTypeProfile<1, 3, [ // vector splice SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisInt<3> ]>; def SDTVecExtract : SDTypeProfile<1, 2, [ // vector extract SDTCisEltOfVec<0, 1>, SDTCisPtrTy<2> ]>; def SDTVecInsert : SDTypeProfile<1, 3, [ // vector insert SDTCisEltOfVec<2, 1>, SDTCisSameAs<0, 1>, SDTCisPtrTy<3> ]>; def SDTVecReduce : SDTypeProfile<1, 1, [ // vector reduction SDTCisInt<0>, SDTCisVec<1> ]>; def SDTFPVecReduce : SDTypeProfile<1, 1, [ // FP vector reduction SDTCisFP<0>, SDTCisVec<1> ]>; def SDTVecReverse : SDTypeProfile<1, 1, [ // vector reverse SDTCisVec<0>, SDTCisSameAs<0,1> ]>; def SDTSubVecExtract : SDTypeProfile<1, 2, [// subvector extract SDTCisSubVecOfVec<0,1>, SDTCisInt<2> ]>; def SDTSubVecInsert : SDTypeProfile<1, 3, [ // subvector insert SDTCisSubVecOfVec<2, 1>, SDTCisSameAs<0,1>, SDTCisInt<3> ]>; def SDTPrefetch : SDTypeProfile<0, 4, [ // prefetch SDTCisPtrTy<0>, SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>, SDTCisInt<1> ]>; def SDTMemBarrier : SDTypeProfile<0, 5, [ // memory barrier SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisSameAs<0,4>, SDTCisInt<0> ]>; def SDTAtomicFence : SDTypeProfile<0, 2, [ SDTCisSameAs<0,1>, SDTCisPtrTy<0> ]>; def SDTAtomic3 : SDTypeProfile<1, 3, [ SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisInt<0>, SDTCisPtrTy<1> ]>; def SDTAtomic2 : SDTypeProfile<1, 2, [ SDTCisSameAs<0,2>, SDTCisInt<0>, SDTCisPtrTy<1> ]>; def SDTFPAtomic2 : SDTypeProfile<1, 2, [ SDTCisSameAs<0,2>, SDTCisFP<0>, SDTCisPtrTy<1> ]>; def SDTAtomicStore : SDTypeProfile<0, 2, [ SDTCisPtrTy<0>, SDTCisInt<1> ]>; def SDTAtomicLoad : SDTypeProfile<1, 1, [ SDTCisInt<0>, SDTCisPtrTy<1> ]>; class SDCallSeqStart<list<SDTypeConstraint> constraints> : SDTypeProfile<0, 2, constraints>; class SDCallSeqEnd<list<SDTypeConstraint> constraints> : SDTypeProfile<0, 2, constraints>; //===----------------------------------------------------------------------===// // Selection DAG Node definitions. // class SDNode<string opcode, SDTypeProfile typeprof, list<SDNodeProperty> props = [], string sdclass = "SDNode"> : SDPatternOperator { string Opcode = opcode; string SDClass = sdclass; let Properties = props; SDTypeProfile TypeProfile = typeprof; } // Special TableGen-recognized dag nodes def set; def implicit; def node; def srcvalue; def imm : SDNode<"ISD::Constant" , SDTIntLeaf , [], "ConstantSDNode">; def timm : SDNode<"ISD::TargetConstant",SDTIntLeaf, [], "ConstantSDNode">; def fpimm : SDNode<"ISD::ConstantFP", SDTFPLeaf , [], "ConstantFPSDNode">; def vt : SDNode<"ISD::VALUETYPE" , SDTOther , [], "VTSDNode">; def bb : SDNode<"ISD::BasicBlock", SDTOther , [], "BasicBlockSDNode">; def cond : SDNode<"ISD::CONDCODE" , SDTOther , [], "CondCodeSDNode">; def undef : SDNode<"ISD::UNDEF" , SDTUNDEF , []>; def vscale : SDNode<"ISD::VSCALE" , SDTIntUnaryOp, []>; def globaladdr : SDNode<"ISD::GlobalAddress", SDTPtrLeaf, [], "GlobalAddressSDNode">; def tglobaladdr : SDNode<"ISD::TargetGlobalAddress", SDTPtrLeaf, [], "GlobalAddressSDNode">; def globaltlsaddr : SDNode<"ISD::GlobalTLSAddress", SDTPtrLeaf, [], "GlobalAddressSDNode">; def tglobaltlsaddr : SDNode<"ISD::TargetGlobalTLSAddress", SDTPtrLeaf, [], "GlobalAddressSDNode">; def constpool : SDNode<"ISD::ConstantPool", SDTPtrLeaf, [], "ConstantPoolSDNode">; def tconstpool : SDNode<"ISD::TargetConstantPool", SDTPtrLeaf, [], "ConstantPoolSDNode">; def jumptable : SDNode<"ISD::JumpTable", SDTPtrLeaf, [], "JumpTableSDNode">; def tjumptable : SDNode<"ISD::TargetJumpTable", SDTPtrLeaf, [], "JumpTableSDNode">; def frameindex : SDNode<"ISD::FrameIndex", SDTPtrLeaf, [], "FrameIndexSDNode">; def tframeindex : SDNode<"ISD::TargetFrameIndex", SDTPtrLeaf, [], "FrameIndexSDNode">; def externalsym : SDNode<"ISD::ExternalSymbol", SDTPtrLeaf, [], "ExternalSymbolSDNode">; def texternalsym: SDNode<"ISD::TargetExternalSymbol", SDTPtrLeaf, [], "ExternalSymbolSDNode">; def mcsym: SDNode<"ISD::MCSymbol", SDTPtrLeaf, [], "MCSymbolSDNode">; def blockaddress : SDNode<"ISD::BlockAddress", SDTPtrLeaf, [], "BlockAddressSDNode">; def tblockaddress: SDNode<"ISD::TargetBlockAddress", SDTPtrLeaf, [], "BlockAddressSDNode">; def add : SDNode<"ISD::ADD" , SDTIntBinOp , [SDNPCommutative, SDNPAssociative]>; def sub : SDNode<"ISD::SUB" , SDTIntBinOp>; def mul : SDNode<"ISD::MUL" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def mulhs : SDNode<"ISD::MULHS" , SDTIntBinOp, [SDNPCommutative]>; def mulhu : SDNode<"ISD::MULHU" , SDTIntBinOp, [SDNPCommutative]>; def avgfloors : SDNode<"ISD::AVGFLOORS" , SDTIntBinOp, [SDNPCommutative]>; def avgflooru : SDNode<"ISD::AVGFLOORU" , SDTIntBinOp, [SDNPCommutative]>; def avgceils : SDNode<"ISD::AVGCEILS" , SDTIntBinOp, [SDNPCommutative]>; def avgceilu : SDNode<"ISD::AVGCEILU" , SDTIntBinOp, [SDNPCommutative]>; def abds : SDNode<"ISD::ABDS" , SDTIntBinOp, [SDNPCommutative]>; def abdu : SDNode<"ISD::ABDU" , SDTIntBinOp, [SDNPCommutative]>; def smullohi : SDNode<"ISD::SMUL_LOHI" , SDTIntBinHiLoOp, [SDNPCommutative]>; def umullohi : SDNode<"ISD::UMUL_LOHI" , SDTIntBinHiLoOp, [SDNPCommutative]>; def sdiv : SDNode<"ISD::SDIV" , SDTIntBinOp>; def udiv : SDNode<"ISD::UDIV" , SDTIntBinOp>; def srem : SDNode<"ISD::SREM" , SDTIntBinOp>; def urem : SDNode<"ISD::UREM" , SDTIntBinOp>; def sdivrem : SDNode<"ISD::SDIVREM" , SDTIntBinHiLoOp>; def udivrem : SDNode<"ISD::UDIVREM" , SDTIntBinHiLoOp>; def srl : SDNode<"ISD::SRL" , SDTIntShiftOp>; def sra : SDNode<"ISD::SRA" , SDTIntShiftOp>; def shl : SDNode<"ISD::SHL" , SDTIntShiftOp>; def rotl : SDNode<"ISD::ROTL" , SDTIntShiftOp>; def rotr : SDNode<"ISD::ROTR" , SDTIntShiftOp>; def fshl : SDNode<"ISD::FSHL" , SDTIntShiftDOp>; def fshr : SDNode<"ISD::FSHR" , SDTIntShiftDOp>; def and : SDNode<"ISD::AND" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def or : SDNode<"ISD::OR" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def xor : SDNode<"ISD::XOR" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def addc : SDNode<"ISD::ADDC" , SDTIntBinOp, [SDNPCommutative, SDNPOutGlue]>; def adde : SDNode<"ISD::ADDE" , SDTIntBinOp, [SDNPCommutative, SDNPOutGlue, SDNPInGlue]>; def subc : SDNode<"ISD::SUBC" , SDTIntBinOp, [SDNPOutGlue]>; def sube : SDNode<"ISD::SUBE" , SDTIntBinOp, [SDNPOutGlue, SDNPInGlue]>; def smin : SDNode<"ISD::SMIN" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def smax : SDNode<"ISD::SMAX" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def umin : SDNode<"ISD::UMIN" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def umax : SDNode<"ISD::UMAX" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def saddsat : SDNode<"ISD::SADDSAT" , SDTIntBinOp, [SDNPCommutative]>; def uaddsat : SDNode<"ISD::UADDSAT" , SDTIntBinOp, [SDNPCommutative]>; def ssubsat : SDNode<"ISD::SSUBSAT" , SDTIntBinOp>; def usubsat : SDNode<"ISD::USUBSAT" , SDTIntBinOp>; def sshlsat : SDNode<"ISD::SSHLSAT" , SDTIntBinOp>; def ushlsat : SDNode<"ISD::USHLSAT" , SDTIntBinOp>; def smulfix : SDNode<"ISD::SMULFIX" , SDTIntScaledBinOp, [SDNPCommutative]>; def smulfixsat : SDNode<"ISD::SMULFIXSAT", SDTIntScaledBinOp, [SDNPCommutative]>; def umulfix : SDNode<"ISD::UMULFIX" , SDTIntScaledBinOp, [SDNPCommutative]>; def umulfixsat : SDNode<"ISD::UMULFIXSAT", SDTIntScaledBinOp, [SDNPCommutative]>; def sdivfix : SDNode<"ISD::SDIVFIX" , SDTIntScaledBinOp>; def sdivfixsat : SDNode<"ISD::SDIVFIXSAT", SDTIntScaledBinOp>; def udivfix : SDNode<"ISD::UDIVFIX" , SDTIntScaledBinOp>; def udivfixsat : SDNode<"ISD::UDIVFIXSAT", SDTIntScaledBinOp>; def sext_inreg : SDNode<"ISD::SIGN_EXTEND_INREG", SDTExtInreg>; def sext_invec : SDNode<"ISD::SIGN_EXTEND_VECTOR_INREG", SDTExtInvec>; def zext_invec : SDNode<"ISD::ZERO_EXTEND_VECTOR_INREG", SDTExtInvec>; def abs : SDNode<"ISD::ABS" , SDTIntUnaryOp>; def bitreverse : SDNode<"ISD::BITREVERSE" , SDTIntUnaryOp>; def bswap : SDNode<"ISD::BSWAP" , SDTIntUnaryOp>; def ctlz : SDNode<"ISD::CTLZ" , SDTIntBitCountUnaryOp>; def cttz : SDNode<"ISD::CTTZ" , SDTIntBitCountUnaryOp>; def ctpop : SDNode<"ISD::CTPOP" , SDTIntBitCountUnaryOp>; def ctlz_zero_undef : SDNode<"ISD::CTLZ_ZERO_UNDEF", SDTIntBitCountUnaryOp>; def cttz_zero_undef : SDNode<"ISD::CTTZ_ZERO_UNDEF", SDTIntBitCountUnaryOp>; def sext : SDNode<"ISD::SIGN_EXTEND", SDTIntExtendOp>; def zext : SDNode<"ISD::ZERO_EXTEND", SDTIntExtendOp>; def anyext : SDNode<"ISD::ANY_EXTEND" , SDTIntExtendOp>; def trunc : SDNode<"ISD::TRUNCATE" , SDTIntTruncOp>; def bitconvert : SDNode<"ISD::BITCAST" , SDTUnaryOp>; def addrspacecast : SDNode<"ISD::ADDRSPACECAST", SDTUnaryOp>; def extractelt : SDNode<"ISD::EXTRACT_VECTOR_ELT", SDTVecExtract>; def insertelt : SDNode<"ISD::INSERT_VECTOR_ELT", SDTVecInsert>; def vecreduce_add : SDNode<"ISD::VECREDUCE_ADD", SDTVecReduce>; def vecreduce_smax : SDNode<"ISD::VECREDUCE_SMAX", SDTVecReduce>; def vecreduce_umax : SDNode<"ISD::VECREDUCE_UMAX", SDTVecReduce>; def vecreduce_smin : SDNode<"ISD::VECREDUCE_SMIN", SDTVecReduce>; def vecreduce_umin : SDNode<"ISD::VECREDUCE_UMIN", SDTVecReduce>; def vecreduce_fadd : SDNode<"ISD::VECREDUCE_FADD", SDTFPVecReduce>; def fadd : SDNode<"ISD::FADD" , SDTFPBinOp, [SDNPCommutative]>; def fsub : SDNode<"ISD::FSUB" , SDTFPBinOp>; def fmul : SDNode<"ISD::FMUL" , SDTFPBinOp, [SDNPCommutative]>; def fdiv : SDNode<"ISD::FDIV" , SDTFPBinOp>; def frem : SDNode<"ISD::FREM" , SDTFPBinOp>; def fma : SDNode<"ISD::FMA" , SDTFPTernaryOp, [SDNPCommutative]>; def fmad : SDNode<"ISD::FMAD" , SDTFPTernaryOp, [SDNPCommutative]>; def fabs : SDNode<"ISD::FABS" , SDTFPUnaryOp>; def fminnum : SDNode<"ISD::FMINNUM" , SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def fmaxnum : SDNode<"ISD::FMAXNUM" , SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def fminnum_ieee : SDNode<"ISD::FMINNUM_IEEE", SDTFPBinOp, [SDNPCommutative]>; def fmaxnum_ieee : SDNode<"ISD::FMAXNUM_IEEE", SDTFPBinOp, [SDNPCommutative]>; def fminimum : SDNode<"ISD::FMINIMUM" , SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def fmaximum : SDNode<"ISD::FMAXIMUM" , SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def fgetsign : SDNode<"ISD::FGETSIGN" , SDTFPToIntOp>; def fcanonicalize : SDNode<"ISD::FCANONICALIZE", SDTFPUnaryOp>; def fneg : SDNode<"ISD::FNEG" , SDTFPUnaryOp>; def fsqrt : SDNode<"ISD::FSQRT" , SDTFPUnaryOp>; def fsin : SDNode<"ISD::FSIN" , SDTFPUnaryOp>; def fcos : SDNode<"ISD::FCOS" , SDTFPUnaryOp>; def fexp2 : SDNode<"ISD::FEXP2" , SDTFPUnaryOp>; def fpow : SDNode<"ISD::FPOW" , SDTFPBinOp>; def flog2 : SDNode<"ISD::FLOG2" , SDTFPUnaryOp>; def frint : SDNode<"ISD::FRINT" , SDTFPUnaryOp>; def ftrunc : SDNode<"ISD::FTRUNC" , SDTFPUnaryOp>; def fceil : SDNode<"ISD::FCEIL" , SDTFPUnaryOp>; def ffloor : SDNode<"ISD::FFLOOR" , SDTFPUnaryOp>; def fnearbyint : SDNode<"ISD::FNEARBYINT" , SDTFPUnaryOp>; def fround : SDNode<"ISD::FROUND" , SDTFPUnaryOp>; def froundeven : SDNode<"ISD::FROUNDEVEN" , SDTFPUnaryOp>; def lround : SDNode<"ISD::LROUND" , SDTFPToIntOp>; def llround : SDNode<"ISD::LLROUND" , SDTFPToIntOp>; def lrint : SDNode<"ISD::LRINT" , SDTFPToIntOp>; def llrint : SDNode<"ISD::LLRINT" , SDTFPToIntOp>; def fpround : SDNode<"ISD::FP_ROUND" , SDTFPRoundOp>; def fpextend : SDNode<"ISD::FP_EXTEND" , SDTFPExtendOp>; def fcopysign : SDNode<"ISD::FCOPYSIGN" , SDTFPSignOp>; def sint_to_fp : SDNode<"ISD::SINT_TO_FP" , SDTIntToFPOp>; def uint_to_fp : SDNode<"ISD::UINT_TO_FP" , SDTIntToFPOp>; def fp_to_sint : SDNode<"ISD::FP_TO_SINT" , SDTFPToIntOp>; def fp_to_uint : SDNode<"ISD::FP_TO_UINT" , SDTFPToIntOp>; def fp_to_sint_sat : SDNode<"ISD::FP_TO_SINT_SAT" , SDTFPToIntSatOp>; def fp_to_uint_sat : SDNode<"ISD::FP_TO_UINT_SAT" , SDTFPToIntSatOp>; def f16_to_fp : SDNode<"ISD::FP16_TO_FP" , SDTIntToFPOp>; def fp_to_f16 : SDNode<"ISD::FP_TO_FP16" , SDTFPToIntOp>; def strict_fadd : SDNode<"ISD::STRICT_FADD", SDTFPBinOp, [SDNPHasChain, SDNPCommutative]>; def strict_fsub : SDNode<"ISD::STRICT_FSUB", SDTFPBinOp, [SDNPHasChain]>; def strict_fmul : SDNode<"ISD::STRICT_FMUL", SDTFPBinOp, [SDNPHasChain, SDNPCommutative]>; def strict_fdiv : SDNode<"ISD::STRICT_FDIV", SDTFPBinOp, [SDNPHasChain]>; def strict_frem : SDNode<"ISD::STRICT_FREM", SDTFPBinOp, [SDNPHasChain]>; def strict_fma : SDNode<"ISD::STRICT_FMA", SDTFPTernaryOp, [SDNPHasChain, SDNPCommutative]>; def strict_fsqrt : SDNode<"ISD::STRICT_FSQRT", SDTFPUnaryOp, [SDNPHasChain]>; def strict_fsin : SDNode<"ISD::STRICT_FSIN", SDTFPUnaryOp, [SDNPHasChain]>; def strict_fcos : SDNode<"ISD::STRICT_FCOS", SDTFPUnaryOp, [SDNPHasChain]>; def strict_fexp2 : SDNode<"ISD::STRICT_FEXP2", SDTFPUnaryOp, [SDNPHasChain]>; def strict_fpow : SDNode<"ISD::STRICT_FPOW", SDTFPBinOp, [SDNPHasChain]>; def strict_flog2 : SDNode<"ISD::STRICT_FLOG2", SDTFPUnaryOp, [SDNPHasChain]>; def strict_frint : SDNode<"ISD::STRICT_FRINT", SDTFPUnaryOp, [SDNPHasChain]>; def strict_lrint : SDNode<"ISD::STRICT_LRINT", SDTFPToIntOp, [SDNPHasChain]>; def strict_llrint : SDNode<"ISD::STRICT_LLRINT", SDTFPToIntOp, [SDNPHasChain]>; def strict_fnearbyint : SDNode<"ISD::STRICT_FNEARBYINT", SDTFPUnaryOp, [SDNPHasChain]>; def strict_fceil : SDNode<"ISD::STRICT_FCEIL", SDTFPUnaryOp, [SDNPHasChain]>; def strict_ffloor : SDNode<"ISD::STRICT_FFLOOR", SDTFPUnaryOp, [SDNPHasChain]>; def strict_lround : SDNode<"ISD::STRICT_LROUND", SDTFPToIntOp, [SDNPHasChain]>; def strict_llround : SDNode<"ISD::STRICT_LLROUND", SDTFPToIntOp, [SDNPHasChain]>; def strict_fround : SDNode<"ISD::STRICT_FROUND", SDTFPUnaryOp, [SDNPHasChain]>; def strict_froundeven : SDNode<"ISD::STRICT_FROUNDEVEN", SDTFPUnaryOp, [SDNPHasChain]>; def strict_ftrunc : SDNode<"ISD::STRICT_FTRUNC", SDTFPUnaryOp, [SDNPHasChain]>; def strict_fminnum : SDNode<"ISD::STRICT_FMINNUM", SDTFPBinOp, [SDNPHasChain, SDNPCommutative, SDNPAssociative]>; def strict_fmaxnum : SDNode<"ISD::STRICT_FMAXNUM", SDTFPBinOp, [SDNPHasChain, SDNPCommutative, SDNPAssociative]>; def strict_fminimum : SDNode<"ISD::STRICT_FMINIMUM", SDTFPBinOp, [SDNPHasChain, SDNPCommutative, SDNPAssociative]>; def strict_fmaximum : SDNode<"ISD::STRICT_FMAXIMUM", SDTFPBinOp, [SDNPHasChain, SDNPCommutative, SDNPAssociative]>; def strict_fpround : SDNode<"ISD::STRICT_FP_ROUND", SDTFPRoundOp, [SDNPHasChain]>; def strict_fpextend : SDNode<"ISD::STRICT_FP_EXTEND", SDTFPExtendOp, [SDNPHasChain]>; def strict_fp_to_sint : SDNode<"ISD::STRICT_FP_TO_SINT", SDTFPToIntOp, [SDNPHasChain]>; def strict_fp_to_uint : SDNode<"ISD::STRICT_FP_TO_UINT", SDTFPToIntOp, [SDNPHasChain]>; def strict_sint_to_fp : SDNode<"ISD::STRICT_SINT_TO_FP", SDTIntToFPOp, [SDNPHasChain]>; def strict_uint_to_fp : SDNode<"ISD::STRICT_UINT_TO_FP", SDTIntToFPOp, [SDNPHasChain]>; def strict_fsetcc : SDNode<"ISD::STRICT_FSETCC", SDTSetCC, [SDNPHasChain]>; def strict_fsetccs : SDNode<"ISD::STRICT_FSETCCS", SDTSetCC, [SDNPHasChain]>; def setcc : SDNode<"ISD::SETCC" , SDTSetCC>; def select : SDNode<"ISD::SELECT" , SDTSelect>; def vselect : SDNode<"ISD::VSELECT" , SDTVSelect>; def selectcc : SDNode<"ISD::SELECT_CC" , SDTSelectCC>; def brcc : SDNode<"ISD::BR_CC" , SDTBrCC, [SDNPHasChain]>; def brcond : SDNode<"ISD::BRCOND" , SDTBrcond, [SDNPHasChain]>; def brind : SDNode<"ISD::BRIND" , SDTBrind, [SDNPHasChain]>; def br : SDNode<"ISD::BR" , SDTBr, [SDNPHasChain]>; def catchret : SDNode<"ISD::CATCHRET" , SDTCatchret, [SDNPHasChain, SDNPSideEffect]>; def cleanupret : SDNode<"ISD::CLEANUPRET" , SDTNone, [SDNPHasChain]>; def trap : SDNode<"ISD::TRAP" , SDTNone, [SDNPHasChain, SDNPSideEffect]>; def debugtrap : SDNode<"ISD::DEBUGTRAP" , SDTNone, [SDNPHasChain, SDNPSideEffect]>; def ubsantrap : SDNode<"ISD::UBSANTRAP" , SDTUBSANTrap, [SDNPHasChain, SDNPSideEffect]>; def prefetch : SDNode<"ISD::PREFETCH" , SDTPrefetch, [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>; def readcyclecounter : SDNode<"ISD::READCYCLECOUNTER", SDTIntLeaf, [SDNPHasChain, SDNPSideEffect]>; def atomic_fence : SDNode<"ISD::ATOMIC_FENCE" , SDTAtomicFence, [SDNPHasChain, SDNPSideEffect]>; def atomic_cmp_swap : SDNode<"ISD::ATOMIC_CMP_SWAP" , SDTAtomic3, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_add : SDNode<"ISD::ATOMIC_LOAD_ADD" , SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_swap : SDNode<"ISD::ATOMIC_SWAP", SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_sub : SDNode<"ISD::ATOMIC_LOAD_SUB" , SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_and : SDNode<"ISD::ATOMIC_LOAD_AND" , SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_clr : SDNode<"ISD::ATOMIC_LOAD_CLR" , SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_or : SDNode<"ISD::ATOMIC_LOAD_OR" , SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_xor : SDNode<"ISD::ATOMIC_LOAD_XOR" , SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_nand: SDNode<"ISD::ATOMIC_LOAD_NAND", SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_min : SDNode<"ISD::ATOMIC_LOAD_MIN", SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_max : SDNode<"ISD::ATOMIC_LOAD_MAX", SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_umin : SDNode<"ISD::ATOMIC_LOAD_UMIN", SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_umax : SDNode<"ISD::ATOMIC_LOAD_UMAX", SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_fadd : SDNode<"ISD::ATOMIC_LOAD_FADD" , SDTFPAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_fsub : SDNode<"ISD::ATOMIC_LOAD_FSUB" , SDTFPAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_fmax : SDNode<"ISD::ATOMIC_LOAD_FMAX", SDTFPAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_fmin : SDNode<"ISD::ATOMIC_LOAD_FMIN", SDTFPAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load : SDNode<"ISD::ATOMIC_LOAD", SDTAtomicLoad, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def atomic_store : SDNode<"ISD::ATOMIC_STORE", SDTAtomicStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def masked_st : SDNode<"ISD::MSTORE", SDTMaskedStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def masked_ld : SDNode<"ISD::MLOAD", SDTMaskedLoad, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def masked_gather : SDNode<"ISD::MGATHER", SDTMaskedGather, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def masked_scatter : SDNode<"ISD::MSCATTER", SDTMaskedScatter, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; // Do not use ld, st directly. Use load, extload, sextload, zextload, store, // and truncst (see below). def ld : SDNode<"ISD::LOAD" , SDTLoad, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def st : SDNode<"ISD::STORE" , SDTStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def ist : SDNode<"ISD::STORE" , SDTIStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def vector_shuffle : SDNode<"ISD::VECTOR_SHUFFLE", SDTVecShuffle, []>; def vector_reverse : SDNode<"ISD::VECTOR_REVERSE", SDTVecReverse>; def vector_splice : SDNode<"ISD::VECTOR_SPLICE", SDTVecSlice, []>; def build_vector : SDNode<"ISD::BUILD_VECTOR", SDTypeProfile<1, -1, []>, []>; def splat_vector : SDNode<"ISD::SPLAT_VECTOR", SDTypeProfile<1, 1, []>, []>; def step_vector : SDNode<"ISD::STEP_VECTOR", SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisInt<1>]>, []>; def scalar_to_vector : SDNode<"ISD::SCALAR_TO_VECTOR", SDTypeProfile<1, 1, []>, []>; // vector_extract/vector_insert are deprecated. extractelt/insertelt // are preferred. def vector_extract : SDNode<"ISD::EXTRACT_VECTOR_ELT", SDTypeProfile<1, 2, [SDTCisPtrTy<2>]>, []>; def vector_insert : SDNode<"ISD::INSERT_VECTOR_ELT", SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisPtrTy<3>]>, []>; def concat_vectors : SDNode<"ISD::CONCAT_VECTORS", SDTypeProfile<1, 2, [SDTCisSubVecOfVec<1, 0>, SDTCisSameAs<1, 2>]>,[]>; // This operator does not do subvector type checking. The ARM // backend, at least, needs it. def vector_extract_subvec : SDNode<"ISD::EXTRACT_SUBVECTOR", SDTypeProfile<1, 2, [SDTCisInt<2>, SDTCisVec<1>, SDTCisVec<0>]>, []>; def vector_insert_subvec : SDNode<"ISD::INSERT_SUBVECTOR", SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisVec<2>, SDTCisInt<3>]>, []>; // This operator does subvector type checking. def extract_subvector : SDNode<"ISD::EXTRACT_SUBVECTOR", SDTSubVecExtract, []>; def insert_subvector : SDNode<"ISD::INSERT_SUBVECTOR", SDTSubVecInsert, []>; // Nodes for intrinsics, you should use the intrinsic itself and let tblgen use // these internally. Don't reference these directly. def intrinsic_void : SDNode<"ISD::INTRINSIC_VOID", SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, [SDNPHasChain]>; def intrinsic_w_chain : SDNode<"ISD::INTRINSIC_W_CHAIN", SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, [SDNPHasChain]>; def intrinsic_wo_chain : SDNode<"ISD::INTRINSIC_WO_CHAIN", SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, []>; def SDT_assert : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisInt<1>, SDTCisSameAs<1, 0>]>; def assertsext : SDNode<"ISD::AssertSext", SDT_assert>; def assertzext : SDNode<"ISD::AssertZext", SDT_assert>; def assertalign : SDNode<"ISD::AssertAlign", SDT_assert>; //===----------------------------------------------------------------------===// // Selection DAG Condition Codes class CondCode<string fcmpName = "", string icmpName = ""> { string ICmpPredicate = icmpName; string FCmpPredicate = fcmpName; } // ISD::CondCode enums, and mapping to CmpInst::Predicate names def SETOEQ : CondCode<"FCMP_OEQ">; def SETOGT : CondCode<"FCMP_OGT">; def SETOGE : CondCode<"FCMP_OGE">; def SETOLT : CondCode<"FCMP_OLT">; def SETOLE : CondCode<"FCMP_OLE">; def SETONE : CondCode<"FCMP_ONE">; def SETO : CondCode<"FCMP_ORD">; def SETUO : CondCode<"FCMP_UNO">; def SETUEQ : CondCode<"FCMP_UEQ">; def SETUGT : CondCode<"FCMP_UGT", "ICMP_UGT">; def SETUGE : CondCode<"FCMP_UGE", "ICMP_UGE">; def SETULT : CondCode<"FCMP_ULT", "ICMP_ULT">; def SETULE : CondCode<"FCMP_ULE", "ICMP_ULE">; def SETUNE : CondCode<"FCMP_UNE">; def SETEQ : CondCode<"", "ICMP_EQ">; def SETGT : CondCode<"", "ICMP_SGT">; def SETGE : CondCode<"", "ICMP_SGE">; def SETLT : CondCode<"", "ICMP_SLT">; def SETLE : CondCode<"", "ICMP_SLE">; def SETNE : CondCode<"", "ICMP_NE">; //===----------------------------------------------------------------------===// // Selection DAG Node Transformation Functions. // // This mechanism allows targets to manipulate nodes in the output DAG once a // match has been formed. This is typically used to manipulate immediate // values. // class SDNodeXForm<SDNode opc, code xformFunction> { SDNode Opcode = opc; code XFormFunction = xformFunction; } def NOOP_SDNodeXForm : SDNodeXForm<imm, [{}]>; //===----------------------------------------------------------------------===// // Selection DAG Pattern Fragments. // // Pattern fragments are reusable chunks of dags that match specific things. // They can take arguments and have C++ predicates that control whether they // match. They are intended to make the patterns for common instructions more // compact and readable. // /// PatFrags - Represents a set of pattern fragments. Each single fragment /// can match something on the DAG, from a single node to multiple nested other /// fragments. The whole set of fragments matches if any of the single /// fragments match. This allows e.g. matching and "add with overflow" and /// a regular "add" with the same fragment set. /// class PatFrags<dag ops, list<dag> frags, code pred = [{}], SDNodeXForm xform = NOOP_SDNodeXForm> : SDPatternOperator { dag Operands = ops; list<dag> Fragments = frags; code PredicateCode = pred; code GISelPredicateCode = [{}]; code ImmediateCode = [{}]; SDNodeXForm OperandTransform = xform; // When this is set, the PredicateCode may refer to a constant Operands // vector which contains the captured nodes of the DAG, in the order listed // by the Operands field above. // // This is useful when Fragments involves associative / commutative // operators: a single piece of code can easily refer to all operands even // when re-associated / commuted variants of the fragment are matched. bit PredicateCodeUsesOperands = false; // Define a few pre-packaged predicates. This helps GlobalISel import // existing rules from SelectionDAG for many common cases. // They will be tested prior to the code in pred and must not be used in // ImmLeaf and its subclasses. // If set to true, a predicate is added that checks for the absence of use of // the first result. bit HasNoUse = ?; // Is the desired pre-packaged predicate for a load? bit IsLoad = ?; // Is the desired pre-packaged predicate for a store? bit IsStore = ?; // Is the desired pre-packaged predicate for an atomic? bit IsAtomic = ?; // cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; // cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; bit IsUnindexed = ?; // cast<LoadSDNode>(N)->getExtensionType() != ISD::NON_EXTLOAD bit IsNonExtLoad = ?; // cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD; bit IsAnyExtLoad = ?; // cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD; bit IsSignExtLoad = ?; // cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD; bit IsZeroExtLoad = ?; // !cast<StoreSDNode>(N)->isTruncatingStore(); // cast<StoreSDNode>(N)->isTruncatingStore(); bit IsTruncStore = ?; // cast<MemSDNode>(N)->getAddressSpace() == // If this empty, accept any address space. list<int> AddressSpaces = ?; // cast<MemSDNode>(N)->getAlignment() >= // If this is empty, accept any alignment. int MinAlignment = ?; // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Monotonic bit IsAtomicOrderingMonotonic = ?; // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Acquire bit IsAtomicOrderingAcquire = ?; // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Release bit IsAtomicOrderingRelease = ?; // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::AcquireRelease bit IsAtomicOrderingAcquireRelease = ?; // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::SequentiallyConsistent bit IsAtomicOrderingSequentiallyConsistent = ?; // isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering()) // !isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering()) bit IsAtomicOrderingAcquireOrStronger = ?; // isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering()) // !isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering()) bit IsAtomicOrderingReleaseOrStronger = ?; // cast<LoadSDNode>(N)->getMemoryVT() == MVT::<VT>; // cast<StoreSDNode>(N)->getMemoryVT() == MVT::<VT>; ValueType MemoryVT = ?; // cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::<VT>; // cast<StoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::<VT>; ValueType ScalarMemoryVT = ?; } // PatFrag - A version of PatFrags matching only a single fragment. class PatFrag<dag ops, dag frag, code pred = [{}], SDNodeXForm xform = NOOP_SDNodeXForm> : PatFrags<ops, [frag], pred, xform>; // OutPatFrag is a pattern fragment that is used as part of an output pattern // (not an input pattern). These do not have predicates or transforms, but are // used to avoid repeated subexpressions in output patterns. class OutPatFrag<dag ops, dag frag> : PatFrag<ops, frag, [{}], NOOP_SDNodeXForm>; // PatLeaf's are pattern fragments that have no operands. This is just a helper // to define immediates and other common things concisely. class PatLeaf<dag frag, code pred = [{}], SDNodeXForm xform = NOOP_SDNodeXForm> : PatFrag<(ops), frag, pred, xform>; // ImmLeaf is a pattern fragment with a constraint on the immediate. The // constraint is a function that is run on the immediate (always with the value // sign extended out to an int64_t) as Imm. For example: // // def immSExt8 : ImmLeaf<i16, [{ return (char)Imm == Imm; }]>; // // this is a more convenient form to match 'imm' nodes in than PatLeaf and also // is preferred over using PatLeaf because it allows the code generator to // reason more about the constraint. // // If FastIsel should ignore all instructions that have an operand of this type, // the FastIselShouldIgnore flag can be set. This is an optimization to reduce // the code size of the generated fast instruction selector. class ImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm, SDNode ImmNode = imm> : PatFrag<(ops), (vt ImmNode), [{}], xform> { let ImmediateCode = pred; bit FastIselShouldIgnore = false; // Is the data type of the immediate an APInt? bit IsAPInt = false; // Is the data type of the immediate an APFloat? bit IsAPFloat = false; } // Convenience wrapper for ImmLeaf to use timm/TargetConstant instead // of imm/Constant. class TImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm, SDNode ImmNode = timm> : ImmLeaf<vt, pred, xform, ImmNode>; // An ImmLeaf except that Imm is an APInt. This is useful