; REQUIRES: asserts ; RUN: opt < %s -passes=loop-vectorize -force-vector-width=2 -force-vector-interleave=1 -disable-output -debug-only=loop-vectorize 2>&1 | FileCheck %s target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128" ; Test cases for PR50009, which require sinking a replicate-region due to a ; first-order recurrence. define void @sink_replicate_region_1(i32 %x, i8* %ptr) optsize { ; CHECK-LABEL: sink_replicate_region_1 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' { ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count ; CHECK-EMPTY: ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count ; CHECK-EMPTY: ; CHECK-NEXT: vector.ph: ; CHECK-NEXT: Successor(s): vector loop ; CHECK-EMPTY: ; CHECK-NEXT: <x1> vector loop: { ; CHECK-NEXT: vector.body: ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%0> = phi ir<0>, ir<%conv> ; CHECK-NEXT: WIDEN-INDUCTION %iv = phi 0, %iv.next, ir<1> ; CHECK-NEXT: vp<[[STEPS:%.]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<0>, ir<1> ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv> vp<[[BTC]]> ; CHECK-NEXT: Successor(s): loop.0 ; CHECK-EMPTY: ; CHECK-NEXT: loop.0: ; CHECK-NEXT: Successor(s): pred.load ; CHECK-EMPTY: ; CHECK-NEXT: <xVFxUF> pred.load: { ; CHECK-NEXT: pred.load.entry: ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]> ; CHECK-NEXT: Successor(s): pred.load.if, pred.load.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.load.if: ; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]> ; CHECK-NEXT: REPLICATE ir<%lv> = load ir<%gep> (S->V) ; CHECK-NEXT: Successor(s): pred.load.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.load.continue: ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED1:%.+]]> = ir<%lv> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): loop.1 ; CHECK-EMPTY: ; CHECK-NEXT: loop.1: ; CHECK-NEXT: WIDEN ir<%conv> = sext vp<[[PRED1]]> ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%0> ir<%conv> ; CHECK-NEXT: Successor(s): pred.srem ; CHECK-EMPTY: ; CHECK-NEXT: <xVFxUF> pred.srem: { ; CHECK-NEXT: pred.srem.entry: ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]> ; CHECK-NEXT: Successor(s): pred.srem.if, pred.srem.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.srem.if: ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x> (S->V) ; CHECK-NEXT: Successor(s): pred.srem.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.srem.continue: ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED2:%.+]]> = ir<%rem> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): loop.1.split ; CHECK-EMPTY: ; CHECK-NEXT: loop.1.split: ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF + vp<[[CAN_IV]]> ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]> vp<[[VEC_TC]]> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): middle.block ; CHECK-EMPTY: ; CHECK-NEXT: middle.block: ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; entry: br label %loop loop: %0 = phi i32 [ 0, %entry ], [ %conv, %loop ] %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] %rem = srem i32 %0, %x %gep = getelementptr i8, i8* %ptr, i32 %iv %lv = load i8, i8* %gep %conv = sext i8 %lv to i32 %add = add i32 %conv, %rem %iv.next = add nsw i32 %iv, 1 %ec = icmp eq i32 %iv.next, 20001 br i1 %ec, label %exit, label %loop exit: ret void } define void @sink_replicate_region_2(i32 %x, i8 %y, i32* %ptr) optsize { ; CHECK-LABEL: sink_replicate_region_2 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' { ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count ; CHECK-EMPTY: ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count ; CHECK-EMPTY: ; CHECK-NEXT: vector.ph: ; CHECK-NEXT: Successor(s): vector loop ; CHECK-EMPTY: ; CHECK-NEXT: <x1> vector loop: { ; CHECK-NEXT: vector.body: ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next> ; CHECK-NEXT: WIDEN-INDUCTION %iv = phi 0, %iv.next, ir<1> ; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<0>, ir<1> ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv> vp<[[BTC]]> ; CHECK-NEXT: Successor(s): loop.0 ; CHECK-EMPTY: ; CHECK-NEXT: loop.0: ; CHECK-NEXT: WIDEN ir<%recur.next> = sext ir<%y> ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur> ir<%recur.next> ; CHECK-NEXT: Successor(s): loop.0.split ; CHECK-EMPTY: ; CHECK-NEXT: loop.0.split: ; CHECK-NEXT: Successor(s): pred.store ; CHECK-EMPTY: ; CHECK-NEXT: <xVFxUF> pred.store: { ; CHECK-NEXT: pred.store.entry: ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]> ; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.store.if: ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x> ; CHECK-NEXT: REPLICATE ir<%add> = add ir<%rem>, ir<%recur.next> ; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]> ; CHECK-NEXT: REPLICATE store ir<%add>, ir<%gep> ; CHECK-NEXT: Successor(s): pred.store.