#include "llvm/Transforms/Scalar/EarlyCSE.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <deque>
#include <memory>
#include <utility>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "early-cse"
STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
STATISTIC(NumCSE, "Number of instructions CSE'd");
STATISTIC(NumCSECVP, "Number of compare instructions CVP'd");
STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
STATISTIC(NumCSECall, "Number of call instructions CSE'd");
STATISTIC(NumDSE, "Number of trivial dead stores removed");
DEBUG_COUNTER(CSECounter, "early-cse",
"Controls which instructions are removed");
static cl::opt<unsigned> EarlyCSEMssaOptCap(
"earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
"for faster compile. Caps the MemorySSA clobbering calls."));
static cl::opt<bool> EarlyCSEDebugHash(
"earlycse-debug-hash", cl::init(false), cl::Hidden,
cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
"function is well-behaved w.r.t. its isEqual predicate"));
namespace {
struct SimpleValue {
Instruction *Inst;
SimpleValue(Instruction *I) : Inst(I) {
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
}
bool isSentinel() const {
return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
}
static bool canHandle(Instruction *Inst) {
if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
if (Function *F = CI->getCalledFunction()) {
switch ((Intrinsic::ID)F->getIntrinsicID()) {
case Intrinsic::experimental_constrained_fadd:
case Intrinsic::experimental_constrained_fsub:
case Intrinsic::experimental_constrained_fmul:
case Intrinsic::experimental_constrained_fdiv:
case Intrinsic::experimental_constrained_frem:
case Intrinsic::experimental_constrained_fptosi:
case Intrinsic::experimental_constrained_sitofp:
case Intrinsic::experimental_constrained_fptoui:
case Intrinsic::experimental_constrained_uitofp:
case Intrinsic::experimental_constrained_fcmp:
case Intrinsic::experimental_constrained_fcmps: {
auto *CFP = cast<ConstrainedFPIntrinsic>(CI);
return CFP->isDefaultFPEnvironment();
}
}
}
return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
}
return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) ||
isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
isa<CmpInst>(Inst) || isa<SelectInst>(Inst) ||
isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) ||
isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst);
}
};
}
namespace llvm {
template <> struct DenseMapInfo<SimpleValue> {
static inline SimpleValue getEmptyKey() {
return DenseMapInfo<Instruction *>::getEmptyKey();
}
static inline SimpleValue getTombstoneKey() {
return DenseMapInfo<Instruction *>::getTombstoneKey();
}
static unsigned getHashValue(SimpleValue Val);
static bool isEqual(SimpleValue LHS, SimpleValue RHS);
};
}
static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
Value *&B,
SelectPatternFlavor &Flavor) {
if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
return false;
Value *CondNot;
if (match(Cond, m_Not(m_Value(CondNot)))) {
Cond = CondNot;
std::swap(A, B);
}
Flavor = SPF_UNKNOWN;
CmpInst::Predicate Pred;
if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) {
if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A))))
return true;
Pred = ICmpInst::getSwappedPredicate(Pred);
}
switch (Pred) {
case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break;
case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break;
case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break;
case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break;
case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break;
case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break;
case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break;
case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break;
default: break;
}
return true;
}
static unsigned getHashValueImpl(SimpleValue Val) {
Instruction *Inst = Val.Inst;
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
Value *LHS = BinOp->getOperand(0);
Value *RHS = BinOp->getOperand(1);
if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
std::swap(LHS, RHS);
return hash_combine(BinOp->getOpcode(), LHS, RHS);
}
