#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
using namespace llvm;
using namespace PatternMatch;
static cl::opt<bool>
EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
cl::init(false),
cl::desc("Enable unsafe double to float "
"shrinking for math lib calls"));
static bool ignoreCallingConv(LibFunc Func) {
return Func == LibFunc_abs || Func == LibFunc_labs ||
Func == LibFunc_llabs || Func == LibFunc_strlen;
}
static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
for (User *U : V->users()) {
if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
if (IC->isEquality() && IC->getOperand(1) == With)
continue;
return false;
}
return true;
}
static bool callHasFloatingPointArgument(const CallInst *CI) {
return any_of(CI->operands(), [](const Use &OI) {
return OI->getType()->isFloatingPointTy();
});
}
static bool callHasFP128Argument(const CallInst *CI) {
return any_of(CI->operands(), [](const Use &OI) {
return OI->getType()->isFP128Ty();
});
}
static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr,
uint64_t Base, bool AsSigned, IRBuilderBase &B) {
if (Base < 2 || Base > 36)
if (Base != 0)
return nullptr;
size_t Offset = 0;
for ( ; Offset != Str.size(); ++Offset)
if (!isSpace((unsigned char)Str[Offset])) {
Str = Str.substr(Offset);
break;
}
if (Str.empty())
return nullptr;
bool Negate = Str[0] == '-';
if (Str[0] == '-' || Str[0] == '+') {
Str = Str.drop_front();
if (Str.empty())
return nullptr;
++Offset;
}
Type *RetTy = CI->getType();
unsigned NBits = RetTy->getPrimitiveSizeInBits();
uint64_t Max = AsSigned && Negate ? 1 : 0;
Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits);
if (Str.size() > 1) {
if (Str[0] == '0') {
if (toUpper((unsigned char)Str[1]) == 'X') {
if (Str.size() == 2 || (Base && Base != 16))
return nullptr;
Str = Str.drop_front(2);
Offset += 2;
Base = 16;
}
else if (Base == 0)
Base = 8;
} else if (Base == 0)
Base = 10;
}
else if (Base == 0)
Base = 10;
uint64_t Result = 0;
for (unsigned i = 0; i != Str.size(); ++i) {
unsigned char DigVal = Str[i];
if (isDigit(DigVal))
DigVal = DigVal - '0';
else {
DigVal = toUpper(DigVal);
if (isAlpha(DigVal))
DigVal = DigVal - 'A' + 10;
else
return nullptr;
}
if (DigVal >= Base)
return nullptr;
bool VFlow;
Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow);
if (VFlow || Result > Max)
return nullptr;
}
if (EndPtr) {
Value *Off = B.getInt64(Offset + Str.size());
Value *StrBeg = CI->getArgOperand(0);
Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr");
B.CreateStore(StrEnd, EndPtr);
}
if (Negate)
Result = -Result;
return ConstantInt::get(RetTy, Result);
}
static bool isOnlyUsedInComparisonWithZero(Value *V) {
for (User *U : V->users()) {
if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
if (C->isNullValue())
continue;
return false;
}
return true;
}
static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
const DataLayout &DL) {
if (!isOnlyUsedInComparisonWithZero(CI))
return false;
if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
return false;
if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
return false;
return true;
}
static void annotateDereferenceableBytes(CallInst *CI,
ArrayRef<unsigned> ArgNos,
uint64_t DereferenceableBytes) {
const Function *F = CI->getCaller();
if (!F)
return;
for (unsigned ArgNo : ArgNos) {
uint64_t DerefBytes = DereferenceableBytes;
unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
if (!llvm::NullPointerIsDefined(F, AS) ||
CI->paramHasAttr(ArgNo, Attribute::NonNull))
DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
DereferenceableBytes);
if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
if (!llvm::NullPointerIsDefined(F, AS) ||
CI->paramHasAttr(ArgNo, Attribute::NonNull))
CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
CI->getContext(), DerefBytes));
}
}
}
static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
ArrayRef<unsigned> ArgNos) {
Function *F = CI->getCaller();
if (!F)
return;
for (unsigned ArgNo : ArgNos) {
if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
CI->addParamAttr(ArgNo, Attribute::NoUndef);
if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
continue;
unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
if (llvm::NullPointerIsDefined(F, AS))
continue;
CI->addParamAttr(ArgNo, Attribute::NonNull);
annotateDereferenceableBytes(CI, ArgNo, 1);
}
}
static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
Value *Size, const DataLayout &DL) {
if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
} else if (isKnownNonZero(Size, DL)) {
annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
const APInt *X, *Y;
uint64_t DerefMin = 1;
if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
annotateDereferenceableBytes(CI, ArgNos, DerefMin);
}
}
}
static Value *copyFlags(const CallInst &Old, Value *New) {
assert(!Old.isMustTailCall() && "do not copy musttail call flags");
assert(!Old.isNoTailCall() && "do not copy notail call flags");
if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
NewCI->setTailCallKind(Old.getTailCallKind());
return New;
}
static StringRef substr(StringRef Str, uint64_t Len) {
return Len >= Str.size() ? Str : Str.substr(0, Len);
}
Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
uint64_t Len = GetStringLength(Src);
if (Len)
annotateDereferenceableBytes(CI, 1, Len);
else
return nullptr;
--Len;
if (Len == 0)
return Dst;
return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
}
Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
IRBuilderBase &B) {
Value *DstLen = emitStrLen(Dst, B, DL, TLI);
if (!DstLen)
return nullptr;
Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
B.CreateMemCpy(
CpyDst, Align(1), Src, Align(1),
ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
return Dst;
}
Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
Value *Size = CI->getArgOperand(2);
uint64_t Len;
annotateNonNullNoUndefBasedOnAccess(CI, 0);
if (isKnownNonZero(Size, DL))
annotateNonNullNoUndefBasedOnAccess(CI, 1);
ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
if (LengthArg) {
Len = LengthArg->getZExtValue();
if (!Len)
return Dst;
} else {
return nullptr;
}
uint64_t SrcLen = GetStringLength(Src);
if (SrcLen) {
annotateDereferenceableBytes(CI, 1, SrcLen);
--SrcLen; } else {
return nullptr;
}
if (SrcLen == 0)
return Dst;
if (Len < SrcLen)
return nullptr;
return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
}
static Value* memChrToCharCompare(CallInst *CI, Value *NBytes,
IRBuilderBase &B, const DataLayout &DL)
{
Value *Src = CI->getArgOperand(0);
Value *CharVal = CI->getArgOperand(1);
Type *CharTy = B.getInt8Ty();
Value *Char0 = B.CreateLoad(CharTy, Src);
CharVal = B.CreateTrunc(CharVal, CharTy);
Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp");
if (NBytes) {
Value *Zero = ConstantInt::get(NBytes->getType(), 0);
Value *And = B.CreateICmpNE(NBytes, Zero);
Cmp = B.CreateLogicalAnd(And, Cmp);
}
Value *NullPtr = Constant::getNullValue(CI->getType());
return B.CreateSelect(Cmp, Src, NullPtr);
}
Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
Value *SrcStr = CI->getArgOperand(0);
Value *CharVal = CI->getArgOperand(1);
annotateNonNullNoUndefBasedOnAccess(CI, 0);
if (isOnlyUsedInEqualityComparison(CI, SrcStr))
return memChrToCharCompare(CI, nullptr, B, DL);
ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
if (!CharC) {
uint64_t Len = GetStringLength(SrcStr);
if (Len)
annotateDereferenceableBytes(CI, 0, Len);
else
return nullptr;
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
if (!FT->getParamType(1)->isIntegerTy(32)) return nullptr;
return copyFlags(
*CI,
emitMemChr(SrcStr, CharVal, ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B,
DL, TLI));
}
if (CharC->isZero()) {
Value *NullPtr = Constant::getNullValue(CI->getType());
if (isOnlyUsedInEqualityComparison(CI, NullPtr))
return B.CreateIntToPtr(B.getTrue(), CI->getType());
}
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str)) {
if (CharC->isZero()) if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
return nullptr;
}
size_t I = (0xFF & CharC->getSExtValue()) == 0
? Str.size()
: Str.find(CharC->getSExtValue());
if (I == StringRef::npos) return Constant::getNullValue(CI->getType());
return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
}
Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
Value *SrcStr = CI->getArgOperand(0);
Value *CharVal = CI->getArgOperand(1);
ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
annotateNonNullNoUndefBasedOnAccess(CI, 0);
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str)) {
if (CharC && CharC->isZero())
return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
return nullptr;
}
uint64_t NBytes = Str.size() + 1; Type *IntPtrType = DL.getIntPtrType(CI->getContext());
Value *Size = ConstantInt::get(IntPtrType, NBytes);
return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI));
}
Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
if (Str1P == Str2P) return ConstantInt::get(CI->getType(), 0);
StringRef Str1, Str2;
bool HasStr1 = getConstantStringInfo(Str1P, Str1);
bool HasStr2 = getConstantStringInfo(Str2P, Str2);
if (HasStr1 && HasStr2)
return ConstantInt::get(CI->getType(), Str1.compare(Str2));
if (HasStr1 && Str1.empty()) return B.CreateNeg(B.CreateZExt(
B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
if (HasStr2 && Str2.empty()) return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
CI->getType());
uint64_t Len1 = GetStringLength(Str1P);
if (Len1)
annotateDereferenceableBytes(CI, 0, Len1);
uint64_t Len2 = GetStringLength(Str2P);
if (Len2)
annotateDereferenceableBytes(CI, 1, Len2);
if (Len1 && Len2) {
return copyFlags(
*CI, emitMemCmp(Str1P, Str2P,
ConstantInt::get(DL.getIntPtrType(CI->getContext()),
std::min(Len1, Len2)),
B, DL, TLI));
}
if (!HasStr1 && HasStr2) {
if (canTransformToMemCmp(CI, Str1P, Len2, DL))
