; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py ; RUN: opt -disable-output "-passes=print<scalar-evolution>" %s 2>&1 | FileCheck %s define i32 @logical_and_2ops(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_2ops' ; CHECK-NEXT: Classifying expressions for: @logical_and_2ops ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_2ops ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n %cond_p1 = icmp ult i32 %i, %m %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_or_2ops(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_or_2ops' ; CHECK-NEXT: Classifying expressions for: @logical_or_2ops ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_2ops ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp uge i32 %i, %n %cond_p1 = icmp uge i32 %i, %m %cond = select i1 %cond_p0, i1 true, i1 %cond_p1 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_and_3ops(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_and_3ops' ; CHECK-NEXT: Classifying expressions for: @logical_and_3ops ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 %cond_p2, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1 umin_seq %cond_p2) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_3ops ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m umin_seq %k) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m umin_seq %k) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n %cond_p1 = icmp ult i32 %i, %m %cond_p2 = icmp ult i32 %i, %k %cond_p3 = select i1 %cond_p0, i1 %cond_p1, i1 false %cond = select i1 %cond_p3, i1 %cond_p2, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_or_3ops(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1) umin_seq (true + %cond_p2))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_3ops ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m umin_seq %k) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m umin_seq %k) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp uge i32 %i, %n %cond_p1 = icmp uge i32 %i, %m %cond_p2 = icmp uge i32 %i, %k %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_3ops_duplicate(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_duplicate' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_duplicate ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond_p4 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond_p5 = select i1 %cond_p4, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1) umin_seq (true + %cond_p2))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p5, i1 true, i1 %cond_p3 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1) umin_seq (true + %cond_p2) umin_seq (true + %cond_p3))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_3ops_duplicate ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m umin_seq %k) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m umin_seq %k) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp uge i32 %i, %n %cond_p1 = icmp uge i32 %i, %m %cond_p2 = icmp uge i32 %i, %n %cond_p3 = icmp uge i32 %i, %k %cond_p4 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond_p5 = select i1 %cond_p4, i1 true, i1 %cond_p2 %cond = select i1 %cond_p5, i1 true, i1 %cond_p3 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_3ops_redundant_uminseq_operand(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_redundant_uminseq_operand' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_redundant_uminseq_operand ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n umin %m) umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n umin %m) umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1) umin_seq (true + %cond_p2))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_3ops_redundant_uminseq_operand ; CHECK-NEXT: Loop %loop: backedge-taken count is ((%n umin %m) umin_seq %k) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((%n umin %m) umin_seq %k) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) %cond_p0 = icmp uge i32 %i, %umin %cond_p1 = icmp uge i32 %i, %n %cond_p2 = icmp uge i32 %i, %k %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_3ops_redundant_umin_operand(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_redundant_umin_operand' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_redundant_umin_operand ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %k umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %k umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1) umin_seq (true + %cond_p2))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_3ops_redundant_umin_operand ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %k umin_seq %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %k umin_seq %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) %cond_p0 = icmp uge i32 %i, %n %cond_p1 = icmp uge i32 %i, %k %cond_p2 = icmp uge i32 %i, %umin %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_4ops_redundant_operand_across_umins(i32 %n, i32 %m, i32 %k, i32 %q) { ; CHECK-LABEL: 'logical_or_4ops_redundant_operand_across_umins' ; CHECK-NEXT: Classifying