if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
Value *LHS = CI->getOperand(0);
Value *RHS = CI->getOperand(1);
CmpInst::Predicate Pred = CI->getPredicate();
CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
std::swap(LHS, RHS);
Pred = SwappedPred;
}
return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
}
SelectPatternFlavor SPF;
Value *Cond, *A, *B;
if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
SPF == SPF_UMIN || SPF == SPF_UMAX) {
if (A > B)
std::swap(A, B);
return hash_combine(Inst->getOpcode(), SPF, A, B);
}
CmpInst::Predicate Pred;
Value *X, *Y;
if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
return hash_combine(Inst->getOpcode(), Cond, A, B);
if (CmpInst::getInversePredicate(Pred) < Pred) {
Pred = CmpInst::getInversePredicate(Pred);
std::swap(A, B);
}
return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
}
if (CastInst *CI = dyn_cast<CastInst>(Inst))
return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst))
return hash_combine(FI->getOpcode(), FI->getOperand(0));
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
IVI->getOperand(1),
hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) ||
isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) ||
isa<FreezeInst>(Inst)) &&
"Invalid/unknown instruction");
auto *II = dyn_cast<IntrinsicInst>(Inst);
if (II && II->isCommutative() && II->arg_size() == 2) {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
if (LHS > RHS)
std::swap(LHS, RHS);
return hash_combine(II->getOpcode(), LHS, RHS);
}
if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst))
return hash_combine(GCR->getOpcode(), GCR->getOperand(0),
GCR->getBasePtr(), GCR->getDerivedPtr());
return hash_combine(
Inst->getOpcode(),
hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
}
unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
#ifndef NDEBUG
if (EarlyCSEDebugHash)
return 0;
#endif
return getHashValueImpl(Val);
}
static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
if (LHS.isSentinel() || RHS.isSentinel())
return LHSI == RHSI;
if (LHSI->getOpcode() != RHSI->getOpcode())
return false;
if (LHSI->isIdenticalToWhenDefined(RHSI))
return true;
if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
if (!LHSBinOp->isCommutative())
return false;
assert(isa<BinaryOperator>(RHSI) &&
"same opcode, but different instruction type?");
BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
}
if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
assert(isa<CmpInst>(RHSI) &&
"same opcode, but different instruction type?");
CmpInst *RHSCmp = cast<CmpInst>(RHSI);
return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
}
auto *LII = dyn_cast<IntrinsicInst>(LHSI);
auto *RII = dyn_cast<IntrinsicInst>(RHSI);
if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() &&
LII->isCommutative() && LII->arg_size() == 2) {
return LII->getArgOperand(0) == RII->getArgOperand(1) &&
LII->getArgOperand(1) == RII->getArgOperand(0);
}
if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI))
if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI))
return GCR1->getOperand(0) == GCR2->getOperand(0) &&
GCR1->getBasePtr() == GCR2->getBasePtr() &&
GCR1->getDerivedPtr() == GCR2->getDerivedPtr();
SelectPatternFlavor LSPF, RSPF;
Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
if (LSPF == RSPF) {
if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
LSPF == SPF_UMIN || LSPF == SPF_UMAX)
return ((LHSA == RHSA && LHSB == RHSB) ||
(LHSA == RHSB && LHSB == RHSA));
if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
return true;
}
if (LHSA == RHSB && LHSB == RHSA) {
CmpInst::Predicate PredL, PredR;
Value *X, *Y;
if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
CmpInst::getInversePredicate(PredL) == PredR)
return true;
}
}
return false;
}
bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
bool Result = isEqualImpl(LHS, RHS);
assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
getHashValueImpl(LHS) == getHashValueImpl(RHS));
return Result;
}
namespace {
struct CallValue {
Instruction *Inst;
CallValue(Instruction *I) : Inst(I) {
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
}
bool isSentinel() const {