when you need to // zero-extend the immediate instead of sign-extend it. // // Note that FastISel does not currently understand IntImmLeaf and will not // generate code for rules that make use of it. As such, it does not make sense // to replace ImmLeaf with IntImmLeaf. However, replacing PatLeaf with an // IntImmLeaf will allow GlobalISel to import the rule. class IntImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm> : ImmLeaf<vt, pred, xform> { let IsAPInt = true; let FastIselShouldIgnore = true; } // An ImmLeaf except that Imm is an APFloat. // // Note that FastISel does not currently understand FPImmLeaf and will not // generate code for rules that make use of it. class FPImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm> : ImmLeaf<vt, pred, xform, fpimm> { let IsAPFloat = true; let FastIselShouldIgnore = true; } // Leaf fragments. def vtInt : PatLeaf<(vt), [{ return N->getVT().isInteger(); }]>; def vtFP : PatLeaf<(vt), [{ return N->getVT().isFloatingPoint(); }]>; // Use ISD::isConstantSplatVectorAllOnes or ISD::isConstantSplatVectorAllZeros // to look for the corresponding build_vector or splat_vector. Will look through // bitcasts and check for either opcode, except when used as a pattern root. // When used as a pattern root, only fixed-length build_vector and scalable // splat_vector are supported. def immAllOnesV : SDPatternOperator; // ISD::isConstantSplatVectorAllOnes def immAllZerosV : SDPatternOperator; // ISD::isConstantSplatVectorAllZeros // Other helper fragments. def not : PatFrag<(ops node:$in), (xor node:$in, -1)>; def vnot : PatFrag<(ops node:$in), (xor node:$in, immAllOnesV)>; def ineg : PatFrag<(ops node:$in), (sub 0, node:$in)>; def zanyext : PatFrags<(ops node:$op), [(zext node:$op), (anyext node:$op)]>; // null_frag - The null pattern operator is used in multiclass instantiations // which accept an SDPatternOperator for use in matching patterns for internal // definitions. When expanding a pattern, if the null fragment is referenced // in the expansion, the pattern is discarded and it is as-if '[]' had been // specified. This allows multiclasses to have the isel patterns be optional. def null_frag : SDPatternOperator; // load fragments. def unindexedload : PatFrag<(ops node:$ptr), (ld node:$ptr)> { let IsLoad = true; let IsUnindexed = true; } def load : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { let IsLoad = true; let IsNonExtLoad = true; } // extending load fragments. def extload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { let IsLoad = true; let IsAnyExtLoad = true; } def sextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { let IsLoad = true; let IsSignExtLoad = true; } def zextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { let IsLoad = true; let IsZeroExtLoad = true; } def extloadi1 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let MemoryVT = i1; } def extloadi8 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let MemoryVT = i8; } def extloadi16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let MemoryVT = i16; } def extloadi32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let MemoryVT = i32; } def extloadf16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let MemoryVT = f16; } def extloadf32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let MemoryVT = f32; } def extloadf64 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let MemoryVT = f64; } def sextloadi1 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = true; let MemoryVT = i1; } def sextloadi8 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = true; let MemoryVT = i8; } def sextloadi16 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = true; let MemoryVT = i16; } def sextloadi32 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = true; let MemoryVT = i32; } def zextloadi1 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = true; let MemoryVT = i1; } def zextloadi8 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = true; let MemoryVT = i8; } def zextloadi16 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = true; let MemoryVT = i16; } def zextloadi32 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = true; let MemoryVT = i32; } def extloadvi1 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = i1; } def extloadvi8 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = i8; } def extloadvi16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = i16; } def extloadvi32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = i32; } def extloadvf16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = f16; } def extloadvf32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = f32; } def extloadvf64 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = f64; } def sextloadvi1 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = i1; } def sextloadvi8 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = i8; } def sextloadvi16 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = i16; } def sextloadvi32 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = i32; } def zextloadvi1 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = i1; } def zextloadvi8 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = i8; } def zextloadvi16 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = i16; } def zextloadvi32 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = true; let ScalarMemoryVT = i32; } // store fragments. def unindexedstore : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr)> { let IsStore = true; let IsUnindexed = true; } def store : PatFrag<(ops node:$val, node:$ptr), (unindexedstore node:$val, node:$ptr)> { let IsStore = true; let IsTruncStore = false; } // truncstore fragments. def truncstore : PatFrag<(ops node:$val, node:$ptr), (unindexedstore node:$val, node:$ptr)> { let IsStore = true; let IsTruncStore = true; } def truncstorei8 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = true; let MemoryVT = i8; let IsTruncStore = true; } def truncstorei16 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = true; let MemoryVT = i16; let IsTruncStore = true; } def truncstorei32 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = true; let MemoryVT = i32; let IsTruncStore = true; } def truncstoref16 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = true; let MemoryVT = f16; } def truncstoref32 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = true; let MemoryVT = f32; } def truncstoref64 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = true; let MemoryVT = f64; } def truncstorevi8 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = true; let ScalarMemoryVT = i8; } def truncstorevi16 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = true; let ScalarMemoryVT = i16; } def truncstorevi32 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = true; let ScalarMemoryVT = i32; } // indexed store fragments. def istore : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset)> { let IsStore = true; let IsTruncStore = false; } def pre_store : PatFrag<(ops node:$val, node:$base, node:$offset), (istore node:$val, node:$base, node:$offset), [{ ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); return AM == ISD::PRE_INC || AM == ISD::PRE_DEC; }]>; def itruncstore : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset)> { let IsStore = true; let IsTruncStore = true; } def pre_truncst : PatFrag<(ops node:$val, node:$base, node:$offset), (itruncstore node:$val, node:$base, node:$offset), [{ ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); return AM == ISD::PRE_INC || AM == ISD::PRE_DEC; }]>; def pre_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let MemoryVT = i1; } def pre_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let MemoryVT = i8; } def pre_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let MemoryVT = i16; } def pre_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let MemoryVT = i32; } def pre_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let MemoryVT = f32; } def pre_truncstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let ScalarMemoryVT = i8; } def pre_truncstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let ScalarMemoryVT = i16; } def post_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), (istore node:$val, node:$ptr, node:$offset), [{ ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); return AM == ISD::POST_INC || AM == ISD::POST_DEC; }]>; def post_truncst : PatFrag<(ops node:$val, node:$base, node:$offset), (itruncstore node:$val, node:$base, node:$offset), [{ ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); return AM == ISD::POST_INC || AM == ISD::POST_DEC; }]>; def post_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let MemoryVT = i1; } def post_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let MemoryVT = i8; } def post_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let MemoryVT = i16; } def post_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let MemoryVT = i32; } def post_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let MemoryVT = f32; } def post_truncstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let ScalarMemoryVT = i8; } def post_truncstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncst node:$val, node:$base, node:$offset)> { let IsStore = true; let ScalarMemoryVT = i16; } // TODO: Split these into volatile and unordered flavors to enable // selectively legal optimizations for each. (See D66309) def simple_load : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast<LoadSDNode>(N)->isSimple(); }]>; def simple_store : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast<StoreSDNode>(N)->isSimple(); }]>; // nontemporal store fragments. def nontemporalstore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast<StoreSDNode>(N)->isNonTemporal(); }]>; def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), (nontemporalstore node:$val, node:$ptr), [{ StoreSDNode *St = cast<StoreSDNode>(N); return St->getAlignment() >= St->getMemoryVT().getStoreSize(); }]>; def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), (nontemporalstore node:$val, node:$ptr), [{ StoreSDNode *St = cast<StoreSDNode>(N); return St->getAlignment() < St->getMemoryVT().getStoreSize(); }]>; // nontemporal load fragments. def nontemporalload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast<LoadSDNode>(N)->isNonTemporal(); }]>; def alignednontemporalload : PatFrag<(ops node:$ptr), (nontemporalload node:$ptr), [{ LoadSDNode *Ld = cast<LoadSDNode>(N); return Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize(); }]>; // setcc convenience fragments. def setoeq : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOEQ)>; def setogt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOGT)>; def setoge : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOGE)>; def setolt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOLT)>; def setole : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOLE)>; def setone : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETONE)>; def seto : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETO)>; def setuo : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUO)>; def setueq : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUEQ)>; def setugt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUGT)>; def setuge : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUGE)>; def setult : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETULT)>; def setule : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETULE)>; def setune : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUNE)>; def seteq : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETEQ)>; def setgt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETGT)>; def setge : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETGE)>; def setlt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETLT)>; def setle : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETLE)>; def setne : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETNE)>; // We don't have strict FP extended loads as single DAG nodes, but we can // still provide convenience fragments to match those operations. def strict_extloadf32 : PatFrag<(ops node:$ptr), (strict_fpextend (f32 (load node:$ptr)))>; def strict_extloadf64 : PatFrag<(ops node:$ptr), (strict_fpextend (f64 (load node:$ptr)))>; // Convenience fragments to match both strict and non-strict fp operations def any_fadd : PatFrags<(ops node:$lhs, node:$rhs), [(strict_fadd node:$lhs, node:$rhs), (fadd node:$lhs, node:$rhs)]>; def any_fsub : PatFrags<(ops node:$lhs, node:$rhs), [(strict_fsub node:$lhs, node:$rhs), (fsub node:$lhs, node:$rhs)]>; def any_fmul : PatFrags<(ops node:$lhs, node:$rhs), [(strict_fmul node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs)]>; def any_fdiv : PatFrags<(ops node:$lhs, node:$rhs), [(strict_fdiv node:$lhs, node:$rhs), (fdiv node:$lhs, node:$rhs)]>; def any_frem : PatFrags<(ops node:$lhs, node:$rhs), [(strict_frem node:$lhs, node:$rhs), (frem node:$lhs, node:$rhs)]>; def any_fma : PatFrags<(ops node:$src1, node:$src2, node:$src3), [(strict_fma node:$src1, node:$src2, node:$src3), (fma node:$src1, node:$src2, node:$src3)]>; def any_fsqrt : PatFrags<(ops node:$src), [(strict_fsqrt node:$src), (fsqrt node:$src)]>; def any_fsin : PatFrags<(ops node:$src), [(strict_fsin node:$src), (fsin node:$src)]>; def any_fcos : PatFrags<(ops node:$src), [(strict_fcos node:$src), (fcos node:$src)]>; def any_fexp2 : PatFrags<(ops node:$src), [(strict_fexp2 node:$src), (fexp2 node:$src)]>; def any_fpow : PatFrags<(ops node:$lhs, node:$rhs), [(strict_fpow node:$lhs, node:$rhs), (fpow node:$lhs, node:$rhs)]>; def any_flog2 : PatFrags<(ops node:$src), [(strict_flog2 node:$src), (flog2 node:$src)]>; def any_frint : PatFrags<(ops node:$src), [(strict_frint node:$src), (frint node:$src)]>; def any_lrint : PatFrags<(ops node:$src), [(strict_lrint node:$src), (lrint node:$src)]>; def any_llrint : PatFrags<(ops node:$src), [(strict_llrint node:$src), (llrint node:$src)]>; def any_fnearbyint : PatFrags<(ops node:$src), [(strict_fnearbyint node:$src), (fnearbyint node:$src)]>; def any_fceil : PatFrags<(ops node:$src), [(strict_fceil