//===- LoopPassManager.cpp - Loop pass management -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Support/TimeProfiler.h"
using namespace llvm;
namespace llvm {
/// Explicitly specialize the pass manager's run method to handle loop nest
/// structure updates.
PreservedAnalyses
PassManager<Loop, LoopAnalysisManager, LoopStandardAnalysisResults &,
LPMUpdater &>::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &U) {
// Runs loop-nest passes only when the current loop is a top-level one.
PreservedAnalyses PA = (L.isOutermost() && !LoopNestPasses.empty())
? runWithLoopNestPasses(L, AM, AR, U)
: runWithoutLoopNestPasses(L, AM, AR, U);
// Invalidation for the current loop should be handled above, and other loop
// analysis results shouldn't be impacted by runs over this loop. Therefore,
// the remaining analysis results in the AnalysisManager are preserved. We
// mark this with a set so that we don't need to inspect each one
// individually.
// FIXME: This isn't correct! This loop and all nested loops' analyses should
// be preserved, but unrolling should invalidate the parent loop's analyses.
PA.preserveSet<AllAnalysesOn<Loop>>();
return PA;
}
void PassManager<Loop, LoopAnalysisManager, LoopStandardAnalysisResults &,
LPMUpdater &>::printPipeline(raw_ostream &OS,
function_ref<StringRef(StringRef)>
MapClassName2PassName) {
assert(LoopPasses.size() + LoopNestPasses.size() == IsLoopNestPass.size());
unsigned IdxLP = 0, IdxLNP = 0;
for (unsigned Idx = 0, Size = IsLoopNestPass.size(); Idx != Size; ++Idx) {
if (IsLoopNestPass[Idx]) {
auto *P = LoopNestPasses[IdxLNP++].get();
P->printPipeline(OS, MapClassName2PassName);
} else {
auto *P = LoopPasses[IdxLP++].get();
P->printPipeline(OS, MapClassName2PassName);
}
if (Idx + 1 < Size)
OS << ",";
}
}
// Run both loop passes and loop-nest passes on top-level loop \p L.
PreservedAnalyses
LoopPassManager::runWithLoopNestPasses(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &U) {
assert(L.isOutermost() &&
"Loop-nest passes should only run on top-level loops.");
PreservedAnalyses PA = PreservedAnalyses::all();
// Request PassInstrumentation from analysis manager, will use it to run
// instrumenting callbacks for the passes later.
PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(L, AR);
unsigned LoopPassIndex = 0, LoopNestPassIndex = 0;
// `LoopNestPtr` points to the `LoopNest` object for the current top-level
// loop and `IsLoopNestPtrValid` indicates whether the pointer is still valid.
// The `LoopNest` object will have to be re-constructed if the pointer is
// invalid when encountering a loop-nest pass.
std::unique_ptr<LoopNest> LoopNestPtr;
bool IsLoopNestPtrValid = false;
for (size_t I = 0, E = IsLoopNestPass.size(); I != E; ++I) {
Optional<PreservedAnalyses> PassPA;
if (!IsLoopNestPass[I]) {
// The `I`-th pass is a loop pass.
auto &Pass = LoopPasses[LoopPassIndex++];
PassPA = runSinglePass(L, Pass, AM, AR, U, PI);
} else {
// The `I`-th pass is a loop-nest pass.
auto &Pass = LoopNestPasses[LoopNestPassIndex++];
// If the loop-nest object calculated before is no longer valid,
// re-calculate it here before running the loop-nest pass.
if (!IsLoopNestPtrValid) {
LoopNestPtr = LoopNest::getLoopNest(L, AR.SE);
IsLoopNestPtrValid = true;
}
PassPA = runSinglePass(*LoopNestPtr, Pass, AM, AR, U, PI);
}
// `PassPA` is `None` means that the before-pass callbacks in
// `PassInstrumentation` return false. The pass does not run in this case,
// so we can skip the following procedure.
if (!PassPA)
continue;
// If the loop was deleted, abort the run and return to the outer walk.
if (U.skipCurrentLoop()) {
PA.intersect(std::move(*PassPA));
break;
}
// Update the analysis manager as each pass runs and potentially
// invalidates analyses.
AM.invalidate(L, *PassPA);
// Finally, we intersect the final preserved analyses to compute the
// aggregate preserved set for this pass manager.
PA.intersect(std::move(*PassPA));
// Check if the current pass preserved the loop-nest object or not.
