; RUN: opt < %s -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck %s ; ScalarEvolution should be able to understand the loop and eliminate the casts. ; CHECK: {%d,+,4} define void @foo(i32* nocapture %d, i32 %n) nounwind { entry: %0 = icmp sgt i32 %n, 0 ; <i1> [#uses=1] br i1 %0, label %bb.nph, label %return bb.nph: ; preds = %entry br label %bb bb: ; preds = %bb1, %bb.nph %i.02 = phi i32 [ %5, %bb1 ], [ 0, %bb.nph ] ; <i32> [#uses=2] %p.01 = phi i8 [ %4, %bb1 ], [ -1, %bb.nph ] ; <i8> [#uses=2] %1 = sext i8 %p.01 to i32 ; <i32> [#uses=1] %2 = sext i32 %i.02 to i64 ; <i64> [#uses=1] %3 = getelementptr i32, i32* %d, i64 %2 ; <i32*> [#uses=1] store i32 %1, i32* %3, align 4 %4 = add i8 %p.01, 1 ; <i8> [#uses=1] %5 = add i32 %i.02, 1 ; <i32> [#uses=2] br label %bb1 bb1: ; preds = %bb %6 = icmp slt i32 %5, %n ; <i1> [#uses=1] br i1 %6, label %bb, label %bb1.return_crit_edge bb1.return_crit_edge: ; preds = %bb1 br label %return return: ; preds = %bb1.return_crit_edge, %entry ret void } ; ScalarEvolution should be able to find the maximum tripcount ; of this multiple-exit loop, and if it doesn't know the exact ; count, it should say so. ; PR7845 ; CHECK: Loop %for.cond: <multiple exits> Unpredictable backedge-taken count. ; CHECK: Loop %for.cond: max backedge-taken count is 5 @.str = private constant [4 x i8] c"%d\0A\00" ; <[4 x i8]*> [#uses=2] define i32 @main() nounwind { entry: br label %for.cond for.cond: ; preds = %for.inc, %entry %g_4.0 = phi i32 [ 0, %entry ], [ %add, %for.inc ] ; <i32> [#uses=5] %cmp = icmp slt i32 %g_4.0, 5 ; <i1> [#uses=1] br i1 %cmp, label %for.body, label %for.end for.body: ; preds = %for.cond %conv = trunc i32 %g_4.0 to i16 ; <i16> [#uses=1] %tobool.not = icmp eq i16 %conv, 0 ; <i1> [#uses=1] %tobool3 = icmp ne i32 %g_4.0, 0 ; <i1> [#uses=1] %or.cond = and i1 %tobool.not, %tobool3 ; <i1> [#uses=1] br i1 %or.cond, label %for.end, label %for.inc for.inc: ; preds = %for.body %add = add nsw i32 %g_4.0, 1 ; <i32> [#uses=1] br label %for.cond for.end: ; preds = %for.body, %for.cond %call = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4 x i8], [4 x i8]* @.str, i64 0, i64 0), i32 %g_4.0) nounwind ; <i32> [#uses=0] ret i32 0 } declare i32 @printf(i8*, ...) define void @test(i8* %a, i32 %n) nounwind { entry: %cmp1 = icmp sgt i32 %n, 0 br i1 %cmp1, label %for.body.lr.ph, label %for.end for.body.lr.ph: ; preds = %entry %tmp = zext i32 %n to i64 br label %for.body for.body: ; preds = %for.body, %for.body.lr.ph %indvar = phi i64 [ %indvar.next, %for.body ], [ 0, %for.body.lr.ph ] %arrayidx = getelementptr i8, i8* %a, i64 %indvar store i8 0, i8* %arrayidx, align 1 %indvar.next = add i64 %indvar, 1 %exitcond = icmp ne i64 %indvar.next, %tmp br i1 %exitcond, label %for.body, label %for.cond.for.end_crit_edge for.cond.for.end_crit_edge: ; preds = %for.body br label %for.end for.end: ; preds = %for.cond.for.end_crit_edge, %entry ret void } ; CHECK: Determining loop execution counts for: @test ; CHECK-NEXT: backedge-taken count is ; CHECK-NEXT: max backedge-taken count is 2147483646 ; PR19799: Indvars miscompile due to an incorrect max backedge taken count from SCEV. ; CHECK-LABEL: @pr19799 ; CHECK: Loop %for.body.i: <multiple exits> Unpredictable backedge-taken count. ; CHECK: Loop %for.body.i: max backedge-taken count is 1 @a = common global i32 0, align 4 define i32 @pr19799() { entry: store i32 -1, i32* @a, align 4 br label %for.body.i for.body.i: ; preds = %for.cond.i, %entry %storemerge1.i = phi i32 [ -1, %entry ], [ %add.i.i, %for.cond.i ] %tobool.i = icmp eq i32 %storemerge1.i, 0 %add.i.i = add nsw i32 %storemerge1.i, 2 br i1 %tobool.i, label %bar.exit, label %for.cond.i for.cond.i: ; preds = %for.body.i store i32 %add.i.i, i32* @a, align 4 %cmp.i = icmp slt i32 %storemerge1.i, 0 br i1 %cmp.i, label %for.body.i, label %bar.exit bar.exit: ; preds = %for.cond.i, %for.body.i ret i32 0 } ; PR18886: Indvars miscompile due to an incorrect max backedge taken count from SCEV. ; CHECK-LABEL: @pr18886 ; CHECK: Loop %for.body: <multiple exits> Unpredictable backedge-taken count. ; CHECK: Loop %for.body: max backedge-taken count is 3 @aa = global i64 0, align 8 define i32 @pr18886() { entry: store i64 -21, i64* @aa, align 8 br label %for.body for.body: %storemerge1 = phi i64 [ -21, %entry ], [ %add, %for.cond ] %tobool = icmp eq i64 %storemerge1, 0 %add = add nsw i64 %storemerge1, 8 br i1 %tobool, label %return, label %for.cond for.cond: store i64 %add, i64* @aa, align 8 %cmp = icmp slt i64 %add, 9 br i1 %cmp, label %for.body, label %return return: %retval.0 = phi i32 [ 1, %for.body ], [ 0, %for.cond ] ret i32 %retval.0 } ; Here we have a must-exit loop latch that is not computable and a ; may-exit early exit that can only have one non-exiting iteration ; before the check is forever skipped. ; ; CHECK-LABEL: @cannot_compute_mustexit ; CHECK: Loop %for.body.i: <multiple exits> Unpredictable backedge-taken count. ; CHECK: Loop %for.body.i: Unpredictable max backedge-taken count. @b = common global i32 0, align 4 define i32 @cannot_compute_mustexit() { entry: store i32 -1, i32* @a, align 4 br label %for.body.i for.body.i: ; preds = %for.cond.i, %entry %storemerge1.i = phi i32 [ -1, %entry ], [ %add.i.i, %for.cond.i ] %tobool.i = icmp eq i32 %storemerge1.i, 0 %add.i.i = add nsw i32 %storemerge1.i, 2 br i1 %tobool.i, label %bar.exit, label %for.cond.i for.cond.i: ; preds = %for.body.i store i32 %add.i.i, i32* @a, align 4 %ld = load volatile i32, i32* @b %cmp.i = icmp ne i32 %ld, 0 br i1 %cmp.i, label %for.body.i, label %bar.exit bar.exit: ; preds = %for.cond.i, %for.body.i ret i32 0 } ; This loop has two must-exits, both of which dominate the latch. The ; MaxBECount should be the minimum of them. ; ; CHECK-LABEL: @two_mustexit ; CHECK: Loop %for.body.i: <multiple exits> backedge-taken count is 1 ; CHECK: Loop %for.body.i: max backedge-taken count is 1 define i32 @two_mustexit() { entry: store i32 -1, i32* @a, align 4 br label %for.body.i for.body.i: ; preds = %for.cond.i, %entry %storemerge1.i = phi i32 [ -1, %entry ], [ %add.i.i, %for.cond.i ] %tobool.i = icmp sgt i32 %storemerge1.i, 0 %add.i.i = add nsw i32 %storemerge1.i, 2 br i1 %tobool.i, label %bar.exit, label %for.cond.i for.cond.i: ; preds = %for.body.i store i32 %add.i.i, i32* @a, align 4 %cmp.i = icmp slt i32 %storemerge1.i, 3 br i1 %cmp.i, label %for.body.i, label %bar.exit bar.exit: ; preds = %for.cond.i, %for.body.i ret i32 0 } ; CHECK-LABEL: @ne_max_trip_count_1 ; CHECK: Loop %for.body: max backedge-taken count is 7 define i32 @ne_max_trip_count_1(i32 %n) { entry: %masked = and i32 %n, 7 br label %for.body for.body: %i = phi i32 [ 0, %entry ], [ %add, %for.body ] %add = add nsw i32 %i, 1 %cmp = icmp ne i32 %i, %masked br i1 %cmp, label %for.body, label %bar.exit bar.exit: ret i32 0 } ; CHECK-LABEL: @ne_max_trip_count_2 ; CHECK: Loop %for.body: max backedge-taken count is -1 define i32 @ne_max_trip_count_2(i32 %n) { entry: %masked = and i32 %n, 7 br label %for.body for.body: %i = phi i32 [ 0, %entry ], [ %add, %for.body ] %add = add nsw i32 %i, 1 %cmp = icmp ne i32 %add, %masked br i1 %cmp, label %for.body, label %bar.exit bar.exit: ret i32 0 } ; CHECK-LABEL: @ne_max_trip_count_3 ; CHECK: Loop %for.body: max backedge-taken count is 6 define i32 @ne_max_trip_count_3(i32 %n) { entry: %masked = and i32 %n, 7 %guard = icmp eq i32 %masked, 0 br i1 %guard, label %exit, label %for.preheader for.preheader: br label %for.body for.body: %i = phi i32 [ 0, %for.preheader ], [ %add, %for.body ] %add = add nsw i32 %i, 1 %cmp = icmp ne i32 %add, %masked br i1 %cmp, label %for.body, label %loop.exit loop.exit: br label %exit exit: ret i32 0 } ; CHECK-LABEL: @ne_max_trip_count_4 ; CHECK: Loop %for.body: max backedge-taken count is -2 define i32 @ne_max_trip_count_4(i32 %n) { entry: %guard = icmp eq i32 %n, 0 br i1 %guard, label %exit, label %for.preheader for.preheader: br label %for.body for.body: %i = phi i32 [ 0, %for.preheader ], [ %add, %for.body ] %add = add nsw i32 %i, 1 %cmp = icmp ne i32 %add, %n br i1 %cmp, label %for.body, label %loop.exit loop.exit: br label %exit exit: ret i32 0 } ; The end bound of the loop can change between iterations, so the exact trip ; count is unknown, but SCEV can calculate the max trip count. define void @changing_end_bound(i32* %n_addr, i32* %addr) { ; CHECK-LABEL: Determining loop execution counts for: @changing_end_bound ; CHECK: Loop %loop: Unpredictable backedge-taken count. ; CHECK: Loop %loop: max backedge-taken count is 2147483646 entry: br label %loop loop: %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] %acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ] %val = load atomic i32, i32* %addr unordered, align 4 fence acquire %acc.next = add i32 %acc, %val %iv.next = add nsw i32 %iv, 1 %n = load atomic i32, i32* %n_addr unordered, align 4 %cmp = icmp slt i32 %iv.next, %n br i1 %cmp, label %loop, label %loop.exit loop.exit: ret void } ; Similar test as above, but unknown start value. ; Also, there's no nsw on the iv.next, but SCEV knows ; the termination condition is LT, so the IV cannot wrap. define void @changing_end_bound2(i32 %start, i32* %n_addr, i32* %addr) { ; CHECK-LABEL: Determining loop execution counts for: @changing_end_bound2 ; CHECK: Loop %loop: Unpredictable backedge-taken count. ; CHECK: Loop %loop: max backedge-taken count is -1 entry: br label %loop loop: %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] %acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ] %val = load atomic i32, i32* %addr unordered, align 4 fence acquire %acc.next = add i32 %acc, %val %iv.next = add i32 %iv, 1 %n = load atomic i32, i32* %n_addr unordered, align 4 %cmp = icmp slt i32 %iv.next, %n br i1 %cmp, label %loop, label %loop.exit loop.exit: ret void } ; changing end bound and greater than