return copyFlags(
*CI,
emitMemCmp(Str1P, Str2P,
ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
B, DL, TLI));
} else if (HasStr1 && !HasStr2) {
if (canTransformToMemCmp(CI, Str2P, Len1, DL))
return copyFlags(
*CI,
emitMemCmp(Str1P, Str2P,
ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
B, DL, TLI));
}
annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
return nullptr;
}
static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
Value *Size, bool StrNCmp,
IRBuilderBase &B, const DataLayout &DL);
Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
Value *Str1P = CI->getArgOperand(0);
Value *Str2P = CI->getArgOperand(1);
Value *Size = CI->getArgOperand(2);
if (Str1P == Str2P) return ConstantInt::get(CI->getType(), 0);
if (isKnownNonZero(Size, DL))
annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
uint64_t Length;
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
Length = LengthArg->getZExtValue();
else
return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL);
if (Length == 0) return ConstantInt::get(CI->getType(), 0);
if (Length == 1) return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
StringRef Str1, Str2;
bool HasStr1 = getConstantStringInfo(Str1P, Str1);
bool HasStr2 = getConstantStringInfo(Str2P, Str2);
if (HasStr1 && HasStr2) {
StringRef SubStr1 = substr(Str1, Length);
StringRef SubStr2 = substr(Str2, Length);
return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
}
if (HasStr1 && Str1.empty()) return B.CreateNeg(B.CreateZExt(
B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
if (HasStr2 && Str2.empty()) return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
CI->getType());
uint64_t Len1 = GetStringLength(Str1P);
if (Len1)
annotateDereferenceableBytes(CI, 0, Len1);
uint64_t Len2 = GetStringLength(Str2P);
if (Len2)
annotateDereferenceableBytes(CI, 1, Len2);
if (!HasStr1 && HasStr2) {
Len2 = std::min(Len2, Length);
if (canTransformToMemCmp(CI, Str1P, Len2, DL))
return copyFlags(
*CI,
emitMemCmp(Str1P, Str2P,
ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
B, DL, TLI));
} else if (HasStr1 && !HasStr2) {
Len1 = std::min(Len1, Length);
if (canTransformToMemCmp(CI, Str2P, Len1, DL))
return copyFlags(
*CI,
emitMemCmp(Str1P, Str2P,
ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
B, DL, TLI));
}
return nullptr;
}
Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
Value *Src = CI->getArgOperand(0);
ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
uint64_t SrcLen = GetStringLength(Src);
if (SrcLen && Size) {
annotateDereferenceableBytes(CI, 0, SrcLen);
if (SrcLen <= Size->getZExtValue() + 1)
return copyFlags(*CI, emitStrDup(Src, B, TLI));
}
return nullptr;
}
Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) return Src;
annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
uint64_t Len = GetStringLength(Src);
if (Len)
annotateDereferenceableBytes(CI, 1, Len);
else
return nullptr;
CallInst *NewCI =
B.CreateMemCpy(Dst, Align(1), Src, Align(1),
ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
NewCI->setAttributes(CI->getAttributes());
NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
copyFlags(*CI, NewCI);
return Dst;
}
Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
Function *Callee = CI->getCalledFunction();
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (CI->use_empty())
return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
if (Dst == Src) { Value *StrLen = emitStrLen(Src, B, DL, TLI);
return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
}
uint64_t Len = GetStringLength(Src);
if (Len)
annotateDereferenceableBytes(CI, 1, Len);
else
return nullptr;
Type *PT = Callee->getFunctionType()->getParamType(0);
Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
Value *DstEnd = B.CreateInBoundsGEP(
B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
NewCI->setAttributes(CI->getAttributes());
NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
copyFlags(*CI, NewCI);
return DstEnd;
}
Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
Function *Callee = CI->getCalledFunction();
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
Value *Size = CI->getArgOperand(2);
annotateNonNullNoUndefBasedOnAccess(CI, 0);
if (isKnownNonZero(Size, DL))
annotateNonNullNoUndefBasedOnAccess(CI, 1);
uint64_t Len;
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
Len = LengthArg->getZExtValue();
else
return nullptr;
if (Len == 0)
return Dst;
uint64_t SrcLen = GetStringLength(Src);
if (SrcLen) {
annotateDereferenceableBytes(CI, 1, SrcLen);
--SrcLen; } else {
return nullptr;
}
if (SrcLen == 0) {
Align MemSetAlign =
CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
CI->getContext(), 0, ArgAttrs));
copyFlags(*CI, NewCI);
return Dst;
}
if (Len > SrcLen + 1) {
if (Len <= 128) {
StringRef Str;
if (!getConstantStringInfo(Src, Str))
return nullptr;
std::string SrcStr = Str.str();
SrcStr.resize(Len, '\0');
Src = B.CreateGlobalString(SrcStr, "str");
} else {
return nullptr;
}
}
Type *PT = Callee->getFunctionType()->getParamType(0);
CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
ConstantInt::get(DL.getIntPtrType(PT), Len));
NewCI->setAttributes(CI->getAttributes());
NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
copyFlags(*CI, NewCI);
return Dst;
}
Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
unsigned CharSize,
Value *Bound) {
Value *Src = CI->getArgOperand(0);
Type *CharTy = B.getIntNTy(CharSize);
if (isOnlyUsedInZeroEqualityComparison(CI) &&
(!Bound || isKnownNonZero(Bound, DL))) {
return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
CI->getType());
}
if (Bound) {
if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
if (BoundCst->isZero())
return ConstantInt::get(CI->getType(), 0);
if (BoundCst->isOne()) {
Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
Value *ZeroChar = ConstantInt::get(CharTy, 0);
Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
return B.CreateZExt(Cmp, CI->getType());
}
}
}
if (uint64_t Len = GetStringLength(Src, CharSize)) {
Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
if (Bound)
return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
return LenC;
}
if (Bound)
return nullptr;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
if (!isGEPBasedOnPointerToString(GEP, CharSize))
return nullptr;
ConstantDataArraySlice Slice;
if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
uint64_t NullTermIdx;
if (Slice.Array == nullptr) {
NullTermIdx = 0;
} else {
NullTermIdx = ~((uint64_t)0);
for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
NullTermIdx = I;
break;
}
}
if (NullTermIdx == ~((uint64_t)0))
return nullptr;
}
Value *Offset = GEP->getOperand(2);
KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
uint64_t ArrSize =
cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
(isa<GlobalVariable>(GEP->getOperand(0)) &&
NullTermIdx == ArrSize - 1)) {
Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
Offset);
}
}
}
if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
if (LenTrue && LenFalse) {
ORE.emit([&]() {
return OptimizationRemark("instcombine", "simplify-libcalls", CI)
<< "folded strlen(select) to select of constants";
});
return B.CreateSelect(SI->getCondition(),
ConstantInt::get(CI->getType(), LenTrue - 1),
ConstantInt::get(CI->getType(), LenFalse - 1));
}
}
return nullptr;
}
Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
if (Value *V = optimizeStringLength(CI, B, 8))
return V;
annotateNonNullNoUndefBasedOnAccess(CI, 0);
return nullptr;
}
Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
Value *Bound = CI->getArgOperand(1);
if (Value *V = optimizeStringLength(CI, B, 8, Bound))
return V;
if (isKnownNonZero(Bound, DL))
annotateNonNullNoUndefBasedOnAccess(CI, 0);
return nullptr;
}
Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
Module &M = *CI->getModule();
unsigned WCharSize = TLI->getWCharSize(M) * 8;
if (WCharSize == 0)
return nullptr;
return optimizeStringLength(CI, B, WCharSize);
}
Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
StringRef S1, S2;
bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
return Constant::getNullValue(CI->getType());
if (HasS1 && HasS2) {
size_t I = S1.find_first_of(S2);
if (I == StringRef::npos) return Constant::getNullValue(CI->getType());
return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0),
B.getInt64(I), "strpbrk");
}
if (HasS2 && S2.size() == 1)
return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
return nullptr;
}
Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
Value *EndPtr = CI->getArgOperand(1);
if (isa<ConstantPointerNull>(EndPtr)) {
CI->addParamAttr(0, Attribute::NoCapture);
}
return nullptr;
}
Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
StringRef S1, S2;
bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
return Constant::getNullValue(CI->getType());
if (HasS1 && HasS2) {
size_t Pos = S1.find_first_not_of(S2);
if (Pos == StringRef::npos)
Pos = S1.size();
return ConstantInt::get(CI->getType(), Pos);
}
return nullptr;
}
Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
StringRef S1, S2;
bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
if (HasS1 && S1.empty())
return Constant::getNullValue(CI->getType());
if (HasS1 && HasS2) {
size_t Pos = S1.find_first_of(S2);
if (Pos == StringRef::npos)
Pos = S1.size();
return ConstantInt::get(CI->getType(), Pos);
}
if (HasS2 && S2.empty())
return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
return nullptr;
}
Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
if (CI->getArgOperand(0) == CI->getArgOperand(1))
return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
if (!StrLen)
return nullptr;
Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
StrLen, B, DL, TLI);
if (!StrNCmp)
return nullptr;
for (User *U : llvm::make_early_inc_range(CI->users())) {