return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
}
static bool canHandle(Instruction *Inst) {
if (Inst->getType()->isVoidTy())
return false;
CallInst *CI = dyn_cast<CallInst>(Inst);
if (!CI || !CI->onlyReadsMemory())
return false;
return true;
}
};
}
namespace llvm {
template <> struct DenseMapInfo<CallValue> {
static inline CallValue getEmptyKey() {
return DenseMapInfo<Instruction *>::getEmptyKey();
}
static inline CallValue getTombstoneKey() {
return DenseMapInfo<Instruction *>::getTombstoneKey();
}
static unsigned getHashValue(CallValue Val);
static bool isEqual(CallValue LHS, CallValue RHS);
};
}
unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
Instruction *Inst = Val.Inst;
return hash_combine(
Inst->getOpcode(),
hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
}
bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
if (LHS.isSentinel() || RHS.isSentinel())
return LHSI == RHSI;
return LHSI->isIdenticalTo(RHSI);
}
namespace {
class EarlyCSE {
public:
const TargetLibraryInfo &TLI;
const TargetTransformInfo &TTI;
DominatorTree &DT;
AssumptionCache &AC;
const SimplifyQuery SQ;
MemorySSA *MSSA;
std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
using AllocatorTy =
RecyclingAllocator<BumpPtrAllocator,
ScopedHashTableVal<SimpleValue, Value *>>;
using ScopedHTType =
ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
AllocatorTy>;
ScopedHTType AvailableValues;
struct LoadValue {
Instruction *DefInst = nullptr;
unsigned Generation = 0;
int MatchingId = -1;
bool IsAtomic = false;
LoadValue() = default;
LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
bool IsAtomic)
: DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
IsAtomic(IsAtomic) {}
};
using LoadMapAllocator =
RecyclingAllocator<BumpPtrAllocator,
ScopedHashTableVal<Value *, LoadValue>>;
using LoadHTType =
ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
LoadMapAllocator>;
LoadHTType AvailableLoads;
using InvariantMapAllocator =
RecyclingAllocator<BumpPtrAllocator,
ScopedHashTableVal<MemoryLocation, unsigned>>;
using InvariantHTType =
ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
InvariantMapAllocator>;
InvariantHTType AvailableInvariants;
using CallHTType =
ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
CallHTType AvailableCalls;
unsigned CurrentGeneration = 0;
EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
const TargetTransformInfo &TTI, DominatorTree &DT,
AssumptionCache &AC, MemorySSA *MSSA)
: TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
bool run();
private:
unsigned ClobberCounter = 0;
class NodeScope {
public:
NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
: Scope(AvailableValues), LoadScope(AvailableLoads),
InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
NodeScope(const NodeScope &) = delete;
NodeScope &operator=(const NodeScope &) = delete;
private:
ScopedHTType::ScopeTy Scope;
LoadHTType::ScopeTy LoadScope;
InvariantHTType::ScopeTy InvariantScope;
CallHTType::ScopeTy CallScope;
};
class StackNode {
public:
StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child,
DomTreeNode::const_iterator end)
: CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
EndIter(end),
Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
AvailableCalls)
{}
StackNode(const StackNode &) = delete;
StackNode &operator=(const StackNode &) = delete;
unsigned currentGeneration() const { return CurrentGeneration; }
unsigned childGeneration() const { return ChildGeneration; }
void childGeneration(unsigned generation) { ChildGeneration = generation; }
DomTreeNode *node() { return Node; }
DomTreeNode::const_iterator childIter() const { return ChildIter; }
DomTreeNode *nextChild() {
DomTreeNode *child = *ChildIter;
++ChildIter;
return child;
}
DomTreeNode::const_iterator end() const { return EndIter; }
bool isProcessed() const { return Processed; }
void process() { Processed = true; }
private:
unsigned CurrentGeneration;
unsigned ChildGeneration;
DomTreeNode *Node;
DomTreeNode::const_iterator ChildIter;
DomTreeNode::const_iterator EndIter;
NodeScope Scopes;
bool Processed = false;
};
class ParseMemoryInst {
public:
ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