expressions for: @logical_or_4ops_redundant_operand_across_umins ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n umin %m) umin_seq %k umin_seq %q) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n umin %m) umin_seq %k umin_seq %q)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %umin2 = call i32 @llvm.umin.i32(i32 %n, i32 %q) ; CHECK-NEXT: --> (%n umin %q) U: full-set S: full-set Exits: (%n umin %q) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1) umin_seq (true + %cond_p2))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_4ops_redundant_operand_across_umins ; CHECK-NEXT: Loop %loop: backedge-taken count is ((%n umin %m) umin_seq %k umin_seq %q) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((%n umin %m) umin_seq %k umin_seq %q) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) %umin2 = call i32 @llvm.umin.i32(i32 %n, i32 %q) %cond_p0 = icmp uge i32 %i, %umin %cond_p1 = icmp uge i32 %i, %k %cond_p2 = icmp uge i32 %i, %umin2 %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_3ops_operand_wise_redundant_umin(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_operand_wise_redundant_umin' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_operand_wise_redundant_umin ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n umin %m) umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n umin %m) umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %umin2 = call i32 @llvm.umin.i32(i32 %n, i32 %k) ; CHECK-NEXT: --> (%n umin %k) U: full-set S: full-set Exits: (%n umin %k) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1) umin_seq (true + %cond_p2))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_3ops_operand_wise_redundant_umin ; CHECK-NEXT: Loop %loop: backedge-taken count is ((%n umin %m) umin_seq %k) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((%n umin %m) umin_seq %k) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) %umin2 = call i32 @llvm.umin.i32(i32 %n, i32 %k) %cond_p0 = icmp uge i32 %i, %umin %cond_p1 = icmp uge i32 %i, %k %cond_p2 = icmp uge i32 %i, %umin2 %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_3ops_partially_redundant_umin(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_partially_redundant_umin' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_partially_redundant_umin ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq (%m umin %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq (%m umin %k))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %umin2 = call i32 @llvm.umin.i32(i32 %umin, i32 %k) ; CHECK-NEXT: --> (%n umin %m umin %k) U: full-set S: full-set Exits: (%n umin %m umin %k) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_3ops_partially_redundant_umin ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq (%m umin %k)) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq (%m umin %k)) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) %umin2 = call i32 @llvm.umin.i32(i32 %umin, i32 %k) %cond_p0 = icmp uge i32 %i, %n %cond_p1 = icmp uge i32 %i, %umin2 %cond = select i1 %cond_p0, i1 true, i1 %cond_p1 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_5ops_redundant_opearand_of_inner_uminseq(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e) { ; CHECK-LABEL: 'logical_or_5ops_redundant_opearand_of_inner_uminseq' ; CHECK-NEXT: Classifying expressions for: @logical_or_5ops_redundant_opearand_of_inner_uminseq ; CHECK-NEXT: %first.i = phi i32 [ 0, %entry ], [ %first.i.next, %first.loop ] ; CHECK-NEXT: --> {0,+,1}<%first.loop> U: full-set S: full-set Exits: (%e umin_seq %d umin_seq %a) LoopDispositions: { %first.loop: Computable } ; CHECK-NEXT: %first.i.next = add i32 %first.i, 1 ; CHECK-NEXT: --> {1,+,1}<%first.loop> U: full-set S: full-set Exits: (1 + (%e umin_seq %d umin_seq %a)) LoopDispositions: { %first.loop: Computable } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %first.loop: Variant } ; CHECK-NEXT: %cond_p4 = select i1 %cond_p3, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1) umin_seq (true + %cond_p2))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %first.loop: Variant } ; CHECK-NEXT: %i = phi i32 [ 0, %first.loop.exit ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%a umin_seq %b umin_seq ((%e umin_seq %d) umin %c)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%a umin_seq %b umin_seq ((%e umin_seq %d) umin %c))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %c, i32 %d) ; CHECK-NEXT: --> (%c umin %d) U: full-set S: full-set Exits: (%c umin %d) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %umin2 = call i32 @llvm.umin.i32(i32 %umin, i32 %first.i) ; CHECK-NEXT: --> ({0,+,1}<%first.loop> umin %c umin %d) U: full-set S: full-set --> ((%e umin_seq %d umin_seq %a) umin %c umin %d) U: full-set S: full-set Exits: ((%e umin_seq %d umin_seq %a) umin %c umin %d) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond_p8 = select i1 %cond_p5, i1 true, i1 %cond_p6 ; CHECK-NEXT: --> (true + ((true + %cond_p5) umin_seq (true + %cond_p6))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p8, i1 