IsLoopNestPtrValid &= PassPA->getChecker<LoopNestAnalysis>().preserved();
// After running the loop pass, the parent loop might change and we need to
// notify the updater, otherwise U.ParentL might gets outdated and triggers
// assertion failures in addSiblingLoops and addChildLoops.
U.setParentLoop(L.getParentLoop());
}
return PA;
}
// Run all loop passes on loop \p L. Loop-nest passes don't run either because
// \p L is not a top-level one or simply because there are no loop-nest passes
// in the pass manager at all.
PreservedAnalyses
LoopPassManager::runWithoutLoopNestPasses(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &U) {
PreservedAnalyses PA = PreservedAnalyses::all();
// Request PassInstrumentation from analysis manager, will use it to run
// instrumenting callbacks for the passes later.
PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(L, AR);
for (auto &Pass : LoopPasses) {
Optional<PreservedAnalyses> PassPA = runSinglePass(L, Pass, AM, AR, U, PI);
// `PassPA` is `None` means that the before-pass callbacks in
// `PassInstrumentation` return false. The pass does not run in this case,
// so we can skip the following procedure.
if (!PassPA)
continue;
// If the loop was deleted, abort the run and return to the outer walk.
if (U.skipCurrentLoop()) {
PA.intersect(std::move(*PassPA));
break;
}
// Update the analysis manager as each pass runs and potentially
// invalidates analyses.
AM.invalidate(L, *PassPA);
// Finally, we intersect the final preserved analyses to compute the
// aggregate preserved set for this pass manager.
PA.intersect(std::move(*PassPA));
// After running the loop pass, the parent loop might change and we need to
// notify the updater, otherwise U.ParentL might gets outdated and triggers
// assertion failures in addSiblingLoops and addChildLoops.
U.setParentLoop(L.getParentLoop());
}
return PA;
}
} // namespace llvm
void FunctionToLoopPassAdaptor::printPipeline(
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
OS << (UseMemorySSA ? "loop-mssa(" : "loop(");
Pass->printPipeline(OS, MapClassName2PassName);
OS << ")";
}
PreservedAnalyses FunctionToLoopPassAdaptor::run(Function &F,
FunctionAnalysisManager &AM) {
// Before we even compute any loop analyses, first run a miniature function
// pass pipeline to put loops into their canonical form. Note that we can
// directly build up function analyses after this as the function pass
// manager handles all the invalidation at that layer.
PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(F);
PreservedAnalyses PA = PreservedAnalyses::all();
// Check the PassInstrumentation's BeforePass callbacks before running the
// canonicalization pipeline.
if (PI.runBeforePass<Function>(LoopCanonicalizationFPM, F)) {
PA = LoopCanonicalizationFPM.run(F, AM);
PI.runAfterPass<Function>(LoopCanonicalizationFPM, F, PA);
}
// Get the loop structure for this function
LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
// If there are no loops, there is nothing to do here.
if (LI.empty())
return PA;
// Get the analysis results needed by loop passes.
MemorySSA *MSSA =
UseMemorySSA ? (&AM.getResult<MemorySSAAnalysis>(F).getMSSA()) : nullptr;
BlockFrequencyInfo *BFI = UseBlockFrequencyInfo && F.hasProfileData()
? (&AM.getResult<BlockFrequencyAnalysis>(F))
: nullptr;
BranchProbabilityInfo *BPI =
UseBranchProbabilityInfo && F.hasProfileData()
? (&AM.getResult<BranchProbabilityAnalysis>(F))
: nullptr;
LoopStandardAnalysisResults LAR = {AM.getResult<AAManager>(F),
AM.getResult<AssumptionAnalysis>(F),
AM.getResult<DominatorTreeAnalysis>(F),
AM.getResult<LoopAnalysis>(F),
AM.getResult<ScalarEvolutionAnalysis>(F),
AM.getResult<TargetLibraryAnalysis>(F),
AM.getResult<TargetIRAnalysis>(F),
BFI,
BPI,
MSSA};
// Setup the loop analysis manager from its proxy. It is important that
// this is only done when there are loops to process and we have built the
// LoopStandardAnalysisResults object. The loop analyses cached in this
// manager have access to those analysis results and so it must invalidate
// itself when they go away.
auto &LAMFP = AM.getResult<LoopAnalysisManagerFunctionProxy>(F);
if (UseMemorySSA)
LAMFP.markMSSAUsed();
LoopAnalysisManager &LAM = LAMFP.getManager();
// A postorder worklist of loops to process.
SmallPriorityWorklist<Loop *, 4> Worklist;
// Register the worklist and loop analysis manager so that loop passes can
// update them when they mutate the loop nest structure.