: Inst(Inst) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
IntrID = II->getIntrinsicID();
if (TTI.getTgtMemIntrinsic(II, Info))
return;
if (isHandledNonTargetIntrinsic(IntrID)) {
switch (IntrID) {
case Intrinsic::masked_load:
Info.PtrVal = Inst->getOperand(0);
Info.MatchingId = Intrinsic::masked_load;
Info.ReadMem = true;
Info.WriteMem = false;
Info.IsVolatile = false;
break;
case Intrinsic::masked_store:
Info.PtrVal = Inst->getOperand(1);
Info.MatchingId = Intrinsic::masked_load;
Info.ReadMem = false;
Info.WriteMem = true;
Info.IsVolatile = false;
break;
}
}
}
}
Instruction *get() { return Inst; }
const Instruction *get() const { return Inst; }
bool isLoad() const {
if (IntrID != 0)
return Info.ReadMem;
return isa<LoadInst>(Inst);
}
bool isStore() const {
if (IntrID != 0)
return Info.WriteMem;
return isa<StoreInst>(Inst);
}
bool isAtomic() const {
if (IntrID != 0)
return Info.Ordering != AtomicOrdering::NotAtomic;
return Inst->isAtomic();
}
bool isUnordered() const {
if (IntrID != 0)
return Info.isUnordered();
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
return LI->isUnordered();
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
return SI->isUnordered();
}
return !Inst->isAtomic();
}
bool isVolatile() const {
if (IntrID != 0)
return Info.IsVolatile;
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
return LI->isVolatile();
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
return SI->isVolatile();
}
return true;
}
bool isInvariantLoad() const {
if (auto *LI = dyn_cast<LoadInst>(Inst))
return LI->hasMetadata(LLVMContext::MD_invariant_load);
return false;
}
bool isValid() const { return getPointerOperand() != nullptr; }
int getMatchingId() const {
if (IntrID != 0)
return Info.MatchingId;
return -1;
}
Value *getPointerOperand() const {
if (IntrID != 0)
return Info.PtrVal;
return getLoadStorePointerOperand(Inst);
}
Type *getValueType() const {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
switch (II->getIntrinsicID()) {
case Intrinsic::masked_load:
return II->getType();
case Intrinsic::masked_store:
return II->getArgOperand(0)->getType();
default:
return nullptr;
}
}
return getLoadStoreType(Inst);
}
bool mayReadFromMemory() const {
if (IntrID != 0)
return Info.ReadMem;
return Inst->mayReadFromMemory();
}
bool mayWriteToMemory() const {
if (IntrID != 0)
return Info.WriteMem;
return Inst->mayWriteToMemory();
}
private:
Intrinsic::ID IntrID = 0;
MemIntrinsicInfo Info;
Instruction *Inst;
};
static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) {
switch (ID) {
case Intrinsic::masked_load:
case Intrinsic::masked_store:
return true;
}
return false;
}
static bool isHandledNonTargetIntrinsic(const Value *V) {
if (auto *II = dyn_cast<IntrinsicInst>(V))
return isHandledNonTargetIntrinsic(II->getIntrinsicID());
return false;
}
bool processNode(DomTreeNode *Node);
bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
const BasicBlock *BB, const BasicBlock *Pred);
Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
unsigned CurrentGeneration);
bool overridingStores(const ParseMemoryInst &Earlier,
const ParseMemoryInst &Later);
Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
if (auto *LI = dyn_cast<LoadInst>(Inst))
return LI->getType() == ExpectedType ? LI : nullptr;
else if (auto *SI = dyn_cast<StoreInst>(Inst)) {
Value *V = SI->getValueOperand();
return V->getType() == ExpectedType ? V : nullptr;
}
assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
auto *II = cast<IntrinsicInst>(Inst);
if (isHandledNonTargetIntrinsic(II->getIntrinsicID()))
return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType);
return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType);
}
Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II,
Type *ExpectedType) const {
switch (II->getIntrinsicID()) {
case Intrinsic::masked_load:
return II;
case Intrinsic::masked_store:
return II->getOperand(0);
}
return nullptr;
}
bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
Instruction *EarlierInst, Instruction *LaterInst);
bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier,
const IntrinsicInst *Later) {
auto IsSubmask = [](const Value *Mask0, const Value *Mask1) {
