#include "CodeGenDAGPatterns.h"
#include "CodeGenInstruction.h"
#include "SubtargetFeatureInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CodeGenCoverage.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <numeric>
#include <string>
using namespace llvm;
#define DEBUG_TYPE "gisel-emitter"
STATISTIC(NumPatternTotal, "Total number of patterns");
STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
STATISTIC(NumPatternEmitted, "Number of patterns emitted");
cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
static cl::opt<bool> WarnOnSkippedPatterns(
    "warn-on-skipped-patterns",
    cl::desc("Explain why a pattern was skipped for inclusion "
             "in the GlobalISel selector"),
    cl::init(false), cl::cat(GlobalISelEmitterCat));
static cl::opt<bool> GenerateCoverage(
    "instrument-gisel-coverage",
    cl::desc("Generate coverage instrumentation for GlobalISel"),
    cl::init(false), cl::cat(GlobalISelEmitterCat));
static cl::opt<std::string> UseCoverageFile(
    "gisel-coverage-file", cl::init(""),
    cl::desc("Specify file to retrieve coverage information from"),
    cl::cat(GlobalISelEmitterCat));
static cl::opt<bool> OptimizeMatchTable(
    "optimize-match-table",
    cl::desc("Generate an optimized version of the match table"),
    cl::init(true), cl::cat(GlobalISelEmitterCat));
namespace {
std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
  if (Predicate.hasGISelPredicateCode())
    return "GIPFP_MI_" + Predicate.getFnName();
  return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
         Predicate.getFnName();
}
std::string getMatchOpcodeForImmPredicate(const TreePredicateFn &Predicate) {
  return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
}
class LLTCodeGen {
private:
  LLT Ty;
public:
  LLTCodeGen() = default;
  LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
  std::string getCxxEnumValue() const {
    std::string Str;
    raw_string_ostream OS(Str);
    emitCxxEnumValue(OS);
    return Str;
  }
  void emitCxxEnumValue(raw_ostream &OS) const {
    if (Ty.isScalar()) {
      OS << "GILLT_s" << Ty.getSizeInBits();
      return;
    }
    if (Ty.isVector()) {
      OS << (Ty.isScalable() ? "GILLT_nxv" : "GILLT_v")
         << Ty.getElementCount().getKnownMinValue() << "s"
         << Ty.getScalarSizeInBits();
      return;
    }
    if (Ty.isPointer()) {
      OS << "GILLT_p" << Ty.getAddressSpace();
      if (Ty.getSizeInBits() > 0)
        OS << "s" << Ty.getSizeInBits();
      return;
    }
    llvm_unreachable("Unhandled LLT");
  }
  void emitCxxConstructorCall(raw_ostream &OS) const {
    if (Ty.isScalar()) {
      OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
      return;
    }
    if (Ty.isVector()) {
      OS << "LLT::vector("
         << (Ty.isScalable() ? "ElementCount::getScalable("
                             : "ElementCount::getFixed(")
         << Ty.getElementCount().getKnownMinValue() << "), "
         << Ty.getScalarSizeInBits() << ")";
      return;
    }
    if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
      OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
         << Ty.getSizeInBits() << ")";
      return;
    }
    llvm_unreachable("Unhandled LLT");
  }
  const LLT &get() const { return Ty; }
        bool operator<(const LLTCodeGen &Other) const {
    if (Ty.isValid() != Other.Ty.isValid())
      return Ty.isValid() < Other.Ty.isValid();
    if (!Ty.isValid())
      return false;
    if (Ty.isVector() != Other.Ty.isVector())
      return Ty.isVector() < Other.Ty.isVector();
    if (Ty.isScalar() != Other.Ty.isScalar())
      return Ty.isScalar() < Other.Ty.isScalar();
    if (Ty.isPointer() != Other.Ty.isPointer())
      return Ty.isPointer() < Other.Ty.isPointer();
    if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
      return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
    if (Ty.isVector() && Ty.getElementCount() != Other.Ty.getElementCount())
      return std::make_tuple(Ty.isScalable(),
                             Ty.getElementCount().getKnownMinValue()) <
             std::make_tuple(Other.Ty.isScalable(),
                             Other.Ty.getElementCount().getKnownMinValue());
    assert((!Ty.isVector() || Ty.isScalable() == Other.Ty.isScalable()) &&
           "Unexpected mismatch of scalable property");
    return Ty.isVector()
               ? std::make_tuple(Ty.isScalable(),
                                 Ty.getSizeInBits().getKnownMinSize()) <
                     std::make_tuple(Other.Ty.isScalable(),
                                     Other.Ty.getSizeInBits().getKnownMinSize())
               : Ty.getSizeInBits().getFixedSize() <
                     Other.Ty.getSizeInBits().getFixedSize();
  }
  bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
};
std::set<LLTCodeGen> KnownTypes;
class InstructionMatcher;
static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
  MVT VT(SVT);
  if (VT.isVector() && !VT.getVectorElementCount().isScalar())
    return LLTCodeGen(
        LLT::vector(VT.getVectorElementCount(), VT.getScalarSizeInBits()));
  if (VT.isInteger() || VT.isFloatingPoint())
    return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
  return None;
}
static std::string explainPredicates(const TreePatternNode *N) {
  std::string Explanation;
  StringRef Separator = "";
  for (const TreePredicateCall &Call : N->getPredicateCalls()) {