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.store.continue: ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED:%.+]]> = ir<%rem> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): loop.1 ; CHECK-EMPTY: ; CHECK-NEXT: loop.1: ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF + vp<[[CAN_IV]]> ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]> vp<[[VEC_TC]]> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): middle.block ; CHECK-EMPTY: ; CHECK-NEXT: middle.block: ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; entry: br label %loop loop: %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ] %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] %rem = srem i32 %recur, %x %recur.next = sext i8 %y to i32 %add = add i32 %rem, %recur.next %gep = getelementptr i32, i32* %ptr, i32 %iv store i32 %add, i32* %gep %iv.next = add nsw i32 %iv, 1 %ec = icmp eq i32 %iv.next, 20001 br i1 %ec, label %exit, label %loop exit: ret void } define i32 @sink_replicate_region_3_reduction(i32 %x, i8 %y, i32* %ptr) optsize { ; CHECK-LABEL: sink_replicate_region_3_reduction ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' { ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count ; CHECK-EMPTY: ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count ; CHECK-EMPTY: ; CHECK-NEXT: vector.ph: ; CHECK-NEXT: Successor(s): vector loop ; CHECK-EMPTY: ; CHECK-NEXT: <x1> vector loop: { ; CHECK-NEXT: vector.body: ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next> ; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%and.red> = phi ir<1234>, ir<%and.red.next> ; CHECK-NEXT: EMIT vp<[[WIDEN_CAN:%.+]]> = WIDEN-CANONICAL-INDUCTION vp<[[CAN_IV]]> ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule vp<[[WIDEN_CAN]]> vp<[[BTC]]> ; CHECK-NEXT: Successor(s): loop.0 ; CHECK-EMPTY: ; CHECK-NEXT: loop.0: ; CHECK-NEXT: WIDEN ir<%recur.next> = sext ir<%y> ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur> ir<%recur.next> ; CHECK-NEXT: Successor(s): pred.srem ; CHECK-EMPTY: ; CHECK-NEXT: <xVFxUF> pred.srem: { ; CHECK-NEXT: pred.srem.entry: ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]> ; CHECK-NEXT: Successor(s): pred.srem.if, pred.srem.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.srem.if: ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x> (S->V) ; CHECK-NEXT: Successor(s): pred.srem.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.srem.continue: ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED:%.+]]> = ir<%rem> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): loop.0.split ; CHECK-EMPTY: ; CHECK-NEXT: loop.0.split: ; CHECK-NEXT: WIDEN ir<%add> = add vp<[[PRED]]>, ir<%recur.next> ; CHECK-NEXT: WIDEN ir<%and.red.next> = and ir<%and.red>, ir<%add> ; CHECK-NEXT: EMIT vp<[[SEL:%.+]]> = select vp<[[MASK]]> ir<%and.red.next> ir<%and.red> ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF + vp<[[CAN_IV]]> ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]> vp<[[VEC_TC]]> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): middle.block ; CHECK-EMPTY: ; CHECK-NEXT: middle.block: ; CHECK-NEXT: No successors ; CHECK-EMPTY: ; CHECK-NEXT: Live-out i32 %res = ir<%and.red.next> ; CHECK-NEXT: } ; entry: br label %loop loop: %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ] %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] %and.red = phi i32 [ 1234, %entry ], [ %and.red.next, %loop ] %rem = srem i32 %recur, %x %recur.next = sext i8 %y to i32 %add = add i32 %rem, %recur.next %and.red.next = and i32 %and.red, %add %iv.next = add nsw i32 %iv, 1 %ec = icmp eq i32 %iv.next, 20001 br i1 %ec, label %exit, label %loop exit: %res = phi i32 [ %and.red.next, %loop ] ret i32 %res } ; To sink the replicate region containing %rem, we need to split the block ; containing %conv at the end, because %conv is the last recipe in the block. define void @sink_replicate_region_4_requires_split_at_end_of_block(i32 %x, i8* %ptr) optsize { ; CHECK-LABEL: sink_replicate_region_4_requires_split_at_end_of_block ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' { ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count ; CHECK-EMPTY: ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count ; CHECK-EMPTY: ; CHECK-NEXT: vector.ph: ; CHECK-NEXT: Successor(s): vector loop ; CHECK-EMPTY: ; CHECK-NEXT: <x1> vector loop: { ; CHECK-NEXT: vector.body: ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%0> = phi ir<0>, ir<%conv> ; CHECK-NEXT: WIDEN-INDUCTION %iv = phi 0, %iv.next, ir<1> ; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<0>, ir<1> ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv> vp<[[BTC]]> ; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]> ; CHECK-NEXT: Successor(s): loop.0 ; CHECK-EMPTY: ; CHECK-NEXT: loop.0: ; CHECK-NEXT: Successor(s): pred.load ; CHECK-EMPTY: ; CHECK-NEXT: <xVFxUF> pred.load: { ; CHECK-NEXT: pred.load.entry: ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]> ; CHECK-NEXT: Successor(s): pred.load.if, pred.load.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.load.if: ; CHECK-NEXT: REPLICATE ir<%lv> = load ir<%gep> (S->V) ; CHECK-NEXT: Successor(s): pred.load.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.load.continue: ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED:%.+]]> = ir<%lv> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): loop.1 ; CHECK-EMPTY: ; CHECK-NEXT: loop.1: ; CHECK-NEXT: WIDEN ir<%conv> = sext vp<[[PRED]]> ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%0> ir<%conv> ; CHECK-NEXT: Successor(s): loop.1.split ; CHECK: loop.1.split: ; CHECK-NEXT: Successor(s): pred.load ; CHECK: <xVFxUF> pred.load: { ; CHECK-NEXT: pred.load.entry: ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]> ; CHECK-NEXT: Successor(s): pred.load.if, pred.load.continue ; CHECK: pred.load.if: ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x> (S->V) ; CHECK-NEXT: REPLICATE ir<%lv.2> = load ir<%gep> (S->V) ; CHECK-NEXT: Successor(s): pred.load.continue ; CHECK: pred.load.continue: ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED1:%.+]]> = ir<%rem> ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED2:%.+]]> = ir<%lv.2> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK: loop.2: ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF + vp<[[CAN_IV]]> ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]> vp<[[VEC_TC]]> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): middle.block ; CHECK-EMPTY: ; CHECK-NEXT: middle.block: ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; entry: br label %loop loop: %0 = phi i32 [ 0, %entry ], [ %conv, %loop ] %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] %gep = getelementptr i8, i8* %ptr, i32 %iv %rem = srem i32 %0, %x %lv = load i8, i8* %gep %conv = sext i8 %lv to i32 %lv.2 = load i8, i8* %gep %add.1 = add i32 %conv, %rem %conv.lv.2 = sext i8 %lv.2 to i32 %add = add i32 %add.1, %conv.lv.2 %iv.next = add nsw i32 %iv, 1 %ec = icmp eq i32 %iv.next, 20001 br i1 %ec, label %exit, label %loop exit: ret void } ; Test case that requires sinking a recipe in a replicate region after another replicate region. define void @sink_replicate_region_after_replicate_region(i32* %ptr, i32 %x, i8 %y) optsize { ; CHECK-LABEL: sink_replicate_region_after_replicate_region ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' { ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count ; CHECK-EMPTY: ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count ; CHECK-EMPTY: ; CHECK-NEXT: vector.ph: ; CHECK-NEXT: Successor(s): vector loop ; CHECK-EMPTY: ; CHECK-NEXT: <x1> vector loop: { ; CHECK-NEXT: vector.body: ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next> ; CHECK-NEXT: WIDEN-INDUCTION %iv = phi 0, %iv.next, ir<1> ; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<0>, ir<1> ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv> vp<[[BTC]]> ; CHECK-NEXT: Successor(s): loop.0 ; CHECK-EMPTY: ; CHECK-NEXT: loop.0: ; CHECK-NEXT: Successor(s): loop.1 ; CHECK-EMPTY: ; CHECK-NEXT: loop.1: ; CHECK-NEXT: WIDEN ir<%recur.next> = sext ir<%y> ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur> ir<%recur.next> ; CHECK-NEXT: Successor(s): pred.srem ; CHECK-EMPTY: ; CHECK-NEXT: <xVFxUF> pred.srem: { ; CHECK-NEXT: pred.srem.entry: ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]> ; CHECK-NEXT: Successor(s): pred.srem.if, pred.srem.