LPMUpdater Updater(Worklist, LAM, LoopNestMode);
// Add the loop nests in the reverse order of LoopInfo. See method
// declaration.
if (!LoopNestMode) {
appendLoopsToWorklist(LI, Worklist);
} else {
for (Loop *L : LI)
Worklist.insert(L);
}
#ifndef NDEBUG
PI.pushBeforeNonSkippedPassCallback([&LAR, &LI](StringRef PassID, Any IR) {
if (isSpecialPass(PassID, {"PassManager"}))
return;
assert(any_isa<const Loop *>(IR) || any_isa<const LoopNest *>(IR));
const Loop *L = any_isa<const Loop *>(IR)
? any_cast<const Loop *>(IR)
: &any_cast<const LoopNest *>(IR)->getOutermostLoop();
assert(L && "Loop should be valid for printing");
// Verify the loop structure and LCSSA form before visiting the loop.
L->verifyLoop();
assert(L->isRecursivelyLCSSAForm(LAR.DT, LI) &&
"Loops must remain in LCSSA form!");
});
#endif
do {
Loop *L = Worklist.pop_back_val();
assert(!(LoopNestMode && L->getParentLoop()) &&
"L should be a top-level loop in loop-nest mode.");
// Reset the update structure for this loop.
Updater.CurrentL = L;
Updater.SkipCurrentLoop = false;
#ifndef NDEBUG
// Save a parent loop pointer for asserts.
Updater.ParentL = L->getParentLoop();
#endif
// Check the PassInstrumentation's BeforePass callbacks before running the
// pass, skip its execution completely if asked to (callback returns
// false).
if (!PI.runBeforePass<Loop>(*Pass, *L))
continue;
PreservedAnalyses PassPA;
{
TimeTraceScope TimeScope(Pass->name());
PassPA = Pass->run(*L, LAM, LAR, Updater);
}
// Do not pass deleted Loop into the instrumentation.
if (Updater.skipCurrentLoop())
PI.runAfterPassInvalidated<Loop>(*Pass, PassPA);
else
PI.runAfterPass<Loop>(*Pass, *L, PassPA);
if (LAR.MSSA && !PassPA.getChecker<MemorySSAAnalysis>().preserved())
report_fatal_error("Loop pass manager using MemorySSA contains a pass "
"that does not preserve MemorySSA");
#ifndef NDEBUG
// LoopAnalysisResults should always be valid.
if (VerifyDomInfo)
LAR.DT.verify();
if (VerifyLoopInfo)
LAR.LI.verify(LAR.DT);
if (VerifySCEV)
LAR.SE.verify();
if (LAR.MSSA && VerifyMemorySSA)
LAR.MSSA->verifyMemorySSA();
#endif
// If the loop hasn't been deleted, we need to handle invalidation here.
if (!Updater.skipCurrentLoop())
// We know that the loop pass couldn't have invalidated any other
// loop's analyses (that's the contract of a loop pass), so directly
// handle the loop analysis manager's invalidation here.
LAM.invalidate(*L, PassPA);
// Then intersect the preserved set so that invalidation of module
// analyses will eventually occur when the module pass completes.
PA.intersect(std::move(PassPA));
} while (!Worklist.empty());
#ifndef NDEBUG
PI.popBeforeNonSkippedPassCallback();
#endif
// By definition we preserve the proxy. We also preserve all analyses on
// Loops. This precludes *any* invalidation of loop analyses by the proxy,
// but that's OK because we've taken care to invalidate analyses in the
// loop analysis manager incrementally above.
PA.preserveSet<AllAnalysesOn<Loop>>();
PA.preserve<LoopAnalysisManagerFunctionProxy>();
// We also preserve the set of standard analyses.
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<LoopAnalysis>();
PA.preserve<ScalarEvolutionAnalysis>();
if (UseBlockFrequencyInfo && F.hasProfileData())
PA.preserve<BlockFrequencyAnalysis>();
if (UseBranchProbabilityInfo && F.hasProfileData())
PA.preserve<BranchProbabilityAnalysis>();
if (UseMemorySSA)
PA.preserve<MemorySSAAnalysis>();
return PA;
}
PrintLoopPass::PrintLoopPass() : OS(dbgs()) {}
PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner)
: OS(OS), Banner(Banner) {}
PreservedAnalyses PrintLoopPass::run(Loop &L, LoopAnalysisManager &,
LoopStandardAnalysisResults &,
LPMUpdater &) {
printLoop(L, OS, Banner);
return PreservedAnalyses::all();
}