#include "llvm/Analysis/MLInlineAdvisor.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/FunctionPropertiesAnalysis.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/InlineModelFeatureMaps.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MLModelRunner.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
#if defined(LLVM_HAVE_TF_AOT_INLINERSIZEMODEL)
#include "llvm/Analysis/ReleaseModeModelRunner.h"
#include "InlinerSizeModel.h"
std::unique_ptr<InlineAdvisor>
llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM) {
auto AOTRunner =
std::make_unique<ReleaseModeModelRunner<llvm::InlinerSizeModel>>(
M.getContext(), FeatureMap, DecisionName);
return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner));
}
#endif
#define DEBUG_TYPE "inline-ml"
static cl::opt<float> SizeIncreaseThreshold(
"ml-advisor-size-increase-threshold", cl::Hidden,
cl::desc("Maximum factor by which expected native size may increase before "
"blocking any further inlining."),
cl::init(2.0));
static cl::opt<bool> KeepFPICache(
"ml-advisor-keep-fpi-cache", cl::Hidden,
cl::desc(
"For test - keep the ML Inline advisor's FunctionPropertiesInfo cache"),
cl::init(false));
const std::array<TensorSpec, NumberOfFeatures> llvm::FeatureMap{
#define POPULATE_NAMES(_, NAME) TensorSpec::createSpec<int64_t>(NAME, {1} ),
INLINE_COST_FEATURE_ITERATOR(POPULATE_NAMES)
#undef POPULATE_NAMES
#define POPULATE_NAMES(_, NAME, __) TensorSpec::createSpec<int64_t>(NAME, {1} ),
INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
#undef POPULATE_NAMES
};
const char *const llvm::DecisionName = "inlining_decision";
const char *const llvm::DefaultDecisionName = "inlining_default";
const char *const llvm::RewardName = "delta_size";
CallBase *getInlinableCS(Instruction &I) {
if (auto *CS = dyn_cast<CallBase>(&I))
if (Function *Callee = CS->getCalledFunction()) {
if (!Callee->isDeclaration()) {
return CS;
}
}
return nullptr;
}
MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM,
std::unique_ptr<MLModelRunner> Runner)
: InlineAdvisor(
M, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()),
ModelRunner(std::move(Runner)),
CG(MAM.getResult<LazyCallGraphAnalysis>(M)),
InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) {
assert(ModelRunner);
CallGraph CGraph(M);
for (auto I = scc_begin(&CGraph); !I.isAtEnd(); ++I) {
const std::vector<CallGraphNode *> &CGNodes = *I;
unsigned Level = 0;
for (auto *CGNode : CGNodes) {
Function *F = CGNode->getFunction();
if (!F || F->isDeclaration())
continue;
for (auto &I : instructions(F)) {
if (auto *CS = getInlinableCS(I)) {
auto *Called = CS->getCalledFunction();
auto Pos = FunctionLevels.find(&CG.get(*Called));
if (Pos == FunctionLevels.end())
continue;
Level = std::max(Level, Pos->second + 1);
}
}
}
for (auto *CGNode : CGNodes) {
Function *F = CGNode->getFunction();
if (F && !F->isDeclaration())
FunctionLevels[&CG.get(*F)] = Level;
}
}
for (auto KVP : FunctionLevels) {
AllNodes.insert(KVP.first);
EdgeCount += getLocalCalls(KVP.first->getFunction());
}
NodeCount = AllNodes.size();
}
unsigned MLInlineAdvisor::getInitialFunctionLevel(const Function &F) const {
return CG.lookup(F) ? FunctionLevels.at(CG.lookup(F)) : 0;
}
void MLInlineAdvisor::onPassEntry(LazyCallGraph::SCC *LastSCC) {
if (!LastSCC || ForceStop)
return;
FPICache.clear();
NodeCount -= static_cast<int64_t>(NodesInLastSCC.size());
while (!NodesInLastSCC.empty()) {
const auto *N = *NodesInLastSCC.begin();
NodesInLastSCC.erase(N);
if (N->isDead()) {
assert(!N->getFunction().isDeclaration());
continue;
}
++NodeCount;
EdgeCount += getLocalCalls(N->getFunction());
for (const auto &E : *(*N)) {
const auto *AdjNode = &E.getNode();
assert(!AdjNode->isDead() && !AdjNode->getFunction().isDeclaration());
auto I = AllNodes.insert(AdjNode);
if (I.second)
NodesInLastSCC.insert(AdjNode);
}
}
EdgeCount -= EdgesOfLastSeenNodes;
EdgesOfLastSeenNodes = 0;
assert(NodesInLastSCC.empty());
for (const auto &N : *LastSCC)
NodesInLastSCC.insert(&N);
}