node:$src), (fceil node:$src)]>; def any_ffloor : PatFrags<(ops node:$src), [(strict_ffloor node:$src), (ffloor node:$src)]>; def any_lround : PatFrags<(ops node:$src), [(strict_lround node:$src), (lround node:$src)]>; def any_llround : PatFrags<(ops node:$src), [(strict_llround node:$src), (llround node:$src)]>; def any_fround : PatFrags<(ops node:$src), [(strict_fround node:$src), (fround node:$src)]>; def any_froundeven : PatFrags<(ops node:$src), [(strict_froundeven node:$src), (froundeven node:$src)]>; def any_ftrunc : PatFrags<(ops node:$src), [(strict_ftrunc node:$src), (ftrunc node:$src)]>; def any_fmaxnum : PatFrags<(ops node:$lhs, node:$rhs), [(strict_fmaxnum node:$lhs, node:$rhs), (fmaxnum node:$lhs, node:$rhs)]>; def any_fminnum : PatFrags<(ops node:$lhs, node:$rhs), [(strict_fminnum node:$lhs, node:$rhs), (fminnum node:$lhs, node:$rhs)]>; def any_fmaximum : PatFrags<(ops node:$lhs, node:$rhs), [(strict_fmaximum node:$lhs, node:$rhs), (fmaximum node:$lhs, node:$rhs)]>; def any_fminimum : PatFrags<(ops node:$lhs, node:$rhs), [(strict_fminimum node:$lhs, node:$rhs), (fminimum node:$lhs, node:$rhs)]>; def any_fpround : PatFrags<(ops node:$src), [(strict_fpround node:$src), (fpround node:$src)]>; def any_fpextend : PatFrags<(ops node:$src), [(strict_fpextend node:$src), (fpextend node:$src)]>; def any_extloadf32 : PatFrags<(ops node:$ptr), [(strict_extloadf32 node:$ptr), (extloadf32 node:$ptr)]>; def any_extloadf64 : PatFrags<(ops node:$ptr), [(strict_extloadf64 node:$ptr), (extloadf64 node:$ptr)]>; def any_fp_to_sint : PatFrags<(ops node:$src), [(strict_fp_to_sint node:$src), (fp_to_sint node:$src)]>; def any_fp_to_uint : PatFrags<(ops node:$src), [(strict_fp_to_uint node:$src), (fp_to_uint node:$src)]>; def any_sint_to_fp : PatFrags<(ops node:$src), [(strict_sint_to_fp node:$src), (sint_to_fp node:$src)]>; def any_uint_to_fp : PatFrags<(ops node:$src), [(strict_uint_to_fp node:$src), (uint_to_fp node:$src)]>; def any_fsetcc : PatFrags<(ops node:$lhs, node:$rhs, node:$pred), [(strict_fsetcc node:$lhs, node:$rhs, node:$pred), (setcc node:$lhs, node:$rhs, node:$pred)]>; def any_fsetccs : PatFrags<(ops node:$lhs, node:$rhs, node:$pred), [(strict_fsetccs node:$lhs, node:$rhs, node:$pred), (setcc node:$lhs, node:$rhs, node:$pred)]>; multiclass binary_atomic_op_ord { def NAME#_monotonic : PatFrag<(ops node:$ptr, node:$val), (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { let IsAtomic = true; let IsAtomicOrderingMonotonic = true; } def NAME#_acquire : PatFrag<(ops node:$ptr, node:$val), (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { let IsAtomic = true; let IsAtomicOrderingAcquire = true; } def NAME#_release : PatFrag<(ops node:$ptr, node:$val), (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { let IsAtomic = true; let IsAtomicOrderingRelease = true; } def NAME#_acq_rel : PatFrag<(ops node:$ptr, node:$val), (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { let IsAtomic = true; let IsAtomicOrderingAcquireRelease = true; } def NAME#_seq_cst : PatFrag<(ops node:$ptr, node:$val), (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { let IsAtomic = true; let IsAtomicOrderingSequentiallyConsistent = true; } } multiclass ternary_atomic_op_ord { def NAME#_monotonic : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { let IsAtomic = true; let IsAtomicOrderingMonotonic = true; } def NAME#_acquire : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { let IsAtomic = true; let IsAtomicOrderingAcquire = true; } def NAME#_release : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { let IsAtomic = true; let IsAtomicOrderingRelease = true; } def NAME#_acq_rel : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { let IsAtomic = true; let IsAtomicOrderingAcquireRelease = true; } def NAME#_seq_cst : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { let IsAtomic = true; let IsAtomicOrderingSequentiallyConsistent = true; } } multiclass binary_atomic_op<SDNode atomic_op, bit IsInt = 1> { def _8 : PatFrag<(ops node:$ptr, node:$val), (atomic_op node:$ptr, node:$val)> { let IsAtomic = true; let MemoryVT = !if(IsInt, i8, ?); } def _16 : PatFrag<(ops node:$ptr, node:$val), (atomic_op node:$ptr, node:$val)> { let IsAtomic = true; let MemoryVT = !if(IsInt, i16, f16); } def _32 : PatFrag<(ops node:$ptr, node:$val), (atomic_op node:$ptr, node:$val)> { let IsAtomic = true; let MemoryVT = !if(IsInt, i32, f32); } def _64 : PatFrag<(ops node:$ptr, node:$val), (atomic_op node:$ptr, node:$val)> { let IsAtomic = true; let MemoryVT = !if(IsInt, i64, f64); } defm NAME#_8 : binary_atomic_op_ord; defm NAME#_16 : binary_atomic_op_ord; defm NAME#_32 : binary_atomic_op_ord; defm NAME#_64 : binary_atomic_op_ord; } multiclass ternary_atomic_op<SDNode atomic_op> { def _8 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (atomic_op node:$ptr, node:$cmp, node:$val)> { let IsAtomic = true; let MemoryVT = i8; } def _16 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (atomic_op node:$ptr, node:$cmp, node:$val)> { let IsAtomic = true; let MemoryVT = i16; } def _32 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (atomic_op node:$ptr, node:$cmp, node:$val)> { let IsAtomic = true; let MemoryVT = i32; } def _64 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (atomic_op node:$ptr, node:$cmp, node:$val)> { let IsAtomic = true; let MemoryVT = i64; } defm NAME#_8 : ternary_atomic_op_ord; defm NAME#_16 : ternary_atomic_op_ord; defm NAME#_32 : ternary_atomic_op_ord; defm NAME#_64 : ternary_atomic_op_ord; } defm atomic_load_add : binary_atomic_op<atomic_load_add>; defm atomic_swap : binary_atomic_op<atomic_swap>; defm atomic_load_sub : binary_atomic_op<atomic_load_sub>; defm atomic_load_and : binary_atomic_op<atomic_load_and>; defm atomic_load_clr : binary_atomic_op<atomic_load_clr>; defm atomic_load_or : binary_atomic_op<atomic_load_or>; defm atomic_load_xor : binary_atomic_op<atomic_load_xor>; defm atomic_load_nand : binary_atomic_op<atomic_load_nand>; defm atomic_load_min : binary_atomic_op<atomic_load_min>; defm atomic_load_max : binary_atomic_op<atomic_load_max>; defm atomic_load_umin : binary_atomic_op<atomic_load_umin>; defm atomic_load_umax : binary_atomic_op<atomic_load_umax>; defm atomic_store : binary_atomic_op<atomic_store>; defm atomic_cmp_swap : ternary_atomic_op<atomic_cmp_swap>; /// Atomic load which zeroes the excess high bits. def atomic_load_zext : PatFrag<(ops node:$ptr), (atomic_load node:$ptr)> { let IsAtomic = true; // FIXME: Should be IsLoad and/or IsAtomic? let IsZeroExtLoad = true; } /// Atomic load which sign extends the excess high bits. def atomic_load_sext : PatFrag<(ops node:$ptr), (atomic_load node:$ptr)> { let IsAtomic = true; // FIXME: Should be IsLoad and/or IsAtomic? let IsSignExtLoad = true; } def atomic_load_8 : PatFrag<(ops node:$ptr), (atomic_load node:$ptr)> { let IsAtomic = true; let MemoryVT = i8; } def atomic_load_16 : PatFrag<(ops node:$ptr), (atomic_load node:$ptr)> { let IsAtomic = true; let MemoryVT = i16; } def atomic_load_32 : PatFrag<(ops node:$ptr), (atomic_load node:$ptr)> { let IsAtomic = true; let MemoryVT = i32; } def