true, i1 %cond_p7 ; CHECK-NEXT: --> (true + ((true + %cond_p5) umin_seq (true + %cond_p6) umin_seq (true + %cond_p7))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_5ops_redundant_opearand_of_inner_uminseq ; CHECK-NEXT: Loop %loop: backedge-taken count is (%a umin_seq %b umin_seq ((%e umin_seq %d) umin %c)) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%a umin_seq %b umin_seq ((%e umin_seq %d) umin %c)) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; CHECK-NEXT: Loop %first.loop: backedge-taken count is (%e umin_seq %d umin_seq %a) ; CHECK-NEXT: Loop %first.loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %first.loop: Predicated backedge-taken count is (%e umin_seq %d umin_seq %a) ; CHECK-NEXT: Predicates: ; CHECK: Loop %first.loop: Trip multiple is 1 ; entry: br label %first.loop first.loop: %first.i = phi i32 [0, %entry], [%first.i.next, %first.loop] %first.i.next = add i32 %first.i, 1 %cond_p0 = icmp uge i32 %first.i, %e %cond_p1 = icmp uge i32 %first.i, %d %cond_p2 = icmp uge i32 %first.i, %a %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond_p4 = select i1 %cond_p3, i1 true, i1 %cond_p2 br i1 %cond_p4, label %first.loop.exit, label %first.loop first.loop.exit: br label %loop loop: %i = phi i32 [0, %first.loop.exit], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %c, i32 %d) %umin2 = call i32 @llvm.umin.i32(i32 %umin, i32 %first.i) %cond_p5 = icmp uge i32 %i, %a %cond_p6 = icmp uge i32 %i, %b %cond_p7 = icmp uge i32 %i, %umin2 %cond_p8 = select i1 %cond_p5, i1 true, i1 %cond_p6 %cond = select i1 %cond_p8, i1 true, i1 %cond_p7 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_and_2ops_and_constant(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_and_2ops_and_constant' ; CHECK-NEXT: Classifying expressions for: @logical_and_2ops_and_constant ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,43) S: [0,43) Exits: (42 umin %n) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,44) S: [1,44) Exits: (1 + (42 umin %n))<nuw><nsw> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 42) ; CHECK-NEXT: --> (42 umin %n) U: [0,43) S: [0,43) Exits: (42 umin %n) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond = select i1 %cond_p1, i1 true, i1 %cond_p0 ; CHECK-NEXT: --> (true + ((true + %cond_p1) umin_seq (true + %cond_p0))) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_2ops_and_constant ; CHECK-NEXT: Loop %loop: backedge-taken count is (42 umin %n) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 42 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (42 umin %n) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %n, i32 42) %cond_p0 = icmp uge i32 %i, %umin %cond_p1 = icmp uge i32 %i, %n %cond = select i1 %cond_p1, i1 true, i1 %cond_p0 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @computeSCEVAtScope(i32 %d.0) { ; CHECK-LABEL: 'computeSCEVAtScope' ; CHECK-NEXT: Classifying expressions for: @computeSCEVAtScope ; CHECK-NEXT: %d.1 = phi i32 [ %inc, %for.body ], [ %d.0, %for.cond.preheader ] ; CHECK-NEXT: --> {%d.0,+,1}<nsw><%for.cond> U: full-set S: full-set Exits: 0 LoopDispositions: { %for.cond: Computable, %while.cond: Variant } ; CHECK-NEXT: %e.1 = phi i32 [ %inc3, %for.body ], [ %d.0, %for.cond.preheader ] ; CHECK-NEXT: --> {%d.0,+,1}<nsw><%for.cond> U: full-set S: full-set Exits: 0 LoopDispositions: { %for.cond: Computable, %while.cond: Variant } ; CHECK-NEXT: %0 = select i1 %tobool1, i1 %tobool2, i1 false ; CHECK-NEXT: --> (%tobool1 umin_seq %tobool2) U: full-set S: full-set Exits: false LoopDispositions: { %for.cond: Variant, %while.cond: Variant } ; CHECK-NEXT: %inc = add nsw i32 %d.1, 1 ; CHECK-NEXT: --> {(1 + %d.0),+,1}<nw><%for.cond> U: full-set S: full-set Exits: 1 LoopDispositions: { %for.cond: Computable, %while.cond: Variant } ; CHECK-NEXT: %inc3 = add nsw i32 %e.1, 1 ; CHECK-NEXT: --> {(1 + %d.0),+,1}<nw><%for.cond> U: full-set S: full-set Exits: 1 LoopDispositions: { %for.cond: Computable, %while.cond: Variant } ; CHECK-NEXT: %f.1 = phi i32 [ %inc8, %for.body5 ], [ 0, %for.cond4.preheader ] ; CHECK-NEXT: --> {0,+,1}<%for.cond4> U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %for.cond4: Computable, %while.cond: Variant } ; CHECK-NEXT: %inc8 = add i32 %f.1, 1 ; CHECK-NEXT: --> {1,+,1}<%for.cond4> U: [1,2) S: [1,2) Exits: 1 LoopDispositions: { %for.cond4: Computable, %while.cond: Variant } ; CHECK-NEXT: Determining loop execution counts for: @computeSCEVAtScope ; CHECK-NEXT: Loop %for.cond: backedge-taken count is (-1 * %d.0) ; CHECK-NEXT: Loop %for.cond: max backedge-taken count is -1 ; CHECK-NEXT: Loop %for.cond: Predicated backedge-taken count is (-1 * %d.0) ; CHECK-NEXT: Predicates: ; CHECK: Loop %for.cond: Trip multiple is 1 ; CHECK-NEXT: Loop %for.cond4: backedge-taken count is 0 ; CHECK-NEXT: Loop %for.cond4: max backedge-taken count is 0 ; CHECK-NEXT: Loop %for.cond4: Predicated backedge-taken count is 0 ; CHECK-NEXT: Predicates: ; CHECK: Loop %for.cond4: Trip multiple is 1 ; CHECK-NEXT: Loop %while.cond: <multiple