ICmpInst *Old = cast<ICmpInst>(U);
Value *Cmp =
B.CreateICmp(Old->getPredicate(), StrNCmp,
ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
replaceAllUsesWith(Old, Cmp);
}
return CI;
}
StringRef SearchStr, ToFindStr;
bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
if (HasStr2 && ToFindStr.empty())
return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
if (HasStr1 && HasStr2) {
size_t Offset = SearchStr.find(ToFindStr);
if (Offset == StringRef::npos) return Constant::getNullValue(CI->getType());
Value *Result = castToCStr(CI->getArgOperand(0), B);
Result =
B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
return B.CreateBitCast(Result, CI->getType());
}
if (HasStr2 && ToFindStr.size() == 1) {
Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
}
annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
return nullptr;
}
Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
Value *SrcStr = CI->getArgOperand(0);
Value *Size = CI->getArgOperand(2);
annotateNonNullAndDereferenceable(CI, 0, Size, DL);
Value *CharVal = CI->getArgOperand(1);
ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
Value *NullPtr = Constant::getNullValue(CI->getType());
if (LenC) {
if (LenC->isZero())
return NullPtr;
if (LenC->isOne()) {
Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
}
}
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str, 0, false))
return nullptr;
if (Str.size() == 0)
return NullPtr;
uint64_t EndOff = UINT64_MAX;
if (LenC) {
EndOff = LenC->getZExtValue();
if (Str.size() < EndOff)
return nullptr;
}
if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
if (Pos == StringRef::npos)
return NullPtr;
if (LenC)
return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
if (Str.find(Str[Pos]) == Pos) {
Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
"memrchr.cmp");
Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr,
B.getInt64(Pos), "memrchr.ptr_plus");
return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
}
}
Str = Str.substr(0, EndOff);
if (Str.find_first_not_of(Str[0]) != StringRef::npos)
return nullptr;
Type *SizeTy = Size->getType();
Type *Int8Ty = B.getInt8Ty();
Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
CharVal = B.CreateTrunc(CharVal, Int8Ty);
Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
Value *SrcPlus =
B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
}
Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
Value *SrcStr = CI->getArgOperand(0);
Value *Size = CI->getArgOperand(2);
if (isKnownNonZero(Size, DL)) {
annotateNonNullNoUndefBasedOnAccess(CI, 0);
if (isOnlyUsedInEqualityComparison(CI, SrcStr))
return memChrToCharCompare(CI, Size, B, DL);
}
Value *CharVal = CI->getArgOperand(1);
ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
Value *NullPtr = Constant::getNullValue(CI->getType());
if (LenC) {
if (LenC->isZero())
return NullPtr;
if (LenC->isOne()) {
Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
}
}
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str, 0, false))
return nullptr;
if (CharC) {
size_t Pos = Str.find(CharC->getZExtValue());
if (Pos == StringRef::npos)
return NullPtr;
Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
"memchr.cmp");
Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
"memchr.ptr");
return B.CreateSelect(Cmp, NullPtr, SrcPlus);
}
if (Str.size() == 0)
return NullPtr;
if (LenC)
Str = substr(Str, LenC->getZExtValue());
size_t Pos = Str.find_first_not_of(Str[0]);
if (Pos == StringRef::npos
|| Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
Type *SizeTy = Size->getType();
Type *Int8Ty = B.getInt8Ty();
CharVal = B.CreateTrunc(CharVal, Int8Ty);
Value *Sel1 = NullPtr;
if (Pos != StringRef::npos) {
Value *PosVal = ConstantInt::get(SizeTy, Pos);
Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
Value *And = B.CreateAnd(CEqSPos, NGtPos);
Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
}
Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
Value *And = B.CreateAnd(NNeZ, CEqS0);
return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
}
if (!LenC) {
if (isOnlyUsedInEqualityComparison(CI, SrcStr))
return memChrToCharCompare(CI, Size, B, DL);
return nullptr;
}
if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
return nullptr;
unsigned char Max =
*std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
reinterpret_cast<const unsigned char *>(Str.end()));
if (!DL.fitsInLegalInteger(Max + 1))
return nullptr;
unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
APInt Bitfield(Width, 0);
for (char C : Str)
Bitfield.setBit((unsigned char)C);
Value *BitfieldC = B.getInt(Bitfield);
Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
"memchr.bounds");
Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
CI->getType());
}
static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
Value *Size, bool StrNCmp,
IRBuilderBase &B, const DataLayout &DL) {
if (LHS == RHS) return Constant::getNullValue(CI->getType());
StringRef LStr, RStr;
if (!getConstantStringInfo(LHS, LStr, 0, false) ||
!getConstantStringInfo(RHS, RStr, 0, false))
return nullptr;
uint64_t Pos = 0;
Value *Zero = ConstantInt::get(CI->getType(), 0);
for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
if (Pos == MinSize ||
(StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
return Zero;
}
if (LStr[Pos] != RStr[Pos])
break;
}
typedef unsigned char UChar;
int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
Value *Res = ConstantInt::get(CI->getType(), IRes);
return B.CreateSelect(Cmp, Zero, Res);
}
static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
uint64_t Len, IRBuilderBase &B,
const DataLayout &DL) {
if (Len == 0) return Constant::getNullValue(CI->getType());
if (Len == 1) {
Value *LHSV =
B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
CI->getType(), "lhsv");
Value *RHSV =
B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
CI->getType(), "rhsv");
return B.CreateSub(LHSV, RHSV, "chardiff");
}
if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
Value *LHSV = nullptr;
if (auto *LHSC = dyn_cast<Constant>(LHS)) {
LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
}
Value *RHSV = nullptr;
if (auto *RHSC = dyn_cast<Constant>(RHS)) {
RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
}
if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
(RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
if (!LHSV) {
Type *LHSPtrTy =
IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
}
if (!RHSV) {
Type *RHSPtrTy =
IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
}
return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
}
}
return nullptr;
}
Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
IRBuilderBase &B) {
Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
Value *Size = CI->getArgOperand(2);
annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL))
return Res;
ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
if (!LenC)
return nullptr;
return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
}
Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
return V;
if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
isOnlyUsedInZeroEqualityComparison(CI)) {
Value *LHS = CI->getArgOperand(0);
Value *RHS = CI->getArgOperand(1);
Value *Size = CI->getArgOperand(2);
return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
}
return nullptr;
}
Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
return optimizeMemCmpBCmpCommon(CI, B);
}
Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
Value *Size = CI->getArgOperand(2);
annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
if (isa<IntrinsicInst>(CI))
return nullptr;
CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
CI->getArgOperand(1), Align(1), Size);
NewCI->setAttributes(CI->getAttributes());
NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
copyFlags(*CI, NewCI);
return CI->getArgOperand(0);
}
Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
StringRef SrcStr;
if (CI->use_empty() && Dst == Src)
return Dst;
if (N) {
if (N->isNullValue())
return Constant::getNullValue(CI->getType());
if (!getConstantStringInfo(Src, SrcStr, 0,
false) ||
!StopChar)
return nullptr;
} else {
return nullptr;
}
size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
if (Pos == StringRef::npos) {
if (N->getZExtValue() <= SrcStr.size()) {
copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
CI->getArgOperand(3)));
return Constant::getNullValue(CI->getType());
}
return nullptr;
}
Value *NewN =
ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
return Pos + 1 <= N->getZExtValue()
? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
: Constant::getNullValue(CI->getType());
}
Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
Value *Dst = CI->getArgOperand(0);
Value *N = CI->getArgOperand(2);
CallInst *NewCI =
B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
NewCI->setAttributes(CI->getAttributes());
NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
copyFlags(*CI, NewCI);
return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
}
Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
Value *Size = CI->getArgOperand(2);
annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
if (isa<IntrinsicInst>(CI))
return nullptr;
CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
CI->getArgOperand(1), Align(1), Size);
NewCI->setAttributes(CI->getAttributes());
NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
copyFlags(*CI, NewCI);
return CI->getArgOperand(0);
}
Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
Value *Size = CI->getArgOperand(2);
annotateNonNullAndDereferenceable(CI, 0, Size, DL);
if (isa<IntrinsicInst>(CI))
return nullptr;
Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
NewCI->setAttributes(CI->getAttributes());
NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
copyFlags(*CI, NewCI);
return CI->getArgOperand(0);
}
Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
return nullptr;
}
static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
Intrinsic::ID IID) {
IRBuilderBase::FastMathFlagGuard Guard(B);
B.setFastMathFlags(CI->getFastMathFlags());
Module *M = CI->getModule();
Value *V = CI->getArgOperand(0);
Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
CallInst *NewCall = B.CreateCall(F, V);
NewCall->takeName(CI);
return copyFlags(*CI, NewCall);
}
static Value *valueHasFloatPrecision(Value *Val) {
if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
Value *Op = Cast->getOperand(0);
if (Op->getType()->isFloatTy())
return Op;
}
if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
APFloat F = Const->getValueAPF();
bool losesInfo;
(void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
&losesInfo);
if (!losesInfo)
return ConstantFP::get(Const->getContext(), F);
}
return nullptr;
}
static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
bool isBinary, const TargetLibraryInfo *TLI,
bool isPrecise = false) {
Function *CalleeFn = CI->getCalledFunction();
if (!CI->getType()->isDoubleTy() || !CalleeFn)
return nullptr;
if (isPrecise)
for (User *U : CI->users()) {
FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
if (!Cast || !Cast->getType()->isFloatTy())
return nullptr;
}
Value *V[2];
V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
if (!V[0] || (isBinary && !V[1]))
return nullptr;
StringRef CalleeName = CalleeFn->getName();
bool IsIntrinsic = CalleeFn->isIntrinsic();
if (!IsIntrinsic) {
StringRef CallerName = CI->getFunction()->getName();
if (!CallerName.empty() && CallerName.back() == 'f' &&
CallerName.size() == (CalleeName.size() + 1) &&
CallerName.startswith(CalleeName))
return nullptr;
}
IRBuilderBase::FastMathFlagGuard Guard(B);
B.setFastMathFlags(CI->getFastMathFlags());
Value *R;
if (IsIntrinsic) {
Module *M = CI->getModule();
Intrinsic::ID IID = CalleeFn->getIntrinsicID();
Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
} else {
AttributeList CalleeAttrs = CalleeFn->getAttributes();
R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
CalleeAttrs)
: emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
}
return B.CreateFPExt(R, B.getDoubleTy());
}
static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
const TargetLibraryInfo *TLI,
bool isPrecise = false) {
return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
}
static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
const TargetLibraryInfo *TLI,
bool isPrecise = false) {
return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
}
Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
if (!CI->isFast())
return nullptr;
IRBuilderBase::FastMathFlagGuard Guard(B);
B.setFastMathFlags(CI->getFastMathFlags());
Value *Real, *Imag;
if (CI->arg_size() == 1) {
Value *Op = CI->getArgOperand(0);
assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
Real = B.CreateExtractValue(Op, 0, "real");
Imag = B.CreateExtractValue(Op, 1, "imag");
} else {
assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
Real = CI->getArgOperand(0);
Imag = CI->getArgOperand(1);
}
Value *RealReal = B.CreateFMul(Real, Real);
Value *ImagImag = B.CreateFMul(Imag, Imag);
Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
CI->getType());
return copyFlags(
*CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
}
static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
IRBuilderBase &B) {
if (!isa<FPMathOperator>(Call))
return nullptr;
IRBuilderBase::FastMathFlagGuard Guard(B);
B.setFastMathFlags(Call->getFastMathFlags());
Value *X;
switch (Func) {
case LibFunc_sin:
case LibFunc_sinf:
case LibFunc_sinl:
case LibFunc_tan:
case LibFunc_tanf:
case LibFunc_tanl:
if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
return B.CreateFNeg(
copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
break;
case LibFunc_cos:
case LibFunc_cosf:
case LibFunc_cosl:
if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
return copyFlags(*Call,
B.CreateCall(Call->getCalledFunction(), X, "cos"));
break;
default:
break;
}
return nullptr;
}
static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
Value *Op = cast<Instruction>(I2F)->getOperand(0);
unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
if (BitWidth < DstWidth ||
(BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
: B.CreateZExt(Op, B.getIntNTy(DstWidth));
}
return nullptr;
}
Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
Module *M = Pow->getModule();
Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
AttributeList Attrs; Module *Mod = Pow->getModule();
Type *Ty = Pow->getType();
bool Ignored;
CallInst *BaseFn = dyn_cast<CallInst>(Base);
if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
LibFunc LibFn;
Function *CalleeFn = BaseFn->getCalledFunction();
if (CalleeFn &&
TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
isLibFuncEmittable(M, TLI, LibFn)) {
StringRef ExpName;
Intrinsic::ID ID;
Value *ExpFn;
LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
switch (LibFn) {
default:
return nullptr;
case LibFunc_expf: case LibFunc_exp: case LibFunc_expl:
ExpName = TLI->getName(LibFunc_exp);
ID = Intrinsic::exp;
LibFnFloat = LibFunc_expf;
LibFnDouble = LibFunc_exp;
LibFnLongDouble = LibFunc_expl;
break;
case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
ExpName = TLI->getName(LibFunc_exp2);
ID = Intrinsic::exp2;
LibFnFloat = LibFunc_exp2f;
LibFnDouble = LibFunc_exp2;
LibFnLongDouble = LibFunc_exp2l;
break;
}
Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
ExpFn = BaseFn->doesNotAccessMemory()
? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
FMul, ExpName)
: emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
LibFnLongDouble, B,
BaseFn->getAttributes());
substituteInParent(BaseFn, ExpFn);
return ExpFn;
}
}
const APFloat *BaseF;
if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
return nullptr;
if (match(Base, m_SpecificFP(2.0)) &&
(isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
return copyFlags(*Pow,
emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
TLI, LibFunc_ldexp, LibFunc_ldexpf,
LibFunc_ldexpl, B, Attrs));
}
if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
APFloat BaseR = APFloat(1.0);
BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
BaseR = BaseR / *BaseF;
bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
APSInt NI(64, false);
if ((IsInteger || IsReciprocal) &&
NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
APFloat::opOK &&
NI > 1 && NI.isPowerOf2()) {
double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
if (Pow->doesNotAccessMemory())
return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
Mod, Intrinsic::exp2, Ty),
FMul, "exp2"));
else
return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
LibFunc_exp2f,
LibFunc_exp2l, B, Attrs));
}
}
if (match(Base, m_SpecificFP(10.0)) &&
hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
LibFunc_exp10f, LibFunc_exp10l,
B, Attrs));
if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
!BaseF->isNegative()) {
assert(!match(Base, m_FPOne()) &&
"pow(1.0, y) should have been simplified earlier!");
Value *Log = nullptr;
if (Ty->isFloatTy())
Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
else if (Ty->isDoubleTy())
Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
if (Log) {
Value *FMul = B.CreateFMul(Log, Expo, "mul");
if (Pow->doesNotAccessMemory())
return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
Mod, Intrinsic::exp2, Ty),
FMul, "exp2"));
else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
LibFunc_exp2l))
return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
LibFunc_exp2f,
LibFunc_exp2l, B, Attrs));
}
}
return nullptr;
}
static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
Module *M, IRBuilderBase &B,
const TargetLibraryInfo *TLI) {
if (NoErrno) {
Function *SqrtFn =
Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
return B.CreateCall(SqrtFn, V, "sqrt");
}
if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
LibFunc_sqrtl))
return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
LibFunc_sqrtl, B, Attrs);
return nullptr;
}
Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
AttributeList Attrs; Module *Mod = Pow->getModule();
Type *Ty = Pow->getType();
const APFloat *ExpoF;
if (!match(Expo, m_APFloat(ExpoF)) ||
(!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
return nullptr;
if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
return nullptr;
if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
!isKnownNeverInfinity(Base, TLI))
return nullptr;
Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
if (!Sqrt)
return nullptr;
if (!Pow->hasNoSignedZeros()) {
Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
}
Sqrt = copyFlags(*Pow, Sqrt);
if (!Pow->hasNoInfs()) {
Value *PosInf = ConstantFP::getInfinity(Ty),
*NegInf = ConstantFP::getInfinity(Ty, true);
Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
}
if (ExpoF->isNegative())
Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
return Sqrt;
}
static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
IRBuilderBase &B) {
Value *Args[] = {Base, Expo};
Type *Types[] = {Base->getType(), Expo->getType()};
Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
return B.CreateCall(F, Args);
}
Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
Value *Base = Pow->getArgOperand(0);
Value *Expo = Pow->getArgOperand(1);
Function *Callee = Pow->getCalledFunction();
StringRef Name = Callee->getName();
Type *Ty = Pow->getType();
Module *M = Pow->getModule();
bool AllowApprox = Pow->hasApproxFunc();
bool Ignored;
IRBuilderBase::FastMathFlagGuard Guard(B);
B.setFastMathFlags(Pow->getFastMathFlags());