atomic_load_64 : PatFrag<(ops node:$ptr), (atomic_load node:$ptr)> { let IsAtomic = true; let MemoryVT = i64; } def atomic_load_zext_8 : PatFrag<(ops node:$ptr), (atomic_load_zext node:$ptr)> { let IsAtomic = true; // FIXME: Should be IsLoad and/or IsAtomic? let MemoryVT = i8; } def atomic_load_zext_16 : PatFrag<(ops node:$ptr), (atomic_load_zext node:$ptr)> { let IsAtomic = true; // FIXME: Should be IsLoad and/or IsAtomic? let MemoryVT = i16; } def atomic_load_sext_8 : PatFrag<(ops node:$ptr), (atomic_load_sext node:$ptr)> { let IsAtomic = true; // FIXME: Should be IsLoad and/or IsAtomic? let MemoryVT = i8; } def atomic_load_sext_16 : PatFrag<(ops node:$ptr), (atomic_load_sext node:$ptr)> { let IsAtomic = true; // FIXME: Should be IsLoad and/or IsAtomic? let MemoryVT = i16; } // Atomic load which zeroes or anyextends the high bits. def atomic_load_az_8 : PatFrags<(ops node:$op), [(atomic_load_8 node:$op), (atomic_load_zext_8 node:$op)]>; // Atomic load which zeroes or anyextends the high bits. def atomic_load_az_16 : PatFrags<(ops node:$op), [(atomic_load_16 node:$op), (atomic_load_zext_16 node:$op)]>; def nonext_masked_gather : PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ return cast<MaskedGatherSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD; }]>; // Any extending masked gather fragments. def ext_masked_gather_i8 : PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ auto MGN = cast<MaskedGatherSDNode>(N); return MGN->getExtensionType() == ISD::EXTLOAD && MGN->getMemoryVT().getScalarType() == MVT::i8; }]>; def ext_masked_gather_i16 : PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ auto MGN = cast<MaskedGatherSDNode>(N); return MGN->getExtensionType() == ISD::EXTLOAD && MGN->getMemoryVT().getScalarType() == MVT::i16; }]>; def ext_masked_gather_i32 : PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ auto MGN = cast<MaskedGatherSDNode>(N); return MGN->getExtensionType() == ISD::EXTLOAD && MGN->getMemoryVT().getScalarType() == MVT::i32; }]>; // Sign extending masked gather fragments. def sext_masked_gather_i8 : PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ auto MGN = cast<MaskedGatherSDNode>(N); return MGN->getExtensionType() == ISD::SEXTLOAD && MGN->getMemoryVT().getScalarType() == MVT::i8; }]>; def sext_masked_gather_i16 : PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ auto MGN = cast<MaskedGatherSDNode>(N); return MGN->getExtensionType() == ISD::SEXTLOAD && MGN->getMemoryVT().getScalarType() == MVT::i16; }]>; def sext_masked_gather_i32 : PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ auto MGN = cast<MaskedGatherSDNode>(N); return MGN->getExtensionType() == ISD::SEXTLOAD && MGN->getMemoryVT().getScalarType() == MVT::i32; }]>; // Zero extending masked gather fragments. def zext_masked_gather_i8 : PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ auto MGN = cast<MaskedGatherSDNode>(N); return MGN->getExtensionType() == ISD::ZEXTLOAD && MGN->getMemoryVT().getScalarType() == MVT::i8; }]>; def zext_masked_gather_i16 : PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ auto MGN = cast<MaskedGatherSDNode>(N); return MGN->getExtensionType() == ISD::ZEXTLOAD && MGN->getMemoryVT().getScalarType() == MVT::i16; }]>; def zext_masked_gather_i32 : PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ auto MGN = cast<MaskedGatherSDNode>(N); return MGN->getExtensionType() == ISD::ZEXTLOAD && MGN->getMemoryVT().getScalarType() == MVT::i32; }]>; // Any/Zero extending masked gather fragments. def azext_masked_gather_i8 : PatFrags<(ops node:$def, node:$pred, node:$ptr, node:$idx), [(ext_masked_gather_i8 node:$def, node:$pred, node:$ptr, node:$idx), (zext_masked_gather_i8 node:$def, node:$pred, node:$ptr, node:$idx)]>; def azext_masked_gather_i16 : PatFrags<(ops node:$def, node:$pred, node:$ptr, node:$idx), [(ext_masked_gather_i16 node:$def, node:$pred, node:$ptr, node:$idx), (zext_masked_gather_i16 node:$def, node:$pred, node:$ptr, node:$idx)]>; def azext_masked_gather_i32 : PatFrags<(ops node:$def, node:$pred, node:$ptr, node:$idx), [(ext_masked_gather_i32 node:$def, node:$pred, node:$ptr, node:$idx), (zext_masked_gather_i32 node:$def, node:$pred, node:$ptr, node:$idx)]>; def nontrunc_masked_scatter : PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), (masked_scatter node:$val, node:$pred, node:$ptr, node:$idx), [{ return !cast<MaskedScatterSDNode>(N)->isTruncatingStore(); }]>; // Truncating masked scatter fragments. def trunc_masked_scatter_i8 : PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), (masked_scatter node:$val, node:$pred, node:$ptr, node:$idx), [{ auto MSN = cast<MaskedScatterSDNode>(N); return MSN->isTruncatingStore() && MSN->getMemoryVT().getScalarType() == MVT::i8; }]>; def trunc_masked_scatter_i16 : PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), (masked_scatter node:$val, node:$pred, node:$ptr, node:$idx), [{ auto MSN = cast<MaskedScatterSDNode>(N); return MSN->isTruncatingStore() && MSN->getMemoryVT().getScalarType() == MVT::i16; }]>; def trunc_masked_scatter_i32 : PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), (masked_scatter node:$val, node:$pred, node:$ptr, node:$idx), [{ auto MSN = cast<MaskedScatterSDNode>(N); return MSN->isTruncatingStore() && MSN->getMemoryVT().getScalarType() == MVT::i32; }]>; //===----------------------------------------------------------------------===// // Selection DAG Pattern Support. // // Patterns are what are actually matched against by the target-flavored // instruction selection DAG. Instructions defined by the target implicitly // define patterns in most cases, but patterns can also be explicitly added when // an operation is defined by a sequence of instructions (e.g. loading a large // immediate value on RISC targets that do not support immediates as large as // their GPRs). // class Pattern<dag patternToMatch, list<dag> resultInstrs> { dag PatternToMatch = patternToMatch; list<dag> ResultInstrs = resultInstrs; list<Predicate> Predicates = []; // See class Instruction in Target.td. int AddedComplexity = 0; // See class Instruction in Target.td. } // Pat - A simple (but common) form of a pattern, which produces a simple result // not needing a full list. class Pat<dag pattern, dag result> : Pattern<pattern, [result]>; //===----------------------------------------------------------------------===// // Complex pattern definitions. // // Complex patterns, e.g. X86 addressing mode, requires pattern matching code // in C++. NumOperands is the number of operands returned by the select function; // SelectFunc is the name of the function used to pattern match the max. pattern; // RootNodes are the list of possible root nodes of the sub-dags to match. // e.g. X86 addressing mode - def addr : ComplexPattern<4, "SelectAddr", [add]>; // class ComplexPattern<ValueType ty, int numops, string fn, list<SDNode> roots = [], list<SDNodeProperty> props = [], int complexity = -1> { ValueType Ty = ty; int NumOperands = numops; string SelectFunc = fn; list<SDNode> RootNodes = roots; list<SDNodeProperty> Properties = props; int Complexity = complexity; }