void MLInlineAdvisor::onPassExit(LazyCallGraph::SCC *LastSCC) {
if (!KeepFPICache)
FPICache.clear();
if (!LastSCC || ForceStop)
return;
EdgesOfLastSeenNodes = 0;
for (auto I = NodesInLastSCC.begin(); I != NodesInLastSCC.end();) {
if ((*I)->isDead())
NodesInLastSCC.erase(*I++);
else
EdgesOfLastSeenNodes += getLocalCalls((*I++)->getFunction());
}
for (const auto &N : *LastSCC) {
assert(!N.isDead());
auto I = NodesInLastSCC.insert(&N);
if (I.second)
EdgesOfLastSeenNodes += getLocalCalls(N.getFunction());
}
assert(NodeCount >= NodesInLastSCC.size());
assert(EdgeCount >= EdgesOfLastSeenNodes);
}
int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
return getCachedFPI(F).DirectCallsToDefinedFunctions;
}
void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
bool CalleeWasDeleted) {
assert(!ForceStop);
Function *Caller = Advice.getCaller();
Function *Callee = Advice.getCallee();
{
PreservedAnalyses PA = PreservedAnalyses::all();
PA.abandon<FunctionPropertiesAnalysis>();
PA.abandon<DominatorTreeAnalysis>();
PA.abandon<LoopAnalysis>();
FAM.invalidate(*Caller, PA);
}
Advice.updateCachedCallerFPI(FAM);
int64_t IRSizeAfter =
getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
ForceStop = true;
int64_t NewCallerAndCalleeEdges =
getCachedFPI(*Caller).DirectCallsToDefinedFunctions;
if (CalleeWasDeleted)
--NodeCount;
else
NewCallerAndCalleeEdges +=
getCachedFPI(*Callee).DirectCallsToDefinedFunctions;
EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
}
int64_t MLInlineAdvisor::getModuleIRSize() const {
int64_t Ret = 0;
for (auto &F : M)
if (!F.isDeclaration())
Ret += getIRSize(F);
return Ret;
}
FunctionPropertiesInfo &MLInlineAdvisor::getCachedFPI(Function &F) const {
auto InsertPair =
FPICache.insert(std::make_pair(&F, FunctionPropertiesInfo()));
if (!InsertPair.second)
return InsertPair.first->second;
InsertPair.first->second = FAM.getResult<FunctionPropertiesAnalysis>(F);
return InsertPair.first->second;
}
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdviceImpl(CallBase &CB) {
if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
return Skip;
auto &Caller = *CB.getCaller();
auto &Callee = *CB.getCalledFunction();
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
return FAM.getResult<AssumptionAnalysis>(F);
};
auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
auto MandatoryKind = InlineAdvisor::getMandatoryKind(CB, FAM, ORE);
if (MandatoryKind == InlineAdvisor::MandatoryInliningKind::Never ||
&Caller == &Callee)
return getMandatoryAdvice(CB, false);
bool Mandatory =
MandatoryKind == InlineAdvisor::MandatoryInliningKind::Always;
if (ForceStop) {
ORE.emit([&] {
return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
<< "Won't attempt inlining because module size grew too much.";
});
return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
}
int CostEstimate = 0;
if (!Mandatory) {
auto IsCallSiteInlinable =
llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
if (!IsCallSiteInlinable) {
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
}
CostEstimate = *IsCallSiteInlinable;
}
const auto CostFeatures =
llvm::getInliningCostFeatures(CB, TIR, GetAssumptionCache);
if (!CostFeatures) {
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
}
if (Mandatory)
return getMandatoryAdvice(CB, true);
auto NrCtantParams = 0;
for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
NrCtantParams += (isa<Constant>(*I));
}
auto &CallerBefore = getCachedFPI(Caller);
auto &CalleeBefore = getCachedFPI(Callee);
*ModelRunner->getTensor<int64_t>(FeatureIndex::CalleeBasicBlockCount) =
CalleeBefore.BasicBlockCount;
*ModelRunner->getTensor<int64_t>(FeatureIndex::CallSiteHeight) =
getInitialFunctionLevel(Caller);
*ModelRunner->getTensor<int64_t>(FeatureIndex::NodeCount) = NodeCount;
*ModelRunner->getTensor<int64_t>(FeatureIndex::NrCtantParams) = NrCtantParams;
*ModelRunner->getTensor<int64_t>(FeatureIndex::EdgeCount) = EdgeCount;
*ModelRunner->getTensor<int64_t>(FeatureIndex::CallerUsers) =
CallerBefore.Uses;
*ModelRunner->getTensor<int64_t>(