if (match(Base, m_FPOne()))
return Base;
if (Value *Exp = replacePowWithExp(Pow, B))
return Exp;
if (match(Expo, m_SpecificFP(-1.0)))
return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
if (match(Expo, m_AnyZeroFP()))
return ConstantFP::get(Ty, 1.0);
if (match(Expo, m_FPOne()))
return Base;
if (match(Expo, m_SpecificFP(2.0)))
return B.CreateFMul(Base, Base, "square");
if (Value *Sqrt = replacePowWithSqrt(Pow, B))
return Sqrt;
const APFloat *ExpoF;
if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
APFloat ExpoA(abs(*ExpoF));
APFloat ExpoI(*ExpoF);
Value *Sqrt = nullptr;
if (!ExpoA.isInteger()) {
APFloat Expo2 = ExpoA;
if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
return nullptr;
if (!Expo2.isInteger())
return nullptr;
if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) !=
APFloat::opInexact)
return nullptr;
if (!ExpoI.isInteger())
return nullptr;
ExpoF = &ExpoI;
Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
Pow->doesNotAccessMemory(), M, B, TLI);
if (!Sqrt)
return nullptr;
}
APSInt IntExpo(TLI->getIntSize(), false);
if (ExpoF->isInteger() &&
ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
APFloat::opOK) {
Value *PowI = copyFlags(
*Pow,
createPowWithIntegerExponent(
Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
M, B));
if (PowI && Sqrt)
return B.CreateFMul(PowI, Sqrt);
return PowI;
}
}
if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
}
if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
hasFloatVersion(M, Name)) {
if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
return Shrunk;
}
return nullptr;
}
Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
Function *Callee = CI->getCalledFunction();
AttributeList Attrs; StringRef Name = Callee->getName();
Value *Ret = nullptr;
if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
hasFloatVersion(M, Name))
Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
Type *Ty = CI->getType();
Value *Op = CI->getArgOperand(0);
if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
B, Attrs);
}
return Ret;
}
Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
Function *Callee = CI->getCalledFunction();
StringRef Name = Callee->getName();
if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
return Ret;
IRBuilderBase::FastMathFlagGuard Guard(B);
FastMathFlags FMF = CI->getFastMathFlags();
FMF.setNoSignedZeros();
B.setFastMathFlags(FMF);
Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
: Intrinsic::maxnum;
Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
return copyFlags(
*CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
}
Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
Function *LogFn = Log->getCalledFunction();
AttributeList Attrs; StringRef LogNm = LogFn->getName();
Intrinsic::ID LogID = LogFn->getIntrinsicID();
Module *Mod = Log->getModule();
Type *Ty = Log->getType();
Value *Ret = nullptr;
if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
Ret = optimizeUnaryDoubleFP(Log, B, TLI, true);
CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
return Ret;
LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
if (TLI->getLibFunc(LogNm, LogLb))
switch (LogLb) {
case LibFunc_logf:
LogID = Intrinsic::log;
ExpLb = LibFunc_expf;
Exp2Lb = LibFunc_exp2f;
Exp10Lb = LibFunc_exp10f;
PowLb = LibFunc_powf;
break;
case LibFunc_log:
LogID = Intrinsic::log;
ExpLb = LibFunc_exp;
Exp2Lb = LibFunc_exp2;
Exp10Lb = LibFunc_exp10;
PowLb = LibFunc_pow;
break;
case LibFunc_logl:
LogID = Intrinsic::log;
ExpLb = LibFunc_expl;
Exp2Lb = LibFunc_exp2l;
Exp10Lb = LibFunc_exp10l;
PowLb = LibFunc_powl;
break;
case LibFunc_log2f:
LogID = Intrinsic::log2;
ExpLb = LibFunc_expf;
Exp2Lb = LibFunc_exp2f;
Exp10Lb = LibFunc_exp10f;
PowLb = LibFunc_powf;
break;
case LibFunc_log2:
LogID = Intrinsic::log2;
ExpLb = LibFunc_exp;
Exp2Lb = LibFunc_exp2;
Exp10Lb = LibFunc_exp10;
PowLb = LibFunc_pow;
break;
case LibFunc_log2l:
LogID = Intrinsic::log2;
ExpLb = LibFunc_expl;
Exp2Lb = LibFunc_exp2l;
Exp10Lb = LibFunc_exp10l;
PowLb = LibFunc_powl;
break;
case LibFunc_log10f:
LogID = Intrinsic::log10;
ExpLb = LibFunc_expf;
Exp2Lb = LibFunc_exp2f;
Exp10Lb = LibFunc_exp10f;
PowLb = LibFunc_powf;
break;
case LibFunc_log10:
LogID = Intrinsic::log10;
ExpLb = LibFunc_exp;
Exp2Lb = LibFunc_exp2;
Exp10Lb = LibFunc_exp10;
PowLb = LibFunc_pow;
break;
case LibFunc_log10l:
LogID = Intrinsic::log10;
ExpLb = LibFunc_expl;
Exp2Lb = LibFunc_exp2l;
Exp10Lb = LibFunc_exp10l;
PowLb = LibFunc_powl;
break;
default:
return Ret;
}
else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
LogID == Intrinsic::log10) {
if (Ty->getScalarType()->isFloatTy()) {
ExpLb = LibFunc_expf;
Exp2Lb = LibFunc_exp2f;
Exp10Lb = LibFunc_exp10f;
PowLb = LibFunc_powf;
} else if (Ty->getScalarType()->isDoubleTy()) {
ExpLb = LibFunc_exp;
Exp2Lb = LibFunc_exp2;
Exp10Lb = LibFunc_exp10;
PowLb = LibFunc_pow;
} else
return Ret;
} else
return Ret;
IRBuilderBase::FastMathFlagGuard Guard(B);
B.setFastMathFlags(FastMathFlags::getFast());
Intrinsic::ID ArgID = Arg->getIntrinsicID();
LibFunc ArgLb = NotLibFunc;
TLI->getLibFunc(*Arg, ArgLb);
if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
Value *LogX =
Log->doesNotAccessMemory()
? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
Arg->getOperand(0), "log")
: emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs);
Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
substituteInParent(Arg, MulY);
return MulY;
}
if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
Constant *Eul;
if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
Eul = ConstantFP::get(Log->getType(), numbers::e);
else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
Eul = ConstantFP::get(Log->getType(), 2.0);
else
Eul = ConstantFP::get(Log->getType(), 10.0);
Value *LogE = Log->doesNotAccessMemory()
? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
Eul, "log")
: emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs);
Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
substituteInParent(Arg, MulY);
return MulY;
}
return Ret;
}
Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
Function *Callee = CI->getCalledFunction();
Value *Ret = nullptr;
if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
(Callee->getName() == "sqrt" ||
Callee->getIntrinsicID() == Intrinsic::sqrt))
Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
if (!CI->isFast())
return Ret;
Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
return Ret;
Value *Op0 = I->getOperand(0);
Value *Op1 = I->getOperand(1);
Value *RepeatOp = nullptr;
Value *OtherOp = nullptr;
if (Op0 == Op1) {
RepeatOp = Op0;
} else {
Value *OtherMul0, *OtherMul1;
if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
RepeatOp = OtherMul0;
OtherOp = Op1;
}
}
}
if (!RepeatOp)
return Ret;
IRBuilderBase::FastMathFlagGuard Guard(B);
B.setFastMathFlags(I->getFastMathFlags());
Type *ArgType = I->getType();
Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
if (OtherOp) {
Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
}
return copyFlags(*CI, FabsCall);
}
Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
Function *Callee = CI->getCalledFunction();
Value *Ret = nullptr;
StringRef Name = Callee->getName();
if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name))
Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
Value *Op1 = CI->getArgOperand(0);
auto *OpC = dyn_cast<CallInst>(Op1);
if (!OpC)
return Ret;
if (!CI->isFast() || !OpC->isFast())
return Ret;
LibFunc Func;
Function *F = OpC->getCalledFunction();
if (F && TLI->getLibFunc(F->getName(), Func) &&
isLibFuncEmittable(M, TLI, Func) &&
((Func == LibFunc_atan && Callee->getName() == "tan") ||
(Func == LibFunc_atanf && Callee->getName() == "tanf") ||
(Func == LibFunc_atanl && Callee->getName() == "tanl")))
Ret = OpC->getArgOperand(0);
return Ret;
}
static bool isTrigLibCall(CallInst *CI) {
return CI->hasFnAttr(Attribute::NoUnwind) &&
CI->hasFnAttr(Attribute::ReadNone);
}
static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
bool UseFloat, Value *&Sin, Value *&Cos,
Value *&SinCos, const TargetLibraryInfo *TLI) {
Module *M = OrigCallee->getParent();
Type *ArgTy = Arg->getType();
Type *ResTy;
StringRef Name;
Triple T(OrigCallee->getParent()->getTargetTriple());
if (UseFloat) {
Name = "__sincospif_stret";
assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
ResTy = T.getArch() == Triple::x86_64
? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
: static_cast<Type *>(StructType::get(ArgTy, ArgTy));
} else {
Name = "__sincospi_stret";
ResTy = StructType::get(ArgTy, ArgTy);
}
if (!isLibFuncEmittable(M, TLI, Name))
return false;
LibFunc TheLibFunc;
TLI->getLibFunc(Name, TheLibFunc);
FunctionCallee Callee = getOrInsertLibFunc(
M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
} else {
BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
B.SetInsertPoint(&EntryBB, EntryBB.begin());
}
SinCos = B.CreateCall(Callee, Arg, "sincospi");
if (SinCos->getType()->isStructTy()) {
Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
Cos = B.CreateExtractValue(SinCos, 1, "cospi");
} else {
Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
"sinpi");
Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
"cospi");
}
return true;
}
Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
if (!isTrigLibCall(CI))
return nullptr;
Value *Arg = CI->getArgOperand(0);
SmallVector<CallInst *, 1> SinCalls;
SmallVector<CallInst *, 1> CosCalls;
SmallVector<CallInst *, 1> SinCosCalls;
bool IsFloat = Arg->getType()->isFloatTy();
Function *F = CI->getFunction();
for (User *U : Arg->users())
classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
if (SinCalls.empty() || CosCalls.empty())
return nullptr;
Value *Sin, *Cos, *SinCos;
if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
SinCos, TLI))
return nullptr;
auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
Value *Res) {
for (CallInst *C : Calls)
replaceAllUsesWith(C, Res);
};
replaceTrigInsts(SinCalls, Sin);
replaceTrigInsts(CosCalls, Cos);
replaceTrigInsts(SinCosCalls, SinCos);
return nullptr;
}
void LibCallSimplifier::classifyArgUse(
Value *Val, Function *F, bool IsFloat,
SmallVectorImpl<CallInst *> &SinCalls,
SmallVectorImpl<CallInst *> &CosCalls,
SmallVectorImpl<CallInst *> &SinCosCalls) {
CallInst *CI = dyn_cast<CallInst>(Val);
Module *M = CI->getModule();
if (!CI || CI->use_empty())
return;
if (CI->getFunction() != F)
return;
Function *Callee = CI->getCalledFunction();
LibFunc Func;
if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
!isLibFuncEmittable(M, TLI, Func) ||
!isTrigLibCall(CI))
return;
if (IsFloat) {
if (Func == LibFunc_sinpif)
SinCalls.push_back(CI);
else if (Func == LibFunc_cospif)
CosCalls.push_back(CI);
else if (Func == LibFunc_sincospif_stret)
SinCosCalls.push_back(CI);
} else {
if (Func == LibFunc_sinpi)
SinCalls.push_back(CI);
else if (Func == LibFunc_cospi)
CosCalls.push_back(CI);
else if (Func == LibFunc_sincospi_stret)
SinCosCalls.push_back(CI);
}
}
Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
Value *Op = CI->getArgOperand(0);
Type *ArgType = Op->getType();
Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
Intrinsic::cttz, ArgType);
Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
V = B.CreateIntCast(V, B.getInt32Ty(), false);
Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
return B.CreateSelect(Cond, V, B.getInt32(0));
}
Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
Value *Op = CI->getArgOperand(0);
Type *ArgType = Op->getType();
Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
Intrinsic::ctlz, ArgType);
Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
V);
return B.CreateIntCast(V, CI->getType(), false);
}
Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
Value *X = CI->getArgOperand(0);
Value *IsNeg = B.CreateIsNeg(X);
Value *NegX = B.CreateNSWNeg(X, "neg");
return B.CreateSelect(IsNeg, NegX, X);
}
Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
Value *Op = CI->getArgOperand(0);
Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
return B.CreateZExt(Op, CI->getType());
}
Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
Value *Op = CI->getArgOperand(0);
Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
return B.CreateZExt(Op, CI->getType());
}
Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
return B.CreateAnd(CI->getArgOperand(0),
ConstantInt::get(CI->getType(), 0x7F));
}
Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
CI->addParamAttr(0, Attribute::NoCapture);
StringRef Str;
if (!getConstantStringInfo(CI->getArgOperand(0), Str))
return nullptr;
return convertStrToInt(CI, Str, nullptr, 10, true, B);
}
Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B,
bool AsSigned) {
Value *EndPtr = CI->getArgOperand(1);
if (isa<ConstantPointerNull>(EndPtr)) {
CI->addParamAttr(0, Attribute::NoCapture);
EndPtr = nullptr;
} else if (!isKnownNonZero(EndPtr, DL))
return nullptr;
StringRef Str;
if (!getConstantStringInfo(CI->getArgOperand(0), Str))
return nullptr;
if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B);
}
return nullptr;
}
static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
int StreamArg) {
Function *Callee = CI->getCalledFunction();
if (!CI->hasFnAttr(Attribute::Cold) &&
isReportingError(Callee, CI, StreamArg)) {
CI->addFnAttr(Attribute::Cold);
}
return nullptr;
}
static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
if (!Callee || !Callee->isDeclaration())
return false;
if (StreamArg < 0)
return true;
if (StreamArg >= (int)CI->arg_size())
return false;
LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
if (!LI)
return false;
GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
if (!GV || !GV->isDeclaration())
return false;
return GV->getName() == "stderr";
}
Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
StringRef FormatStr;
if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
return nullptr;
if (FormatStr.empty()) return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
if (!CI->use_empty())
return nullptr;
if (FormatStr.size() == 1 || FormatStr == "%%")
return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI));
if (FormatStr == "%s" && CI->arg_size() > 1) {
StringRef OperandStr;
if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
return nullptr;
if (OperandStr.empty())
return (Value *)CI;
if (OperandStr.size() == 1)
return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI));
if (OperandStr.back() == '\n') {
OperandStr = OperandStr.drop_back();
Value *GV = B.CreateGlobalString(OperandStr, "str");
return copyFlags(*CI, emitPutS(GV, B, TLI));
}
return nullptr;
}
if (FormatStr.back() == '\n' &&
!FormatStr.contains('%')) { FormatStr = FormatStr.drop_back();
Value *GV = B.CreateGlobalString(FormatStr, "str");
return copyFlags(*CI, emitPutS(GV, B, TLI));
}
if (FormatStr == "%c" && CI->arg_size() > 1 &&
CI->getArgOperand(1)->getType()->isIntegerTy())
return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI));
if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
CI->getArgOperand(1)->getType()->isPointerTy())
return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
return nullptr;
}
Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
if (Value *V = optimizePrintFString(CI, B)) {
return V;
}
if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
!callHasFloatingPointArgument(CI)) {
FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(IPrintFFn);
B.Insert(New);
return New;
}
if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
!callHasFP128Argument(CI)) {
auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(SmallPrintFFn);
B.Insert(New);
return New;
}
annotateNonNullNoUndefBasedOnAccess(CI, 0);
return nullptr;
}
Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
IRBuilderBase &B) {
StringRef FormatStr;
if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
return nullptr;
Value *Dest = CI->getArgOperand(0);
if (CI->arg_size() == 2) {
if (FormatStr.contains('%'))
return nullptr;
B.CreateMemCpy(
Dest, Align(1), CI->getArgOperand(1), Align(1),
ConstantInt::get(DL.getIntPtrType(CI->getContext()),
FormatStr.size() + 1)); return ConstantInt::get(CI->getType(), FormatStr.size());
}
if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
return nullptr;
if (FormatStr[1] == 'c') {
if (!CI->getArgOperand(2)->getType()->isIntegerTy())
return nullptr;
Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
Value *Ptr = castToCStr(Dest, B);
B.CreateStore(V, Ptr);
Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
B.CreateStore(B.getInt8(0), Ptr);
return ConstantInt::get(CI->getType(), 1);
}
if (FormatStr[1] == 's') {
if (!CI->getArgOperand(2)->getType()->isPointerTy())
return nullptr;
if (CI->use_empty())
return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
if (SrcLen) {
B.CreateMemCpy(
Dest, Align(1), CI->getArgOperand(2), Align(1),
ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
return ConstantInt::get(CI->getType(), SrcLen - 1);
} else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
V = B.CreatePointerCast(V, B.getInt8PtrTy());
Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy());
Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
return B.CreateIntCast(PtrDiff, CI->getType(), false);
}
bool OptForSize = CI->getFunction()->hasOptSize() ||
llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
PGSOQueryType::IRPass);
if (OptForSize)
return nullptr;
Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
if (!Len)
return nullptr;
Value *IncLen =
B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
return B.CreateIntCast(Len, CI->getType(), false);
}
return nullptr;
}
Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
if (Value *V = optimizeSPrintFString(CI, B)) {
return V;
}
if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
!callHasFloatingPointArgument(CI)) {
FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
FT, Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(SIPrintFFn);
B.Insert(New);
return New;
}
if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
!callHasFP128Argument(CI)) {
auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(SmallSPrintFFn);
B.Insert(New);
return New;
}
annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
return nullptr;
}
Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
IRBuilderBase &B) {
ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
if (!Size)
return nullptr;
uint64_t N = Size->getZExtValue();
StringRef FormatStr;
if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
return nullptr;
if (CI->arg_size() == 3) {
if (FormatStr.contains('%'))
return nullptr;
if (N == 0)
return ConstantInt::get(CI->getType(), FormatStr.size());
else if (N < FormatStr.size() + 1)
return nullptr;
copyFlags(
*CI,
B.CreateMemCpy(
CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
ConstantInt::get(DL.getIntPtrType(CI->getContext()),
FormatStr.size() + 1))); return ConstantInt::get(CI->getType(), FormatStr.size());
}
if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) {
if (FormatStr[1] == 'c') {
if (N == 0)
return ConstantInt::get(CI->getType(), 1);
else if (N == 1)
return nullptr;
if (!CI->getArgOperand(3)->getType()->isIntegerTy())
return nullptr;
Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
Value *Ptr = castToCStr(CI->getArgOperand(0), B);
B.CreateStore(V, Ptr);
Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
B.CreateStore(B.getInt8(0), Ptr);
return ConstantInt::get(CI->getType(), 1);
}
if (FormatStr[1] == 's') {
StringRef Str;
if (!getConstantStringInfo(CI->getArgOperand(3), Str))
return nullptr;
if (N == 0)
return ConstantInt::get(CI->getType(), Str.size());
else if (N < Str.size() + 1)
