// RUN: %clang_cc1 -std=c++11 -verify %s
namespace UseBeforeDefinition {
struct A {
template<typename T> static constexpr T get() { return T(); }
// ok, not a constant expression.
int n = get<int>();
};
// ok, constant expression.
constexpr int j = A::get<int>();
template<typename T> constexpr int consume(T);
// ok, not a constant expression.
const int k = consume(0); // expected-note {{here}}
template<typename T> constexpr int consume(T) { return 0; }
// ok, constant expression.
constexpr int l = consume(0);
constexpr int m = k; // expected-error {{constant expression}} expected-note {{initializer of 'k'}}
}
namespace IntegralConst {
template<typename T> constexpr T f(T n) { return n; }
enum E {
v = f(0), w = f(1) // ok
};
static_assert(w == 1, "");
char arr[f('x')]; // ok
static_assert(sizeof(arr) == 'x', "");
}
namespace ConvertedConst {
template<typename T> constexpr T f(T n) { return n; }
int f() {
switch (f()) {
case f(4): return 0;
}
return 1;
}
}
namespace OverloadResolution {
template<typename T> constexpr T f(T t) { return t; }
template<int n> struct S { };
template<typename T> auto g(T t) -> S<f(sizeof(T))> &;
char &f(...);
template<typename T> auto h(T t[f(sizeof(T))]) -> decltype(&*t) {
return t;
}
S<4> &k = g(0);
int *p, *q = h(p);
}
namespace DataMember {
template<typename T> struct S { static const int k; };
const int n = S<int>::k; // expected-note {{here}}
template<typename T> const int S<T>::k = 0;
constexpr int m = S<int>::k; // ok
constexpr int o = n; // expected-error {{constant expression}} expected-note {{initializer of 'n'}}
}
namespace Reference {
const int k = 5;
template<typename T> struct S {
static volatile int &r;
};
template<typename T> volatile int &S<T>::r = const_cast<volatile int&>(k);
constexpr int n = const_cast<int&>(S<int>::r);
static_assert(n == 5, "");
}
namespace Unevaluated {
// We follow the current proposed resolution of core issue 1581: a constexpr
// function template specialization requires a definition if:
// * it is odr-used, or would be odr-used except that it appears within the
// definition of a template, or
// * it is used within a braced-init-list, where it may be necessary for
// detecting narrowing conversions.
//
// We apply this both for instantiating constexpr function template
// specializations and for implicitly defining defaulted constexpr special
// member functions.
//
// FIXME: None of this is required by the C++ standard yet. The rules in this
// area are subject to change.
namespace NotConstexpr {
template<typename T> struct S {
S() : n(0) {}
S(const S&) : n(T::error) {}
int n;
};
struct U : S<int> {};
decltype(U(U())) u;
}
namespace Constexpr {
template<typename T> struct S {
constexpr S() : n(0) {}
constexpr S(const S&) : n(T::error) {}
int n;
};
struct U : S<int> {};
decltype(U(U())) u;
}
namespace ConstexprList {
template<int N> struct S {
constexpr S() : n(0) {
static_assert(N >= 0, "");
}
constexpr operator int() const { return 0; }
int n;
};
struct U : S<0> {};
// ok, trigger instantiation within a list
decltype(char{U()}) t0;
decltype(new char{S<1>()}) t1; // expected-warning {{side effects}}
decltype((char){S<2>()}) t2;
decltype(+(char[1]){{S<3>()}}) t3;
// do not trigger instantiation outside a list
decltype(char(S<-1>())) u1;
decltype(new char(S<-2>())) u2; // expected-warning {{side effects}}
decltype((char)(S<-3>())) u3;
}
namespace PR11851_Comment0 {
template<int x> constexpr int f() { return x; }
template<int i> void ovf(int (&x)[f<i>()]);
void f() { int x[10]; ovf<10>(x); }
}
namespace PR11851_Comment1 {
template<typename T>
constexpr bool Integral() {
return true;
}
template<typename T, bool Int = Integral<T>()>
struct safe_make_unsigned {
typedef T type;
};
template<typename T>