FeatureIndex::CallerConditionallyExecutedBlocks) =
CallerBefore.BlocksReachedFromConditionalInstruction;
*ModelRunner->getTensor<int64_t>(FeatureIndex::CallerBasicBlockCount) =
CallerBefore.BasicBlockCount;
*ModelRunner->getTensor<int64_t>(
FeatureIndex::CalleeConditionallyExecutedBlocks) =
CalleeBefore.BlocksReachedFromConditionalInstruction;
*ModelRunner->getTensor<int64_t>(FeatureIndex::CalleeUsers) =
CalleeBefore.Uses;
*ModelRunner->getTensor<int64_t>(FeatureIndex::CostEstimate) = CostEstimate;
for (size_t I = 0;
I < static_cast<size_t>(InlineCostFeatureIndex::NumberOfFeatures); ++I) {
*ModelRunner->getTensor<int64_t>(inlineCostFeatureToMlFeature(
static_cast<InlineCostFeatureIndex>(I))) = CostFeatures->at(I);
}
return getAdviceFromModel(CB, ORE);
}
std::unique_ptr<MLInlineAdvice>
MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
OptimizationRemarkEmitter &ORE) {
return std::make_unique<MLInlineAdvice>(
this, CB, ORE, static_cast<bool>(ModelRunner->evaluate<int64_t>()));
}
std::unique_ptr<InlineAdvice>
MLInlineAdvisor::getSkipAdviceIfUnreachableCallsite(CallBase &CB) {
if (!FAM.getResult<DominatorTreeAnalysis>(*CB.getCaller())
.isReachableFromEntry(CB.getParent()))
return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), false);
return nullptr;
}
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getMandatoryAdvice(CallBase &CB,
bool Advice) {
if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
return Skip;
if (Advice && !ForceStop)
return getMandatoryAdviceImpl(CB);
return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), Advice);
}
std::unique_ptr<MLInlineAdvice>
MLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) {
return std::make_unique<MLInlineAdvice>(this, CB, getCallerORE(CB), true);
}
void MLInlineAdvisor::print(raw_ostream &OS) const {
OS << "[MLInlineAdvisor] Nodes: " << NodeCount << " Edges: " << EdgeCount
<< " EdgesOfLastSeenNodes: " << EdgesOfLastSeenNodes << "\n";
OS << "[MLInlineAdvisor] FPI:\n";
for (auto I : FPICache) {
OS << I.getFirst()->getName() << ":\n";
I.getSecond().print(OS);
OS << "\n";
}
OS << "\n";
}
MLInlineAdvice::MLInlineAdvice(MLInlineAdvisor *Advisor, CallBase &CB,
OptimizationRemarkEmitter &ORE,
bool Recommendation)
: InlineAdvice(Advisor, CB, ORE, Recommendation),
CallerIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Caller)),
CalleeIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Callee)),
CallerAndCalleeEdges(Advisor->isForcedToStop()
? 0
: (Advisor->getLocalCalls(*Caller) +
Advisor->getLocalCalls(*Callee))),
PreInlineCallerFPI(Advisor->getCachedFPI(*Caller)) {
if (Recommendation)
FPU.emplace(Advisor->getCachedFPI(*getCaller()), CB);
}
void MLInlineAdvice::reportContextForRemark(
DiagnosticInfoOptimizationBase &OR) {
using namespace ore;
OR << NV("Callee", Callee->getName());
for (size_t I = 0; I < NumberOfFeatures; ++I)
OR << NV(FeatureMap[I].name(),
*getAdvisor()->getModelRunner().getTensor<int64_t>(I));
OR << NV("ShouldInline", isInliningRecommended());
}
void MLInlineAdvice::updateCachedCallerFPI(FunctionAnalysisManager &FAM) const {
FPU->finish(FAM);
}
void MLInlineAdvice::recordInliningImpl() {
ORE.emit([&]() {
OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
reportContextForRemark(R);
return R;
});
getAdvisor()->onSuccessfulInlining(*this, false);
}
void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
ORE.emit([&]() {
OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
Block);
reportContextForRemark(R);
return R;
});
getAdvisor()->onSuccessfulInlining(*this, true);
}
void MLInlineAdvice::recordUnsuccessfulInliningImpl(
const InlineResult &Result) {
getAdvisor()->getCachedFPI(*Caller) = PreInlineCallerFPI;
ORE.emit([&]() {
OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
DLoc, Block);
reportContextForRemark(R);
return R;
});
}
void MLInlineAdvice::recordUnattemptedInliningImpl() {
assert(!FPU);
ORE.emit([&]() {
OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
reportContextForRemark(R);
return R;
});
}