return nullptr;
copyFlags(
*CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1),
CI->getArgOperand(3), Align(1),
ConstantInt::get(CI->getType(), Str.size() + 1)));
return ConstantInt::get(CI->getType(), Str.size());
}
}
return nullptr;
}
Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
if (Value *V = optimizeSnPrintFString(CI, B)) {
return V;
}
if (isKnownNonZero(CI->getOperand(1), DL))
annotateNonNullNoUndefBasedOnAccess(CI, 0);
return nullptr;
}
Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
IRBuilderBase &B) {
optimizeErrorReporting(CI, B, 0);
StringRef FormatStr;
if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
return nullptr;
if (!CI->use_empty())
return nullptr;
if (CI->arg_size() == 2) {
if (FormatStr.contains('%'))
return nullptr;
return copyFlags(
*CI, emitFWrite(CI->getArgOperand(1),
ConstantInt::get(DL.getIntPtrType(CI->getContext()),
FormatStr.size()),
CI->getArgOperand(0), B, DL, TLI));
}
if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
return nullptr;
if (FormatStr[1] == 'c') {
if (!CI->getArgOperand(2)->getType()->isIntegerTy())
return nullptr;
return copyFlags(
*CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
}
if (FormatStr[1] == 's') {
if (!CI->getArgOperand(2)->getType()->isPointerTy())
return nullptr;
return copyFlags(
*CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
}
return nullptr;
}
Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
Module *M = CI->getModule();
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
if (Value *V = optimizeFPrintFString(CI, B)) {
return V;
}
if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
!callHasFloatingPointArgument(CI)) {
FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
FT, Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(FIPrintFFn);
B.Insert(New);
return New;
}
if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
!callHasFP128Argument(CI)) {
auto SmallFPrintFFn =
getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(SmallFPrintFFn);
B.Insert(New);
return New;
}
return nullptr;
}
Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
optimizeErrorReporting(CI, B, 3);
ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
if (SizeC && CountC) {
uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
if (Bytes == 0)
return ConstantInt::get(CI->getType(), 0);
if (Bytes == 1 && CI->use_empty()) { Value *Char = B.CreateLoad(B.getInt8Ty(),
castToCStr(CI->getArgOperand(0), B), "char");
Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
}
}
return nullptr;
}
Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
optimizeErrorReporting(CI, B, 1);
bool OptForSize = CI->getFunction()->hasOptSize() ||
llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
PGSOQueryType::IRPass);
if (OptForSize)
return nullptr;
if (!CI->use_empty())
return nullptr;
uint64_t Len = GetStringLength(CI->getArgOperand(0));
if (!Len)
return nullptr;
return copyFlags(
*CI,
emitFWrite(CI->getArgOperand(0),
ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
CI->getArgOperand(1), B, DL, TLI));
}
Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
annotateNonNullNoUndefBasedOnAccess(CI, 0);
if (!CI->use_empty())
return nullptr;
StringRef Str;
if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI));
return nullptr;
}
Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
CI->getArgOperand(0), Align(1),
CI->getArgOperand(2)));
}
bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
SmallString<20> FloatFuncName = FuncName;
FloatFuncName += 'f';
return isLibFuncEmittable(M, TLI, FloatFuncName);
}
Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
IRBuilderBase &Builder) {
Module *M = CI->getModule();
LibFunc Func;
Function *Callee = CI->getCalledFunction();
if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
assert(
(ignoreCallingConv(Func) ||
TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
"Optimizing string/memory libcall would change the calling convention");
switch (Func) {
case LibFunc_strcat:
return optimizeStrCat(CI, Builder);
case LibFunc_strncat:
return optimizeStrNCat(CI, Builder);
case LibFunc_strchr:
return optimizeStrChr(CI, Builder);
case LibFunc_strrchr:
return optimizeStrRChr(CI, Builder);
case LibFunc_strcmp:
return optimizeStrCmp(CI, Builder);
case LibFunc_strncmp:
return optimizeStrNCmp(CI, Builder);
case LibFunc_strcpy:
return optimizeStrCpy(CI, Builder);
case LibFunc_stpcpy:
return optimizeStpCpy(CI, Builder);
case LibFunc_strncpy:
return optimizeStrNCpy(CI, Builder);
case LibFunc_strlen:
return optimizeStrLen(CI, Builder);
case LibFunc_strnlen:
return optimizeStrNLen(CI, Builder);
case LibFunc_strpbrk:
return optimizeStrPBrk(CI, Builder);
case LibFunc_strndup:
return optimizeStrNDup(CI, Builder);
case LibFunc_strtol:
case LibFunc_strtod:
case LibFunc_strtof:
case LibFunc_strtoul:
case LibFunc_strtoll:
case LibFunc_strtold:
case LibFunc_strtoull:
return optimizeStrTo(CI, Builder);
case LibFunc_strspn:
return optimizeStrSpn(CI, Builder);
case LibFunc_strcspn:
return optimizeStrCSpn(CI, Builder);
case LibFunc_strstr:
return optimizeStrStr(CI, Builder);
case LibFunc_memchr:
return optimizeMemChr(CI, Builder);
case LibFunc_memrchr:
return optimizeMemRChr(CI, Builder);
case LibFunc_bcmp:
return optimizeBCmp(CI, Builder);
case LibFunc_memcmp:
return optimizeMemCmp(CI, Builder);
case LibFunc_memcpy:
return optimizeMemCpy(CI, Builder);
case LibFunc_memccpy:
return optimizeMemCCpy(CI, Builder);
case LibFunc_mempcpy:
return optimizeMemPCpy(CI, Builder);
case LibFunc_memmove:
return optimizeMemMove(CI, Builder);
case LibFunc_memset:
return optimizeMemSet(CI, Builder);
case LibFunc_realloc:
return optimizeRealloc(CI, Builder);
case LibFunc_wcslen:
return optimizeWcslen(CI, Builder);
case LibFunc_bcopy:
return optimizeBCopy(CI, Builder);
default:
break;
}
}
return nullptr;
}
Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
LibFunc Func,
IRBuilderBase &Builder) {
const Module *M = CI->getModule();
if (CI->isStrictFP())
return nullptr;
if (Value *V = optimizeTrigReflections(CI, Func, Builder))
return V;
switch (Func) {
case LibFunc_sinpif:
case LibFunc_sinpi:
case LibFunc_cospif:
case LibFunc_cospi:
return optimizeSinCosPi(CI, Builder);
case LibFunc_powf:
case LibFunc_pow:
case LibFunc_powl:
return optimizePow(CI, Builder);
case LibFunc_exp2l:
case LibFunc_exp2:
case LibFunc_exp2f:
return optimizeExp2(CI, Builder);
case LibFunc_fabsf:
case LibFunc_fabs:
case LibFunc_fabsl:
return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
case LibFunc_sqrtf:
case LibFunc_sqrt:
case LibFunc_sqrtl:
return optimizeSqrt(CI, Builder);
case LibFunc_logf:
case LibFunc_log:
case LibFunc_logl:
case LibFunc_log10f:
case LibFunc_log10:
case LibFunc_log10l:
case LibFunc_log1pf:
case LibFunc_log1p:
case LibFunc_log1pl:
case LibFunc_log2f:
case LibFunc_log2:
case LibFunc_log2l:
case LibFunc_logbf:
case LibFunc_logb:
case LibFunc_logbl:
return optimizeLog(CI, Builder);
case LibFunc_tan:
case LibFunc_tanf:
case LibFunc_tanl:
return optimizeTan(CI, Builder);
case LibFunc_ceil:
return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
case LibFunc_floor:
return replaceUnaryCall(CI, Builder, Intrinsic::floor);
case LibFunc_round:
return replaceUnaryCall(CI, Builder, Intrinsic::round);
case LibFunc_roundeven:
return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
case LibFunc_nearbyint:
return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
case LibFunc_rint:
return replaceUnaryCall(CI, Builder, Intrinsic::rint);
case LibFunc_trunc:
return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
case LibFunc_acos:
case LibFunc_acosh:
case LibFunc_asin:
case LibFunc_asinh:
case LibFunc_atan:
case LibFunc_atanh:
case LibFunc_cbrt:
case LibFunc_cosh:
case LibFunc_exp:
case LibFunc_exp10:
case LibFunc_expm1:
case LibFunc_cos:
case LibFunc_sin:
case LibFunc_sinh:
case LibFunc_tanh:
if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
return nullptr;
case LibFunc_copysign:
if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
return optimizeBinaryDoubleFP(CI, Builder, TLI);
return nullptr;
case LibFunc_fminf:
case LibFunc_fmin:
case LibFunc_fminl:
case LibFunc_fmaxf:
case LibFunc_fmax:
case LibFunc_fmaxl:
return optimizeFMinFMax(CI, Builder);
case LibFunc_cabs:
case LibFunc_cabsf:
case LibFunc_cabsl:
return optimizeCAbs(CI, Builder);
default:
return nullptr;
}
}
Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
Module *M = CI->getModule();
assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
if (CI->isNoBuiltin())
return nullptr;
LibFunc Func;
Function *Callee = CI->getCalledFunction();
bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
SmallVector<OperandBundleDef, 2> OpBundles;
CI->getOperandBundlesAsDefs(OpBundles);
IRBuilderBase::OperandBundlesGuard Guard(Builder);
Builder.setDefaultOperandBundles(OpBundles);
if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
UnsafeFPShrink = EnableUnsafeFPShrink;
else if (isa<FPMathOperator>(CI) && CI->isFast())
UnsafeFPShrink = true;
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
if (!IsCallingConvC)
return nullptr;
switch (II->getIntrinsicID()) {
case Intrinsic::pow:
return optimizePow(CI, Builder);
case Intrinsic::exp2:
return optimizeExp2(CI, Builder);
case Intrinsic::log:
case Intrinsic::log2:
case Intrinsic::log10:
return optimizeLog(CI, Builder);
case Intrinsic::sqrt:
return optimizeSqrt(CI, Builder);
case Intrinsic::memset:
return optimizeMemSet(CI, Builder);
case Intrinsic::memcpy:
return optimizeMemCpy(CI, Builder);
case Intrinsic::memmove:
return optimizeMemMove(CI, Builder);
default:
return nullptr;
}
}
if (Value *SimplifiedFortifiedCI =
FortifiedSimplifier.optimizeCall(CI, Builder)) {
CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
replaceAllUsesWith(CI, SimplifiedCI);
IRBuilderBase::InsertPointGuard Guard(Builder);