exits> Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %while.cond: Unpredictable max backedge-taken count. ; CHECK-NEXT: Loop %while.cond: Unpredictable predicated backedge-taken count. ; entry: br label %while.cond while.cond.loopexit: ; preds = %for.cond4 br label %while.cond while.cond: ; preds = %while.cond.loopexit, %entry br label %for.cond.preheader for.cond.preheader: ; preds = %while.cond br label %for.cond for.cond: ; preds = %for.body, %for.cond.preheader %d.1 = phi i32 [ %inc, %for.body ], [ %d.0, %for.cond.preheader ] %e.1 = phi i32 [ %inc3, %for.body ], [ %d.0, %for.cond.preheader ] %tobool1 = icmp ne i32 %e.1, 0 %tobool2 = icmp ne i32 %d.1, 0 %0 = select i1 %tobool1, i1 %tobool2, i1 false br i1 %0, label %for.body, label %for.cond4.preheader for.cond4.preheader: ; preds = %for.cond br label %for.cond4 for.body: ; preds = %for.cond %inc = add nsw i32 %d.1, 1 %inc3 = add nsw i32 %e.1, 1 br label %for.cond for.cond4: ; preds = %for.body5, %for.cond4.preheader %f.1 = phi i32 [ %inc8, %for.body5 ], [ 0, %for.cond4.preheader ] %exitcond.not = icmp eq i32 %f.1, %e.1 br i1 %exitcond.not, label %while.cond.loopexit, label %for.body5 for.body5: ; preds = %for.cond4 %inc8 = add i32 %f.1, 1 br label %for.cond4 } define i64 @uminseq_vs_ptrtoint_complexity(i64 %n, i64 %m, i64* %ptr) { ; CHECK-LABEL: 'uminseq_vs_ptrtoint_complexity' ; CHECK-NEXT: Classifying expressions for: @uminseq_vs_ptrtoint_complexity ; CHECK-NEXT: %i = phi i64 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i64 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %ptr.int = ptrtoint i64* %ptr to i64 ; CHECK-NEXT: --> (ptrtoint i64* %ptr to i64) U: full-set S: full-set ; CHECK-NEXT: %r = add i64 %i, %ptr.int ; CHECK-NEXT: --> {(ptrtoint i64* %ptr to i64),+,1}<%loop> U: full-set S: full-set --> ((%n umin_seq %m) + (ptrtoint i64* %ptr to i64)) U: full-set S: full-set ; CHECK-NEXT: Determining loop execution counts for: @uminseq_vs_ptrtoint_complexity ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i64 [0, %entry], [%i.next, %loop] %i.next = add i64 %i, 1 %cond_p0 = icmp ult i64 %i, %n %cond_p1 = icmp ult i64 %i, %m %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: %ptr.int = ptrtoint i64* %ptr to i64 %r = add i64 %i, %ptr.int ret i64 %r } define i32 @logical_and_implies_poison1(i32 %n) { ; CHECK-LABEL: 'logical_and_implies_poison1' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_poison1 ; CHECK-NEXT: %add = add i32 %n, 1 ; CHECK-NEXT: --> (1 + %n) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((1 + %n) umin %n) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((1 + %n) umin %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison1 ; CHECK-NEXT: Loop %loop: backedge-taken count is ((1 + %n) umin %n) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((1 + %n) umin %n) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %add = add i32 %n, 1 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n %cond_p1 = icmp ult i32 %i, %add %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_implies_poison2(i32 %n) { ; CHECK-LABEL: 'logical_and_implies_poison2' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_poison2 ; CHECK-NEXT: %add = add i32 %n, 1 ; CHECK-NEXT: --> (1 + %n) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((1 + %n) umin %n) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((1 + %n) umin %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison2 ; CHECK-NEXT: Loop %loop: backedge-taken count is ((1 + %n) umin %n) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((1 + %n) umin %n) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %add = add i32 %n, 1 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %add %cond_p1 = icmp ult i32 %i, %n %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_implies_poison3(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_implies_poison3' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_poison3 ; CHECK-NEXT: %add = add i32 %n, %m ; CHECK-NEXT: --> (%n + %m) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n + %m) umin %n) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n + %m) umin %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison3 ; CHECK-NEXT: Loop %loop: backedge-taken count is ((%n + %m) umin %n) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((%n + %m) umin %n) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %add = add i32 %n, %m br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %add %cond_p1 = icmp ult i32 %i, %n %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_implies_poison_wrong_direction(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_implies_poison_wrong_direction' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_poison_wrong_direction ; CHECK-NEXT: %add = add i32 %n, %m ; CHECK-NEXT: --> (%n + %m) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq (%n + %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq (%n + %m))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison_wrong_direction ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq (%n + %m)) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq (%n + %m)) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %add = add i32 %n, %m br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n %cond_p1 = icmp ult i32 %i, %add %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_implies_poison_noundef(i32 %n, i32 noundef %m) { ; CHECK-LABEL: 'logical_and_implies_poison_noundef' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_poison_noundef ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison_noundef ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n %cond_p1 = icmp ult i32 %i, %m %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_implies_poison_noundef_wrong_direction(i32 %n, i32 noundef %m) { ; CHECK-LABEL: 'logical_and_implies_poison_noundef_wrong_direction' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_poison_noundef_wrong_direction ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%m umin_seq %n) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%m umin_seq %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison_noundef_wrong_direction ; CHECK-NEXT: Loop %loop: backedge-taken count is (%m umin_seq %n) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%m umin_seq %n) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %m %cond_p1 = icmp ult i32 %i, %n %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_implies_poison_complex1(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_implies_poison_complex1' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_poison_complex1 ; CHECK-NEXT: %add = add i32 %n, %m ; CHECK-NEXT: --> (%n + %m) U: full-set S: full-set ; CHECK-NEXT: %add1 = add i32 %add, 1 ; CHECK-NEXT: --> (1 + %n + %m) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n + %m) umin (1 + %n + %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n + %m) umin (1 + %n + %m))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison_complex1 ; CHECK-NEXT: Loop %loop: backedge-taken count is ((%n + %m) umin (1 + %n + %m)) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((%n + %m) umin (1 + %n + %m)) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %add = add i32 %n, %m %add1 = add i32 %add, 1 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %add1 %cond_p1 = icmp ult i32 %i, %add %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_implies_poison_complex2(i32 %n, i32 %m, i32 %l) { ; CHECK-LABEL: 'logical_and_implies_poison_complex2' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_poison_complex2 ; CHECK-NEXT: %add = add i32 %n, %m ; CHECK-NEXT: --> (%n + %m) U: full-set S: full-set ; CHECK-NEXT: %add1 = add i32 %add, %l ; CHECK-NEXT: --> (%n + %m + %l) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n + %m) umin (%n + %m + %l)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n + %m) umin (%n + %m + %l))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison_complex2 ; CHECK-NEXT: Loop %loop: backedge-taken count is ((%n + %m) umin (%n + %m + %l)) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((%n + %m) umin (%n + %m + %l)) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %add = add i32 %n, %m %add1 = add i32 %add, %l br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %add1 %cond_p1 = icmp ult i32 %i, %add %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_implies_poison_complex_wrong_direction(i32 %n, i32 %m, i32 %l) { ; CHECK-LABEL: 'logical_and_implies_poison_complex_wrong_direction' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_poison_complex_wrong_direction ; CHECK-NEXT: %add = add i32 %n, %m ; CHECK-NEXT: --> (%n + %m) U: full-set S: full-set ; CHECK-NEXT: %add1 = add i32 %add, %l ; CHECK-NEXT: --> (%n + %m + %l) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n + %m) umin_seq (%n + %m + %l)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n + %m) umin_seq (%n + %m + %l))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison_complex_wrong_direction ; CHECK-NEXT: Loop %loop: backedge-taken count is ((%n + %m) umin_seq (%n + %m + %l)) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((%n + %m) umin_seq (%n + %m + %l)) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %add = add i32 %n, %m %add1 = add i32 %add, %l br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %add %cond_p1 = icmp ult i32 %i, %add1 %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_implies_multiple_ops(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_implies_multiple_ops' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_multiple_ops ; CHECK-NEXT: %add = add i32 %n, 1 ; CHECK-NEXT: --> (1 + %n) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (((1 + %n) umin %n) umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (((1 + %n) umin %n) umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond2 = select i1 %cond, i1 %cond_p2, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1 umin_seq %cond_p2) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_multiple_ops ; CHECK-NEXT: Loop %loop: backedge-taken count is (((1 + %n) umin %n) umin_seq %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (((1 + %n) umin %n) umin_seq %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %add = add i32 %n, 1 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n %cond_p1 = icmp ult i32 %i, %add %cond_p2 = icmp ult i32 %i, %m %cond = select i1 %cond_p0, i1 %cond_p1, i1 false %cond2 = select i1 %cond, i1 %cond_p2, i1 false br i1 %cond2, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_implies_multiple_ops2(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_implies_multiple_ops2' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_multiple_ops2 ; CHECK-NEXT: %add = add i32 %n, 1 ; CHECK-NEXT: --> (1 + %n) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m umin_seq (1 + %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m umin_seq (1 + %n))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond2 = select i1 %cond, i1 %cond_p2, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1 umin_seq %cond_p2) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_multiple_ops2 ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m umin_seq (1 + %n)) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m umin_seq (1 + %n)) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %add = add i32 %n, 1 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n %cond_p1 = icmp ult i32 %i, %m %cond_p2 = icmp ult i32 %i, %add %cond = select i1 %cond_p0, i1 %cond_p1, i1 false %cond2 = select i1 %cond, i1 %cond_p2, i1 false br i1 %cond2, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_implies_multiple_ops3(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_implies_multiple_ops3' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_multiple_ops3 ; CHECK-NEXT: %add = add i32 %n, 1 ; CHECK-NEXT: --> (1 + %n) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%m umin_seq ((1 + %n) umin %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%m umin_seq ((1 + %n) umin %n))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond2 = select i1 %cond, i1 %cond_p2, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1 umin_seq %cond_p2) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_multiple_ops3 ; CHECK-NEXT: Loop %loop: backedge-taken count is (%m umin_seq ((1 + %n) umin %n)) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%m umin_seq ((1 + %n) umin %n)) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %add = add i32 %n, 1 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %m %cond_p1 = icmp ult i32 %i, %n %cond_p2 = icmp ult i32 %i, %add %cond = select i1 %cond_p0, i1 %cond_p1, i1 false %cond2 = select i1 %cond, i1 %cond_p2, i1 false br i1 %cond2, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_not_zero(i16 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_not_zero' ; CHECK-NEXT: Classifying expressions for: @logical_and_not_zero ; CHECK-NEXT: %n.ext = zext i16 %n to i32 ; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %n1 = add i32 %n.ext, 1 ; CHECK-NEXT: --> (1 + (zext i16 %n to i32))<nuw><nsw> U: [1,65537) S: [1,65537) ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65537) S: [0,65537) Exits: ((1 + (zext i16 %n to i32))<nuw><nsw> umin %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65538) S: [1,65538) Exits: (1 + ((1 + (zext i16 %n to i32))<nuw><nsw> umin %m))<nuw><nsw> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_not_zero ; CHECK-NEXT: Loop %loop: backedge-taken count is ((1 + (zext i16 %n to i32))<nuw><nsw> umin %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 65536 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((1 + (zext i16 %n to i32))<nuw><nsw> umin %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %n.ext = zext i16 %n to i32 %n1 = add i32 %n.ext, 1 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n1 %cond_p1 = icmp ult i32 %i, %m %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_not_zero_wrong_order(i16 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_not_zero_wrong_order' ; CHECK-NEXT: Classifying expressions for: @logical_and_not_zero_wrong_order ; CHECK-NEXT: %n.ext = zext i16 %n to i32 ; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %n1 = add i32 %n.ext, 1 ; CHECK-NEXT: --> (1 + (zext i16 %n to i32))<nuw><nsw> U: [1,65537) S: [1,65537) ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65537) S: [0,65537) Exits: (%m umin_seq (1 + (zext i16 %n to i32))<nuw><nsw>) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65538) S: [1,65538) Exits: (1 + (%m umin_seq (1 + (zext i16 %n to i32))<nuw><nsw>))<nuw><nsw> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_not_zero_wrong_order ; CHECK-NEXT: Loop %loop: backedge-taken count is (%m umin_seq (1 + (zext i16 %n to i32))<nuw><nsw>) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 65536 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%m umin_seq (1 + (zext i16 %n to i32))<nuw><nsw>) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %n.ext = zext i16 %n to i32 %n1 = add i32 %n.ext, 1 