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.srem.if: ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x> ; CHECK-NEXT: Successor(s): pred.srem.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.srem.continue: ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED:%.+]]> = ir<%rem> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): loop.1.split ; CHECK-EMPTY: ; CHECK-NEXT: loop.1.split: ; CHECK-NEXT: Successor(s): pred.store ; CHECK-EMPTY: ; CHECK-NEXT: <xVFxUF> pred.store: { ; CHECK-NEXT: pred.store.entry: ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]> ; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.store.if: ; CHECK-NEXT: REPLICATE ir<%rem.div> = sdiv ir<20>, vp<[[PRED]]> ; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]> ; CHECK-NEXT: REPLICATE store ir<%rem.div>, ir<%gep> ; CHECK-NEXT: Successor(s): pred.store.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.store.continue: ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED2:%.+]]> = ir<%rem.div> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): loop.2 ; CHECK-EMPTY: ; CHECK-NEXT: loop.2: ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF + vp<[[CAN_IV]]> ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]> vp<[[VEC_TC]]> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): middle.block ; CHECK-EMPTY: ; CHECK-NEXT: middle.block: ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; entry: br label %loop loop: ; preds = %loop, %entry %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ] %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] %rem = srem i32 %recur, %x %rem.div = sdiv i32 20, %rem %recur.next = sext i8 %y to i32 %gep = getelementptr i32, i32* %ptr, i32 %iv store i32 %rem.div, i32* %gep %iv.next = add nsw i32 %iv, 1 %C = icmp sgt i32 %iv.next, %recur.next br i1 %C, label %exit, label %loop exit: ; preds = %loop ret void } define void @need_new_block_after_sinking_pr56146(i32 %x, i32* %src) { ; CHECK-LABEL: need_new_block_after_sinking_pr56146 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' { ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count ; CHECK-EMPTY: ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count ; CHECK-EMPTY: ; CHECK-NEXT: vector.ph: ; CHECK-NEXT: Successor(s): vector loop ; CHECK-EMPTY: ; CHECK-NEXT: <x1> vector loop: { ; CHECK-NEXT: vector.body: ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%.pn> = phi ir<0>, ir<%l> ; CHECK-NEXT: EMIT vp<[[WIDE_IV:%.+]]> = WIDEN-CANONICAL-INDUCTION vp<[[CAN_IV]]> ; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp ule vp<[[WIDE_IV]]> vp<[[BTC]]> ; CHECK-NEXT: Successor(s): loop.0 ; CHECK-EMPTY: ; CHECK-NEXT: loop.0: ; CHECK-NEXT: REPLICATE ir<%l> = load ir<%src> ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%.pn> ir<%l> ; CHECK-NEXT: Successor(s): pred.sdiv ; CHECK-EMPTY: ; CHECK-NEXT: <xVFxUF> pred.sdiv: { ; CHECK-NEXT: pred.sdiv.entry: ; CHECK-NEXT: BRANCH-ON-MASK vp<[[CMP]]> ; CHECK-NEXT: Successor(s): pred.sdiv.if, pred.sdiv.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.sdiv.if: ; CHECK-NEXT: REPLICATE ir<%val> = sdiv vp<[[SPLICE]]>, ir<%x> ; CHECK-NEXT: Successor(s): pred.sdiv.continue ; CHECK-EMPTY: ; CHECK-NEXT: pred.sdiv.continue: ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[P_VAL:%.+]]> = ir<%val> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): loop.0.split ; CHECK-EMPTY: ; CHECK-NEXT: loop.0.split: ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF + vp<[[CAN_IV]]> ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]> vp<[[VEC_TC]]> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): middle.block ; CHECK-EMPTY: ; CHECK-NEXT: middle.block: ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; entry: br label %loop loop: %iv = phi i64 [ 2, %entry ], [ %iv.next, %loop ] %.pn = phi i32 [ 0, %entry ], [ %l, %loop ] %val = sdiv i32 %.pn, %x %l = load i32, i32* %src, align 4 %iv.next = add nuw nsw i64 %iv, 1 %ec = icmp ugt i64 %iv, 3 br i1 %ec, label %exit, label %loop exit: ret void }