one stride define void @changing_end_bound3(i32 %start, i32* %n_addr, i32* %addr) { ; CHECK-LABEL: Determining loop execution counts for: @changing_end_bound3 ; CHECK: Loop %loop: Unpredictable backedge-taken count. ; CHECK: Loop %loop: max backedge-taken count is 1073741823 entry: br label %loop loop: %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] %acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ] %val = load atomic i32, i32* %addr unordered, align 4 fence acquire %acc.next = add i32 %acc, %val %iv.next = add nsw i32 %iv, 4 %n = load atomic i32, i32* %n_addr unordered, align 4 %cmp = icmp slt i32 %iv.next, %n br i1 %cmp, label %loop, label %loop.exit loop.exit: ret void } ; same as above test, but the IV can wrap around. ; so the max backedge taken count is unpredictable. define void @changing_end_bound4(i32 %start, i32* %n_addr, i32* %addr) { ; CHECK-LABEL: Determining loop execution counts for: @changing_end_bound4 ; CHECK: Loop %loop: Unpredictable backedge-taken count. ; CHECK: Loop %loop: Unpredictable max backedge-taken count. entry: br label %loop loop: %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] %acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ] %val = load atomic i32, i32* %addr unordered, align 4 fence acquire %acc.next = add i32 %acc, %val %iv.next = add i32 %iv, 4 %n = load atomic i32, i32* %n_addr unordered, align 4 %cmp = icmp slt i32 %iv.next, %n br i1 %cmp, label %loop, label %loop.exit loop.exit: ret void } ; unknown stride. Since it's not knownPositive, we do not estimate the max ; backedge taken count. define void @changing_end_bound5(i32 %stride, i32 %start, i32* %n_addr, i32* %addr) { ; CHECK-LABEL: Determining loop execution counts for: @changing_end_bound5 ; CHECK: Loop %loop: Unpredictable backedge-taken count. ; CHECK: Loop %loop: Unpredictable max backedge-taken count. entry: br label %loop loop: %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] %acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ] %val = load atomic i32, i32* %addr unordered, align 4 fence acquire %acc.next = add i32 %acc, %val %iv.next = add nsw i32 %iv, %stride %n = load atomic i32, i32* %n_addr unordered, align 4 %cmp = icmp slt i32 %iv.next, %n br i1 %cmp, label %loop, label %loop.exit loop.exit: ret void } ; negative stride value define void @changing_end_bound6(i32 %start, i32* %n_addr, i32* %addr) { ; CHECK-LABEL: Determining loop execution counts for: @changing_end_bound6 ; CHECK: Loop %loop: Unpredictable backedge-taken count. ; CHECK: Loop %loop: Unpredictable max backedge-taken count. entry: br label %loop loop: %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] %acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ] %val = load atomic i32, i32* %addr unordered, align 4 fence acquire %acc.next = add i32 %acc, %val %iv.next = add nsw i32 %iv, -1 %n = load atomic i32, i32* %n_addr unordered, align 4 %cmp = icmp slt i32 %iv.next, %n br i1 %cmp, label %loop, label %loop.exit loop.exit: ret void } ; sgt with negative stride define void @changing_end_bound7(i32 %start, i32* %n_addr, i32* %addr) { ; CHECK-LABEL: Determining loop execution counts for: @changing_end_bound7 ; CHECK: Loop %loop: Unpredictable backedge-taken count. ; CHECK: Loop %loop: Unpredictable max backedge-taken count. entry: br label %loop loop: %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] %acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ] %val = load atomic i32, i32* %addr unordered, align 4 fence acquire %acc.next = add i32 %acc, %val %iv.next = add i32 %iv, -1 %n = load atomic i32, i32* %n_addr unordered, align 4 %cmp = icmp sgt i32 %iv.next, %n br i1 %cmp, label %loop, label %loop.exit loop.exit: ret void } define void @max_overflow_se(i8 %n) mustprogress { ; CHECK-LABEL: Determining loop execution counts for: @max_overflow_se ; CHECK: Loop %loop: backedge-taken count is 0 ; CHECK: Loop %loop: max backedge-taken count is 0 entry: br label %loop loop: %i = phi i8 [ 63, %entry ], [ %i.next, %loop ] %i.next = add nsw i8 %i, 63 %t = icmp slt i8 %i.next, %n br i1 %t, label %loop, label %exit exit: ret void } ; Show that we correctly realize that %i can overflow here as long as ; the early exit is taken before we branch on poison. define void @max_overflow_me(i8 %n) mustprogress { ; CHECK-LABEL: Determining loop execution counts for: @max_overflow_me ; CHECK: Loop %loop: <multiple exits> Unpredictable backedge-taken count. ; CHECK: exit count for loop: 1 ; CHECK: exit count for latch: ***COULDNOTCOMPUTE*** ; CHECK: Loop %loop: max backedge-taken count is 1 entry: br label %loop loop: %i = phi i8 [ 63, %entry ], [ %i.next, %latch ] %j = phi i8 [ 0, %entry ], [ %j.next, %latch ] %early.exit = icmp ne i8 %j, 1 br i1 %early.exit, label %latch, label %exit latch: %i.next = add nsw i8 %i, 63 %j.next = add nsw nuw i8 %j, 1 %t = icmp slt i8 %i.next, %n br i1 %t, label %loop, label %exit exit: ret void } ; Max backedge-taken count is zero. define void @bool_stride(i1 %s, i1 %n) mustprogress { ; CHECK-LABEL: Determining loop execution counts for: @bool_stride ; CHECK: Loop %loop: Unpredictable backedge-taken count. ; CHECK: Loop %loop: Unpredictable max backedge-taken count. entry: br label %loop loop: %i = phi i1 [ -1, %entry ], [ %i.next, %loop ] %i.next = add nsw i1 %i, %s %t = icmp slt i1 %i.next, %n br i1 %t, label %loop, label %exit exit: ret void } ; This is a case where our max-backedge taken count logic happens to be ; able to prove a zero btc, but our symbolic logic doesn't due to a lack ; of context sensativity. define void @ne_zero_max_btc(i32 %a) { ; CHECK-LABEL: Determining loop execution counts for: @ne_zero_max_btc ; CHECK: Loop %for.body: backedge-taken count is 0 ; CHECK: Loop %for.body: max backedge-taken count is 0 entry: %cmp = icmp slt i32 %a, 1 %spec.select = select i1 %cmp, i32 %a, i32 1 %cmp8 = icmp sgt i32 %a, 0 br i1 %cmp8, label %for.body.preheader, label %loopexit for.body.preheader: ; preds = %if.then4.i.i %umax = call i32 @llvm.umax.i32(i32 %spec.select, i32 1) %umax.i.i = zext i32 %umax to i64 br label %for.body for.body: ; preds = %for.inc, %for.body.preheader %indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.inc ] call void @unknown() br label %for.inc for.inc: ; preds = %for.body %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 %exitcond.i.not.i534 = icmp ne i64 %indvars.iv.next, %umax.i.i br i1 %exitcond.i.not.i534, label %for.body, label %loopexit loopexit: ret void } declare void @unknown() declare i32 @llvm.umax.i32(i32, i32)