; RUN: llc < %s -march=nvptx64 -mcpu=sm_35 | FileCheck %s ; RUN: %if ptxas %{ llc < %s -march=nvptx64 -mcpu=sm_35 | %ptxas-verify -arch=sm_35 %} ; Check that invariant loads from the global addrspace are lowered to ; ld.global.nc. ; CHECK-LABEL: @ld_global define i32 @ld_global(i32 addrspace(1)* %ptr) { ; CHECK: ld.global.nc.{{[a-z]}}32 %a = load i32, i32 addrspace(1)* %ptr, !invariant.load !0 ret i32 %a } ; CHECK-LABEL: @ld_global_v2f16 define half @ld_global_v2f16(<2 x half> addrspace(1)* %ptr) { ; Load of v2f16 is weird. We consider it to be a legal type, which happens to be ; loaded/stored as a 32-bit scalar. ; CHECK: ld.global.nc.b32 %a = load <2 x half>, <2 x half> addrspace(1)* %ptr, !invariant.load !0 %v1 = extractelement <2 x half> %a, i32 0 %v2 = extractelement <2 x half> %a, i32 1 %sum = fadd half %v1, %v2 ret half %sum } ; CHECK-LABEL: @ld_global_v4f16 define half @ld_global_v4f16(<4 x half> addrspace(1)* %ptr) { ; Larger f16 vectors may be split into individual f16 elements and multiple ; loads/stores may be vectorized using f16 element type. Practically it's ; limited to v4 variant only. ; CHECK: ld.global.nc.v4.b16 %a = load <4 x half>, <4 x half> addrspace(1)* %ptr, !invariant.load !0 %v1 = extractelement <4 x half> %a, i32 0 %v2 = extractelement <4 x half> %a, i32 1 %v3 = extractelement <4 x half> %a, i32 2 %v4 = extractelement <4 x half> %a, i32 3 %sum1 = fadd half %v1, %v2 %sum2 = fadd half %v3, %v4 %sum = fadd half %sum1, %sum2 ret half %sum } ; CHECK-LABEL: @ld_global_v8f16 define half @ld_global_v8f16(<8 x half> addrspace(1)* %ptr) { ; Larger vectors are, again, loaded as v4i32. PTX has no v8 variants of loads/stores, ; so load/store vectorizer has to convert v8f16 -> v4 x v2f16. ; CHECK: ld.global.nc.v4.b32 %a = load <8 x half>, <8 x half> addrspace(1)* %ptr, !invariant.load !0 %v1 = extractelement <8 x half> %a, i32 0 %v2 = extractelement <8 x half> %a, i32 2 %v3 = extractelement <8 x half> %a, i32 4 %v4 = extractelement <8 x half> %a, i32 6 %sum1 = fadd half %v1, %v2 %sum2 = fadd half %v3, %v4 %sum = fadd half %sum1, %sum2 ret half %sum } ; CHECK-LABEL: @ld_global_v2i32 define i32 @ld_global_v2i32(<2 x i32> addrspace(1)* %ptr) { ; CHECK: ld.global.nc.v2.{{[a-z]}}32 %a = load <2 x i32>, <2 x i32> addrspace(1)* %ptr, !invariant.load !0 %v1 = extractelement <2 x i32> %a, i32 0 %v2 = extractelement <2 x i32> %a, i32 1 %sum = add i32 %v1, %v2 ret i32 %sum } ; CHECK-LABEL: @ld_global_v4i32 define i32 @ld_global_v4i32(<4 x i32> addrspace(1)* %ptr) { ; CHECK: ld.global.nc.v4.{{[a-z]}}32 %a = load <4 x i32>, <4 x i32> addrspace(1)* %ptr, !invariant.load !0 %v1 = extractelement <4 x i32> %a, i32 0 %v2 = extractelement <4 x i32> %a, i32 1 %v3 = extractelement <4 x i32> %a, i32 2 %v4 = extractelement <4 x i32> %a, i32 3 %sum1 = add i32 %v1, %v2 %sum2 = add i32 %v3, %v4 %sum3 = add i32 %sum1, %sum2 ret i32 %sum3 } ; CHECK-LABEL: @ld_not_invariant define i32 @ld_not_invariant(i32 addrspace(1)* %ptr) { ; CHECK: ld.global.{{[a-z]}}32 %a = load i32, i32 addrspace(1)* %ptr ret i32 %a } ; CHECK-LABEL: @ld_not_global_addrspace define i32 @ld_not_global_addrspace(i32 addrspace(0)* %ptr) { ; CHECK: ld.{{[a-z]}}32 %a = load i32, i32 addrspace(0)* %ptr ret i32 %a } !0 = !{}