Builder.SetInsertPoint(SimplifiedCI);
if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
substituteInParent(SimplifiedCI, V);
return V;
}
}
return SimplifiedFortifiedCI;
}
if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
if (!ignoreCallingConv(Func) && !IsCallingConvC)
return nullptr;
if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
return V;
if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
return V;
switch (Func) {
case LibFunc_ffs:
case LibFunc_ffsl:
case LibFunc_ffsll:
return optimizeFFS(CI, Builder);
case LibFunc_fls:
case LibFunc_flsl:
case LibFunc_flsll:
return optimizeFls(CI, Builder);
case LibFunc_abs:
case LibFunc_labs:
case LibFunc_llabs:
return optimizeAbs(CI, Builder);
case LibFunc_isdigit:
return optimizeIsDigit(CI, Builder);
case LibFunc_isascii:
return optimizeIsAscii(CI, Builder);
case LibFunc_toascii:
return optimizeToAscii(CI, Builder);
case LibFunc_atoi:
case LibFunc_atol:
case LibFunc_atoll:
return optimizeAtoi(CI, Builder);
case LibFunc_strtol:
case LibFunc_strtoll:
return optimizeStrToInt(CI, Builder, true);
case LibFunc_strtoul:
case LibFunc_strtoull:
return optimizeStrToInt(CI, Builder, false);
case LibFunc_printf:
return optimizePrintF(CI, Builder);
case LibFunc_sprintf:
return optimizeSPrintF(CI, Builder);
case LibFunc_snprintf:
return optimizeSnPrintF(CI, Builder);
case LibFunc_fprintf:
return optimizeFPrintF(CI, Builder);
case LibFunc_fwrite:
return optimizeFWrite(CI, Builder);
case LibFunc_fputs:
return optimizeFPuts(CI, Builder);
case LibFunc_puts:
return optimizePuts(CI, Builder);
case LibFunc_perror:
return optimizeErrorReporting(CI, Builder);
case LibFunc_vfprintf:
case LibFunc_fiprintf:
return optimizeErrorReporting(CI, Builder, 0);
default:
return nullptr;
}
}
return nullptr;
}
LibCallSimplifier::LibCallSimplifier(
const DataLayout &DL, const TargetLibraryInfo *TLI,
OptimizationRemarkEmitter &ORE,
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
function_ref<void(Instruction *, Value *)> Replacer,
function_ref<void(Instruction *)> Eraser)
: FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
Replacer(Replacer), Eraser(Eraser) {}
void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
Replacer(I, With);
}
void LibCallSimplifier::eraseFromParent(Instruction *I) {
Eraser(I);
}
bool
FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
unsigned ObjSizeOp,
Optional<unsigned> SizeOp,
Optional<unsigned> StrOp,
Optional<unsigned> FlagOp) {
if (FlagOp) {
ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
if (!Flag || !Flag->isZero())
return false;
}
if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
return true;
if (ConstantInt *ObjSizeCI =
dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
if (ObjSizeCI->isMinusOne())
return true;
if (OnlyLowerUnknownSize)
return false;
if (StrOp) {
uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
if (Len)
annotateDereferenceableBytes(CI, *StrOp, Len);
else
return false;
return ObjSizeCI->getZExtValue() >= Len;
}
if (SizeOp) {
if (ConstantInt *SizeCI =
dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
}
}
return false;
}
Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
IRBuilderBase &B) {
if (isFortifiedCallFoldable(CI, 3, 2)) {
CallInst *NewCI =
B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
Align(1), CI->getArgOperand(2));
NewCI->setAttributes(CI->getAttributes());
NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
copyFlags(*CI, NewCI);
return CI->getArgOperand(0);
}
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
IRBuilderBase &B) {
if (isFortifiedCallFoldable(CI, 3, 2)) {
CallInst *NewCI =
B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
Align(1), CI->getArgOperand(2));
NewCI->setAttributes(CI->getAttributes());
NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
copyFlags(*CI, NewCI);
return CI->getArgOperand(0);
}
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
IRBuilderBase &B) {
if (isFortifiedCallFoldable(CI, 3, 2)) {
Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
CI->getArgOperand(2), Align(1));
NewCI->setAttributes(CI->getAttributes());
NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
copyFlags(*CI, NewCI);
return CI->getArgOperand(0);
}
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
IRBuilderBase &B) {
const DataLayout &DL = CI->getModule()->getDataLayout();
if (isFortifiedCallFoldable(CI, 3, 2))
if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), B, DL, TLI)) {
CallInst *NewCI = cast<CallInst>(Call);
NewCI->setAttributes(CI->getAttributes());
NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
return copyFlags(*CI, NewCI);
}
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
IRBuilderBase &B,
LibFunc Func) {
const DataLayout &DL = CI->getModule()->getDataLayout();
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
*ObjSize = CI->getArgOperand(2);
if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
Value *StrLen = emitStrLen(Src, B, DL, TLI);
return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
}
if (isFortifiedCallFoldable(CI, 2, None, 1)) {
if (Func == LibFunc_strcpy_chk)
return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
else
return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
}
if (OnlyLowerUnknownSize)
return nullptr;
uint64_t Len = GetStringLength(Src);
if (Len)
annotateDereferenceableBytes(CI, 1, Len);
else
return nullptr;
Type *SizeTTy = DL.getIntPtrType(CI->getContext(), 0);
Value *LenV = ConstantInt::get(SizeTTy, Len);
Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
if (Ret && Func == LibFunc_stpcpy_chk)
return B.CreateInBoundsGEP(B.getInt8Ty(), Dst,
ConstantInt::get(SizeTTy, Len - 1));
return copyFlags(*CI, cast<CallInst>(Ret));
}
Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
IRBuilderBase &B) {
if (isFortifiedCallFoldable(CI, 1, None, 0))
return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
CI->getModule()->getDataLayout(), TLI));
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
IRBuilderBase &B,
LibFunc Func) {
if (isFortifiedCallFoldable(CI, 3, 2)) {
if (Func == LibFunc_strncpy_chk)
return copyFlags(*CI,
emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), B, TLI));
else
return copyFlags(*CI,
emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), B, TLI));
}
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
IRBuilderBase &B) {
if (isFortifiedCallFoldable(CI, 4, 3))
return copyFlags(
*CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
IRBuilderBase &B) {
if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
return copyFlags(*CI,
emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(4), VariadicArgs, B, TLI));
}
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
IRBuilderBase &B) {
if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
return copyFlags(*CI,
emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
VariadicArgs, B, TLI));
}
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
IRBuilderBase &B) {
if (isFortifiedCallFoldable(CI, 2))
return copyFlags(
*CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
IRBuilderBase &B) {
if (isFortifiedCallFoldable(CI, 3))
return copyFlags(*CI,
emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), B, TLI));
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
IRBuilderBase &B) {
if (isFortifiedCallFoldable(CI, 3))
return copyFlags(*CI,
emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), B, TLI));
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
IRBuilderBase &B) {
if (isFortifiedCallFoldable(CI, 3))
return copyFlags(*CI,
emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), B, TLI));
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
IRBuilderBase &B) {
if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
return copyFlags(
*CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
IRBuilderBase &B) {
if (isFortifiedCallFoldable(CI, 2, None, None, 1))
return copyFlags(*CI,
emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
CI->getArgOperand(4), B, TLI));
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
IRBuilderBase &Builder) {
LibFunc Func;
Function *Callee = CI->getCalledFunction();
bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
SmallVector<OperandBundleDef, 2> OpBundles;
CI->getOperandBundlesAsDefs(OpBundles);
IRBuilderBase::OperandBundlesGuard Guard(Builder);
Builder.setDefaultOperandBundles(OpBundles);
if (!TLI->getLibFunc(*Callee, Func))
return nullptr;
if (!ignoreCallingConv(Func) && !IsCallingConvC)
return nullptr;
switch (Func) {
case LibFunc_memcpy_chk:
return optimizeMemCpyChk(CI, Builder);
case LibFunc_mempcpy_chk:
return optimizeMemPCpyChk(CI, Builder);
case LibFunc_memmove_chk:
return optimizeMemMoveChk(CI, Builder);
case LibFunc_memset_chk:
return optimizeMemSetChk(CI, Builder);
case LibFunc_stpcpy_chk:
case LibFunc_strcpy_chk:
return optimizeStrpCpyChk(CI, Builder, Func);
case LibFunc_strlen_chk:
return optimizeStrLenChk(CI, Builder);
case LibFunc_stpncpy_chk:
case LibFunc_strncpy_chk:
return optimizeStrpNCpyChk(CI, Builder, Func);
case LibFunc_memccpy_chk:
return optimizeMemCCpyChk(CI, Builder);
case LibFunc_snprintf_chk:
return optimizeSNPrintfChk(CI, Builder);
case LibFunc_sprintf_chk:
return optimizeSPrintfChk(CI, Builder);
case LibFunc_strcat_chk:
return optimizeStrCatChk(CI, Builder);
case LibFunc_strlcat_chk:
return optimizeStrLCat(CI, Builder);
case LibFunc_strncat_chk:
return optimizeStrNCatChk(CI, Builder);
case LibFunc_strlcpy_chk:
return optimizeStrLCpyChk(CI, Builder);
case LibFunc_vsnprintf_chk:
return optimizeVSNPrintfChk(CI, Builder);
case LibFunc_vsprintf_chk:
return optimizeVSPrintfChk(CI, Builder);
default:
break;
}
return nullptr;
}
FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
: TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}