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %m %cond_p1 = icmp ult i32 %i, %n1 %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_not_zero_needs_context(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_not_zero_needs_context' ; CHECK-NEXT: Classifying expressions for: @logical_and_not_zero_needs_context ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_not_zero_needs_context ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %cmp = icmp ne i32 %n, 0 br i1 %cmp, label %loop, label %guard.fail loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n %cond_p1 = icmp ult i32 %i, %m %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i guard.fail: ret i32 -1 } define i32 @logical_and_known_smaller(i16 %n, i16 %m) { ; CHECK-LABEL: 'logical_and_known_smaller' ; CHECK-NEXT: Classifying expressions for: @logical_and_known_smaller ; CHECK-NEXT: %n.ext = zext i16 %n to i32 ; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %m.ext = zext i16 %m to i32 ; CHECK-NEXT: --> (zext i16 %m to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %m.add = add i32 %m.ext, 65536 ; CHECK-NEXT: --> (65536 + (zext i16 %m to i32))<nuw><nsw> U: [65536,131072) S: [65536,131072) ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65536) S: [0,65536) Exits: (zext i16 %n to i32) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65537) S: [1,65537) Exits: (1 + (zext i16 %n to i32))<nuw><nsw> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_known_smaller ; CHECK-NEXT: Loop %loop: backedge-taken count is (zext i16 %n to i32) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 65535 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (zext i16 %n to i32) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %n.ext = zext i16 %n to i32 %m.ext = zext i16 %m to i32 %m.add = add i32 %m.ext, 65536 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n.ext %cond_p1 = icmp ult i32 %i, %m.add %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_known_smaller_equal(i16 %n, i16 %m) { ; CHECK-LABEL: 'logical_and_known_smaller_equal' ; CHECK-NEXT: Classifying expressions for: @logical_and_known_smaller_equal ; CHECK-NEXT: %n.ext = zext i16 %n to i32 ; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %m.ext = zext i16 %m to i32 ; CHECK-NEXT: --> (zext i16 %m to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %m.add = add i32 %m.ext, 65535 ; CHECK-NEXT: --> (65535 + (zext i16 %m to i32))<nuw><nsw> U: [65535,131071) S: [65535,131071) ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65536) S: [0,65536) Exits: (zext i16 %n to i32) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65537) S: [1,65537) Exits: (1 + (zext i16 %n to i32))<nuw><nsw> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_known_smaller_equal ; CHECK-NEXT: Loop %loop: backedge-taken count is (zext i16 %n to i32) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 65535 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (zext i16 %n to i32) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %n.ext = zext i16 %n to i32 %m.ext = zext i16 %m to i32 %m.add = add i32 %m.ext, 65535 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n.ext %cond_p1 = icmp ult i32 %i, %m.add %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_not_known_smaller_equal(i16 %n, i16 %m) { ; CHECK-LABEL: 'logical_and_not_known_smaller_equal' ; CHECK-NEXT: Classifying expressions for: @logical_and_not_known_smaller_equal ; CHECK-NEXT: %n.ext = zext i16 %n to i32 ; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %m.ext = zext i16 %m to i32 ; CHECK-NEXT: --> (zext i16 %m to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %m.add = add i32 %m.ext, 65534 ; CHECK-NEXT: --> (65534 + (zext i16 %m to i32))<nuw><nsw> U: [65534,131070) S: [65534,131070) ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65536) S: [0,65536) Exits: ((zext i16 %n to i32) umin_seq (65534 + (zext i16 %m to i32))<nuw><nsw>) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65537) S: [1,65537) Exits: (1 + ((zext i16 %n to i32) umin_seq (65534 + (zext i16 %m to i32))<nuw><nsw>))<nuw><nsw> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_not_known_smaller_equal ; CHECK-NEXT: Loop %loop: backedge-taken count is ((zext i16 %n to i32) umin_seq (65534 + (zext i16 %m to i32))<nuw><nsw>) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 65535 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i16 %n to i32) umin_seq (65534 + (zext i16 %m to i32))<nuw><nsw>) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %n.ext = zext i16 %n to i32 %m.ext = zext i16 %m to i32 %m.add = add i32 %m.ext, 65534 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n.ext %cond_p1 = icmp ult i32 %i, %m.add %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_known_greater(i16 %n, i16 %m) { ; CHECK-LABEL: 'logical_and_known_greater' ; CHECK-NEXT: Classifying expressions for: @logical_and_known_greater ; CHECK-NEXT: %n.ext = zext i16 %n to i32 ; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %m.ext = zext i16 %m to i32 ; CHECK-NEXT: --> (zext i16 %m