if (Mask0 == Mask1)
return true;
if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1))
return false;
auto *Vec0 = dyn_cast<ConstantVector>(Mask0);
auto *Vec1 = dyn_cast<ConstantVector>(Mask1);
if (!Vec0 || !Vec1)
return false;
assert(Vec0->getType() == Vec1->getType() &&
"Masks should have the same type");
for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) {
Constant *Elem0 = Vec0->getOperand(i);
Constant *Elem1 = Vec1->getOperand(i);
auto *Int0 = dyn_cast<ConstantInt>(Elem0);
if (Int0 && Int0->isZero())
continue;
auto *Int1 = dyn_cast<ConstantInt>(Elem1);
if (Int1 && !Int1->isZero())
continue;
if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1))
return false;
if (Elem0 == Elem1)
continue;
return false;
}
return true;
};
auto PtrOp = [](const IntrinsicInst *II) {
if (II->getIntrinsicID() == Intrinsic::masked_load)
return II->getOperand(0);
if (II->getIntrinsicID() == Intrinsic::masked_store)
return II->getOperand(1);
llvm_unreachable("Unexpected IntrinsicInst");
};
auto MaskOp = [](const IntrinsicInst *II) {
if (II->getIntrinsicID() == Intrinsic::masked_load)
return II->getOperand(2);
if (II->getIntrinsicID() == Intrinsic::masked_store)
return II->getOperand(3);
llvm_unreachable("Unexpected IntrinsicInst");
};
auto ThruOp = [](const IntrinsicInst *II) {
if (II->getIntrinsicID() == Intrinsic::masked_load)
return II->getOperand(3);
llvm_unreachable("Unexpected IntrinsicInst");
};
if (PtrOp(Earlier) != PtrOp(Later))
return false;
Intrinsic::ID IDE = Earlier->getIntrinsicID();
Intrinsic::ID IDL = Later->getIntrinsicID();
if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) {
if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later))
return true;
if (!isa<UndefValue>(ThruOp(Later)))
return false;
return IsSubmask(MaskOp(Later), MaskOp(Earlier));
}
if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) {
if (!IsSubmask(MaskOp(Later), MaskOp(Earlier)))
return false;
return isa<UndefValue>(ThruOp(Later));
}
if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) {
return IsSubmask(MaskOp(Later), MaskOp(Earlier));
}
if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) {
return IsSubmask(MaskOp(Earlier), MaskOp(Later));
}
return false;
}
void removeMSSA(Instruction &Inst) {
if (!MSSA)
return;
if (VerifyMemorySSA)
MSSA->verifyMemorySSA();
MSSAUpdater->removeMemoryAccess(&Inst, true);
}
};
}
bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
unsigned LaterGeneration,
Instruction *EarlierInst,
Instruction *LaterInst) {
if (EarlierGeneration == LaterGeneration)
return true;
if (!MSSA)
return false;
auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
if (!EarlierMA)
return true;
auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
if (!LaterMA)
return true;
MemoryAccess *LaterDef;
if (ClobberCounter < EarlyCSEMssaOptCap) {
LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
ClobberCounter++;
} else
LaterDef = LaterMA->getDefiningAccess();
return MSSA->dominates(LaterDef, EarlierMA);
}
bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
if (auto *LI = dyn_cast<LoadInst>(I))
if (LI->hasMetadata(LLVMContext::MD_invariant_load))
return true;
auto MemLocOpt = MemoryLocation::getOrNone(I);
if (!MemLocOpt)
return false;
MemoryLocation MemLoc = *MemLocOpt;
if (!AvailableInvariants.count(MemLoc))
return false;
return AvailableInvariants.lookup(MemLoc) <= GenAt;
}
bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
const BranchInst *BI, const BasicBlock *BB,
const BasicBlock *Pred) {
assert(BI->isConditional() && "Should be a conditional branch!");
assert(BI->getCondition() == CondInst && "Wrong condition?");
assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
auto *TorF = (BI->getSuccessor(0) == BB)
? ConstantInt::getTrue(BB->getContext())
: ConstantInt::getFalse(BB->getContext());
auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS,
Value *&RHS) {
if (Opcode == Instruction::And &&
match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS))))
return true;
else if (Opcode == Instruction::Or &&
match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS))))
return true;
return false;
};
unsigned PropagateOpcode =
(BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