using Make_unsigned = typename safe_make_unsigned<T>::type;
template <typename T>
struct get_distance_type {
using type = int;
};
template<typename R>
auto size(R) -> Make_unsigned<typename get_distance_type<R>::type>;
auto check() -> decltype(size(0));
}
namespace PR11851_Comment6 {
template<int> struct foo {};
template<class> constexpr int bar() { return 0; }
template<class T> foo<bar<T>()> foobar();
auto foobar_ = foobar<int>();
}
namespace PR11851_Comment9 {
struct S1 {
constexpr S1() {}
constexpr operator int() const { return 0; }
};
int k1 = sizeof(short{S1(S1())});
struct S2 {
constexpr S2() {}
constexpr operator int() const { return 123456; }
};
int k2 = sizeof(short{S2(S2())}); // expected-error {{cannot be narrowed}} expected-note {{insert an explicit cast to silence this issue}}
}
namespace PR12288 {
template <typename> constexpr bool foo() { return true; }
template <bool> struct bar {};
template <typename T> bar<foo<T>()> baz() { return bar<foo<T>()>(); }
int main() { baz<int>(); }
}
namespace PR13423 {
template<bool, typename> struct enable_if {};
template<typename T> struct enable_if<true, T> { using type = T; };
template<typename T> struct F {
template<typename U>
static constexpr bool f() { return sizeof(T) < U::size; }
template<typename U>
static typename enable_if<f<U>(), void>::type g() {} // expected-note {{requirement 'f<Unevaluated::PR13423::U>()' was not satisfied}}
};
struct U { static constexpr int size = 2; };
void h() { F<char>::g<U>(); }
void i() { F<int>::g<U>(); } // expected-error {{no matching function}}
}
namespace PR14203 {
struct duration { constexpr duration() {} };
template <typename>
void sleep_for() {
constexpr duration max = duration();
}
}
// For variables, we instantiate when they are used in a context in which
// evaluation could be required (odr-used, used in a template whose
// instantiations would odr-use, or used in list initialization), if they
// can be used as a constant (const integral or constexpr).
namespace Variables {
template<int N> struct A {
static const int k;
static int n;
};
template<const int *N> struct B {};
template <int N> constexpr int A<N>::k = *(int[N]){N}; // expected-error 1+{{negative}} expected-note 1+{{not valid in a constant expression}} expected-note 1+{{declared here}}
// expected-error@-1 1+{{must be initialized by a constant expression}}
template<int N> int A<N>::n = *(int[N]){0};
template <typename> void f() {
(void)A<-1>::n; // ok
(void)A<-1>::k; // expected-note {{instantiation of }}
B<&A<-2>::n> b1; // ok
B<&A<-2>::k> b2; // expected-note {{instantiation of }}
};
decltype(A<-3>::k) d1 = 0; // ok
decltype(char{A<-4>::k}) d2 = 0; // expected-note 1+{{instantiation of }} expected-error {{narrow}} expected-note {{cast}}
decltype(char{A<1>::k}) d3 = 0; // expected-note 1+{{instantiation of }} expected-error {{narrow}} expected-note {{cast}}
decltype(char{A<1 + (unsigned char)-1>::k}) d4 = 0; // expected-error {{narrow}} expected-note {{cast}} expected-note {{instantiation of}}
}
}
namespace NoInstantiationWhenSelectingOverload {
// Check that we don't instantiate conversion functions when we're checking
// for the existence of an implicit conversion sequence, only when a function
// is actually chosen by overload resolution.
struct S {
template<typename T> constexpr S(T) : n(T::error) {} // expected-error {{no members}}
int n;
};
constexpr int f(S) { return 0; }
constexpr int f(int) { return 0; }
void g() { f(0); }
void h() { (void)sizeof(char{f(0)}); }
void i() { (void)sizeof(char{f("oops")}); } // expected-note {{instantiation of}}
}
namespace PR20090 {
template <typename T> constexpr T fact(T n) {
return n == 0 ? 1 : [=] { return n * fact(n - 1); }();
}
static_assert(fact(0) == 1, "");
}