to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %m.add = add i32 %m.ext, 65536 ; CHECK-NEXT: --> (65536 + (zext i16 %m to i32))<nuw><nsw> U: [65536,131072) S: [65536,131072) ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65536) S: [0,65536) Exits: (zext i16 %n to i32) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65537) S: [1,65537) Exits: (1 + (zext i16 %n to i32))<nuw><nsw> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_known_greater ; CHECK-NEXT: Loop %loop: backedge-taken count is (zext i16 %n to i32) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 65535 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (zext i16 %n to i32) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %n.ext = zext i16 %n to i32 %m.ext = zext i16 %m to i32 %m.add = add i32 %m.ext, 65536 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %m.add %cond_p1 = icmp ult i32 %i, %n.ext %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_known_greater_equal(i16 %n, i16 %m) { ; CHECK-LABEL: 'logical_and_known_greater_equal' ; CHECK-NEXT: Classifying expressions for: @logical_and_known_greater_equal ; CHECK-NEXT: %n.ext = zext i16 %n to i32 ; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %m.ext = zext i16 %m to i32 ; CHECK-NEXT: --> (zext i16 %m to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %m.add = add i32 %m.ext, 65535 ; CHECK-NEXT: --> (65535 + (zext i16 %m to i32))<nuw><nsw> U: [65535,131071) S: [65535,131071) ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65536) S: [0,65536) Exits: (zext i16 %n to i32) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65537) S: [1,65537) Exits: (1 + (zext i16 %n to i32))<nuw><nsw> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_known_greater_equal ; CHECK-NEXT: Loop %loop: backedge-taken count is (zext i16 %n to i32) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 65535 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (zext i16 %n to i32) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %n.ext = zext i16 %n to i32 %m.ext = zext i16 %m to i32 %m.add = add i32 %m.ext, 65535 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %m.add %cond_p1 = icmp ult i32 %i, %n.ext %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_not_known_greater_equal(i16 %n, i16 %m) { ; CHECK-LABEL: 'logical_and_not_known_greater_equal' ; CHECK-NEXT: Classifying expressions for: @logical_and_not_known_greater_equal ; CHECK-NEXT: %n.ext = zext i16 %n to i32 ; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %m.ext = zext i16 %m to i32 ; CHECK-NEXT: --> (zext i16 %m to i32) U: [0,65536) S: [0,65536) ; CHECK-NEXT: %m.add = add i32 %m.ext, 65534 ; CHECK-NEXT: --> (65534 + (zext i16 %m to i32))<nuw><nsw> U: [65534,131070) S: [65534,131070) ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65536) S: [0,65536) Exits: ((zext i16 %n to i32) umin (65534 + (zext i16 %m to i32))<nuw><nsw>) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65537) S: [1,65537) Exits: (1 + ((zext i16 %n to i32) umin (65534 + (zext i16 %m to i32))<nuw><nsw>))<nuw><nsw> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_not_known_greater_equal ; CHECK-NEXT: Loop %loop: backedge-taken count is ((zext i16 %n to i32) umin (65534 + (zext i16 %m to i32))<nuw><nsw>) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 65535 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i16 %n to i32) umin (65534 + (zext i16 %m to i32))<nuw><nsw>) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: %n.ext = zext i16 %n to i32 %m.ext = zext i16 %m to i32 %m.add = add i32 %m.ext, 65534 br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %m.add %cond_p1 = icmp ult i32 %i, %n.ext %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_zero_arg1(i32 %n) { ; CHECK-LABEL: 'logical_and_zero_arg1' ; CHECK-NEXT: Classifying expressions for: @logical_and_zero_arg1 ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,2) S: [1,2) Exits: 1 LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: false LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_zero_arg1 ; CHECK-NEXT: Loop %loop: backedge-taken count is 0 ; CHECK-NEXT: Loop %loop: max backedge-taken count is 0 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is 0 ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, 0 %cond_p1 = icmp ult i32 %i, %n %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_and_zero_arg2(i32 %n) { ; CHECK-LABEL: 'logical_and_zero_arg2' ; CHECK-NEXT: Classifying expressions for: @logical_and_zero_arg2 ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,2) S: [1,2) Exits: 1 LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: false LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_zero_arg2 ; CHECK-NEXT: Loop %loop: backedge-taken count is 0 ; CHECK-NEXT: Loop %loop: max backedge-taken count is 0 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is 0 ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n %cond_p1 = icmp ult i32 %i, 0 %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } declare i32 @llvm.umin.i32(i32, i32)