bool MadeChanges = false;
SmallVector<Instruction *, 4> WorkList;
SmallPtrSet<Instruction *, 4> Visited;
WorkList.push_back(CondInst);
while (!WorkList.empty()) {
Instruction *Curr = WorkList.pop_back_val();
AvailableValues.insert(Curr, TorF);
LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
<< Curr->getName() << "' as " << *TorF << " in "
<< BB->getName() << "\n");
if (!DebugCounter::shouldExecute(CSECounter)) {
LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
} else {
if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
BasicBlockEdge(Pred, BB))) {
NumCSECVP += Count;
MadeChanges = true;
}
}
Value *LHS, *RHS;
if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS))
for (auto &Op : { LHS, RHS })
if (Instruction *OPI = dyn_cast<Instruction>(Op))
if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
WorkList.push_back(OPI);
}
return MadeChanges;
}
Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
unsigned CurrentGeneration) {
if (InVal.DefInst == nullptr)
return nullptr;
if (InVal.MatchingId != MemInst.getMatchingId())
return nullptr;
if (MemInst.isVolatile() || !MemInst.isUnordered())
return nullptr;
if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic())
return nullptr;
bool MemInstMatching = !MemInst.isLoad();
Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst;
Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get();
Value *Result = MemInst.isStore()
? getOrCreateResult(Matching, Other->getType())
: nullptr;
if (MemInst.isStore() && InVal.DefInst != Result)
return nullptr;
bool MatchingNTI = isHandledNonTargetIntrinsic(Matching);
bool OtherNTI = isHandledNonTargetIntrinsic(Other);
if (OtherNTI != MatchingNTI)
return nullptr;
if (OtherNTI && MatchingNTI) {
if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst),
cast<IntrinsicInst>(MemInst.get())))
return nullptr;
}
if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) &&
!isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst,
MemInst.get()))
return nullptr;
if (!Result)
Result = getOrCreateResult(Matching, Other->getType());
return Result;
}
bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier,
const ParseMemoryInst &Later) {
assert(Earlier.isUnordered() && !Earlier.isVolatile() &&
"Violated invariant");
if (Earlier.getPointerOperand() != Later.getPointerOperand())
return false;
if (!Earlier.getValueType() || !Later.getValueType() ||
Earlier.getValueType() != Later.getValueType())
return false;
if (Earlier.getMatchingId() != Later.getMatchingId())
return false;
if (!Earlier.isUnordered() || !Later.isUnordered())
return false;
bool ENTI = isHandledNonTargetIntrinsic(Earlier.get());
bool LNTI = isHandledNonTargetIntrinsic(Later.get());
if (ENTI && LNTI)
return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()),
cast<IntrinsicInst>(Later.get()));
return ENTI == LNTI;
}
bool EarlyCSE::processNode(DomTreeNode *Node) {
bool Changed = false;
BasicBlock *BB = Node->getBlock();
if (!BB->getSinglePredecessor())
++CurrentGeneration;
if (BasicBlock *Pred = BB->getSinglePredecessor()) {
auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
if (BI && BI->isConditional()) {
auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
if (CondInst && SimpleValue::canHandle(CondInst))
Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
}
}
Instruction *LastStore = nullptr;
for (Instruction &Inst : make_early_inc_range(BB->getInstList())) {
if (isInstructionTriviallyDead(&Inst, &TLI)) {
LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n');
if (!DebugCounter::shouldExecute(CSECounter)) {
LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
continue;
}
salvageKnowledge(&Inst, &AC);
salvageDebugInfo(Inst);
removeMSSA(Inst);
Inst.eraseFromParent();
Changed = true;
++NumSimplify;
continue;
}
if (auto *Assume = dyn_cast<AssumeInst>(&Inst)) {
auto *CondI = dyn_cast<Instruction>(Assume->getArgOperand(0));
if (CondI && SimpleValue::canHandle(CondI)) {
LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst
<< '\n');
AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
} else
LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n');
continue;
}
if (match(&Inst,
m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) {
LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst
<< '\n');
continue;
}
if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n');
continue;
}
if (match(&Inst, m_Intrinsic<Intrinsic::pseudoprobe>())) {
LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n');
continue;
}
if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
if (!Inst.use_empty())
continue;
MemoryLocation MemLoc =
MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI);
if (!AvailableInvariants.count(MemLoc))
AvailableInvariants.insert(MemLoc, CurrentGeneration);
continue;
}
if (isGuard(&Inst)) {
if (auto *CondI =
dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) {
if (SimpleValue::canHandle(CondI)) {
if (auto *KnownCond = AvailableValues.lookup(CondI)) {
if (isa<ConstantInt>(KnownCond) &&
cast<ConstantInt>(KnownCond)->isOne()) {
LLVM_DEBUG(dbgs()
<< "EarlyCSE removing guard: " << Inst << '\n');
salvageKnowledge(&Inst, &AC);
removeMSSA(Inst);
Inst.eraseFromParent();
Changed = true;
continue;
} else
cast<CallInst>(Inst).setArgOperand(0, KnownCond);
}
AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
}
}
LastStore = nullptr;
continue;
}
if (Value *V = simplifyInstruction(&Inst, SQ)) {
LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V
<< '\n');
if (!DebugCounter::shouldExecute(CSECounter)) {
LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
} else {
bool Killed = false;
if (!Inst.use_empty()) {
Inst.replaceAllUsesWith(V);
Changed = true;
}
if (isInstructionTriviallyDead(&Inst, &TLI)) {
salvageKnowledge(&Inst, &AC);
removeMSSA(Inst);
Inst.eraseFromParent();
Changed = true;
Killed = true;
}
if (Changed)
++NumSimplify;
if (Killed)
continue;
}
}
if (SimpleValue::canHandle(&Inst)) {
if (Value *V = AvailableValues.lookup(&Inst)) {
LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V
<< '\n');
if (!DebugCounter::shouldExecute(CSECounter)) {
LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
continue;
}
if (auto *I = dyn_cast<Instruction>(V)) {
if (isa<FPMathOperator>(I) || (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I)))
I->andIRFlags(&Inst);
}
Inst.replaceAllUsesWith(V);
salvageKnowledge(&Inst, &AC);
removeMSSA(Inst);
Inst.eraseFromParent();
Changed = true;
++NumCSE;
continue;
}
AvailableValues.insert(&Inst, &Inst);
continue;
}
ParseMemoryInst MemInst(&Inst, TTI);
if (MemInst.isValid() && MemInst.isLoad()) {
if (MemInst.isVolatile() || !MemInst.isUnordered()) {
LastStore = nullptr;
++CurrentGeneration;
}
if (MemInst.isInvariantLoad()) {
auto MemLoc = MemoryLocation::get(&Inst);
if (!AvailableInvariants.count(MemLoc))
AvailableInvariants.insert(MemLoc, CurrentGeneration);
}
LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) {
LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst
<< " to: " << *InVal.DefInst << '\n');
if (!DebugCounter::shouldExecute(CSECounter)) {
LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
continue;
}
if (!Inst.use_empty())
Inst.replaceAllUsesWith(Op);
salvageKnowledge(&Inst, &AC);
removeMSSA(Inst);
Inst.eraseFromParent();
Changed = true;
++NumCSELoad;
continue;
}
AvailableLoads.insert(MemInst.getPointerOperand(),
LoadValue(&Inst, CurrentGeneration,
MemInst.getMatchingId(),
MemInst.isAtomic()));
LastStore = nullptr;
continue;
}
if ((Inst.mayReadFromMemory() || Inst.mayThrow()) &&
!(MemInst.isValid() && !MemInst.mayReadFromMemory()))
LastStore = nullptr;
if (CallValue::canHandle(&Inst)) {
std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst);
if (InVal.first != nullptr &&
isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
&Inst)) {
LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst
<< " to: " << *InVal.first << '\n');
if (!DebugCounter::shouldExecute(CSECounter)) {
LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
continue;
}
if (!Inst.use_empty())
Inst.replaceAllUsesWith(InVal.first);
salvageKnowledge(&Inst, &AC);
removeMSSA(Inst);
Inst.eraseFromParent();
Changed = true;
++NumCSECall;
continue;
}
AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration));
continue;
}
if (auto *FI = dyn_cast<FenceInst>(&Inst))
if (FI->getOrdering() == AtomicOrdering::Release) {
assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above");
continue;
}
if (MemInst.isValid() && MemInst.isStore()) {
LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
if (InVal.DefInst &&
InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) {
assert((!LastStore ||
ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
MemInst.getPointerOperand() ||
MSSA) &&
"can't have an intervening store if not using MemorySSA!");
LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n');
if (!DebugCounter::shouldExecute(CSECounter)) {
LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
continue;
}
salvageKnowledge(&Inst, &AC);
removeMSSA(Inst);
Inst.eraseFromParent();
Changed = true;
++NumDSE;
continue;
}
}
if (Inst.mayWriteToMemory()) {
++CurrentGeneration;
if (MemInst.isValid() && MemInst.isStore()) {
if (LastStore) {
if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) {
LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
<< " due to: " << Inst << '\n');
if (!DebugCounter::shouldExecute(CSECounter)) {
LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
} else {
salvageKnowledge(&Inst, &AC);
removeMSSA(*LastStore);
LastStore->eraseFromParent();
Changed = true;
++NumDSE;
LastStore = nullptr;
}
}
}
AvailableLoads.insert(MemInst.getPointerOperand(),
LoadValue(&Inst, CurrentGeneration,
MemInst.getMatchingId(),
MemInst.isAtomic()));
if (MemInst.isUnordered() && !MemInst.isVolatile())
LastStore = &Inst;
else
LastStore = nullptr;
}
}
}
return Changed;
}
bool EarlyCSE::run() {
std::deque<StackNode *> nodesToProcess;
bool Changed = false;
nodesToProcess.push_back(new StackNode(
AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
CurrentGeneration, DT.getRootNode(),
DT.getRootNode()->begin(), DT.getRootNode()->end()));
assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");
while (!nodesToProcess.empty()) {
StackNode *NodeToProcess = nodesToProcess.back();
CurrentGeneration = NodeToProcess->currentGeneration();
if (!NodeToProcess->isProcessed()) {
Changed |= processNode(NodeToProcess->node());
NodeToProcess->childGeneration(CurrentGeneration);
NodeToProcess->process();
} else if (NodeToProcess->childIter() != NodeToProcess->end()) {
DomTreeNode *child = NodeToProcess->nextChild();
nodesToProcess.push_back(
new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
AvailableCalls, NodeToProcess->childGeneration(),
child, child->begin(), child->end()));
} else {
delete NodeToProcess;
nodesToProcess.pop_back();
}
}
return Changed;
}
PreservedAnalyses EarlyCSEPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto *MSSA =
UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
if (!CSE.run())
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
if (UseMemorySSA)
PA.preserve<MemorySSAAnalysis>();
return PA;
}
void EarlyCSEPass::printPipeline(
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline(
OS, MapClassName2PassName);
OS << "<";
if (UseMemorySSA)
OS << "memssa";
OS << ">";
}
namespace {
template<bool UseMemorySSA>
class EarlyCSELegacyCommonPass : public FunctionPass {
public:
static char ID;
EarlyCSELegacyCommonPass() : FunctionPass(ID) {
if (UseMemorySSA)
initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
else
initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto *MSSA =
UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
return CSE.run();
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
if (UseMemorySSA) {
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<MemorySSAWrapperPass>();
AU.addPreserved<MemorySSAWrapperPass>();
}
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.setPreservesCFG();
}
};
}
using EarlyCSELegacyPass = EarlyCSELegacyCommonPass<false>;
template<>
char EarlyCSELegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
using EarlyCSEMemSSALegacyPass =
EarlyCSELegacyCommonPass<true>;
template<>
char EarlyCSEMemSSALegacyPass::ID = 0;
FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
if (UseMemorySSA)
return new EarlyCSEMemSSALegacyPass();
else
return new EarlyCSELegacyPass();
}
INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
"Early CSE w/ MemorySSA", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
"Early CSE w/ MemorySSA", false, false)