    const TreePredicateFn &P = Call.Fn;
    Explanation +=
        (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
    Separator = ", ";
    if (P.isAlwaysTrue())
      Explanation += " always-true";
    if (P.isImmediatePattern())
      Explanation += " immediate";
    if (P.isUnindexed())
      Explanation += " unindexed";
    if (P.isNonExtLoad())
      Explanation += " non-extload";
    if (P.isAnyExtLoad())
      Explanation += " extload";
    if (P.isSignExtLoad())
      Explanation += " sextload";
    if (P.isZeroExtLoad())
      Explanation += " zextload";
    if (P.isNonTruncStore())
      Explanation += " non-truncstore";
    if (P.isTruncStore())
      Explanation += " truncstore";
    if (Record *VT = P.getMemoryVT())
      Explanation += (" MemVT=" + VT->getName()).str();
    if (Record *VT = P.getScalarMemoryVT())
      Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
    if (ListInit *AddrSpaces = P.getAddressSpaces()) {
      raw_string_ostream OS(Explanation);
      OS << " AddressSpaces=[";
      StringRef AddrSpaceSeparator;
      for (Init *Val : AddrSpaces->getValues()) {
        IntInit *IntVal = dyn_cast<IntInit>(Val);
        if (!IntVal)
          continue;
        OS << AddrSpaceSeparator << IntVal->getValue();
        AddrSpaceSeparator = ", ";
      }
      OS << ']';
    }
    int64_t MinAlign = P.getMinAlignment();
    if (MinAlign > 0)
      Explanation += " MinAlign=" + utostr(MinAlign);
    if (P.isAtomicOrderingMonotonic())
      Explanation += " monotonic";
    if (P.isAtomicOrderingAcquire())
      Explanation += " acquire";
    if (P.isAtomicOrderingRelease())
      Explanation += " release";
    if (P.isAtomicOrderingAcquireRelease())
      Explanation += " acq_rel";
    if (P.isAtomicOrderingSequentiallyConsistent())
      Explanation += " seq_cst";
    if (P.isAtomicOrderingAcquireOrStronger())
      Explanation += " >=acquire";
    if (P.isAtomicOrderingWeakerThanAcquire())
      Explanation += " <acquire";
    if (P.isAtomicOrderingReleaseOrStronger())
      Explanation += " >=release";
    if (P.isAtomicOrderingWeakerThanRelease())
      Explanation += " <release";
  }
  return Explanation;
}
std::string explainOperator(Record *Operator) {
  if (Operator->isSubClassOf("SDNode"))
    return (" (" + Operator->getValueAsString("Opcode") + ")").str();
  if (Operator->isSubClassOf("Intrinsic"))
    return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
  if (Operator->isSubClassOf("ComplexPattern"))
    return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
            ")")
        .str();
  if (Operator->isSubClassOf("SDNodeXForm"))
    return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
            ")")
        .str();
  return (" (Operator " + Operator->getName() + " not understood)").str();
}
static Error failedImport(const Twine &Reason) {
  return make_error<StringError>(Reason, inconvertibleErrorCode());
}
static Error isTrivialOperatorNode(const TreePatternNode *N) {
  std::string Explanation;
  std::string Separator;
  bool HasUnsupportedPredicate = false;
  for (const TreePredicateCall &Call : N->getPredicateCalls()) {
    const TreePredicateFn &Predicate = Call.Fn;
    if (Predicate.isAlwaysTrue())
      continue;
    if (Predicate.isImmediatePattern())
      continue;
    if (Predicate.hasNoUse())
      continue;
    if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
        Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
      continue;
    if (Predicate.isNonTruncStore() || Predicate.isTruncStore())
      continue;
    if (Predicate.isLoad() && Predicate.getMemoryVT())
      continue;
    if (Predicate.isLoad() || Predicate.isStore()) {
      if (Predicate.isUnindexed())
        continue;
    }
    if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
      const ListInit *AddrSpaces = Predicate.getAddressSpaces();
      if (AddrSpaces && !AddrSpaces->empty())
        continue;
      if (Predicate.getMinAlignment() > 0)
        continue;
    }
    if (Predicate.isAtomic() && Predicate.getMemoryVT())
      continue;
    if (Predicate.isAtomic() &&
        (Predicate.isAtomicOrderingMonotonic() ||
         Predicate.isAtomicOrderingAcquire() ||
         Predicate.isAtomicOrderingRelease() ||
         Predicate.isAtomicOrderingAcquireRelease() ||
         Predicate.isAtomicOrderingSequentiallyConsistent() ||
         Predicate.isAtomicOrderingAcquireOrStronger() ||
         Predicate.isAtomicOrderingWeakerThanAcquire() ||
         Predicate.isAtomicOrderingReleaseOrStronger() ||
         Predicate.isAtomicOrderingWeakerThanRelease()))
      continue;
    if (Predicate.hasGISelPredicateCode())
      continue;
    HasUnsupportedPredicate = true;
    Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
    Separator = ", ";
    Explanation += (Separator + "first-failing:" +
                    Predicate.getOrigPatFragRecord()->getRecord()->getName())
                       .str();
    break;
  }
  if (!HasUnsupportedPredicate)
    return Error::success();
  return failedImport(Explanation);
}
static Record *getInitValueAsRegClass(Init *V) {
  if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
    if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
      return VDefInit->getDef()->getValueAsDef("RegClass");
    if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
      return VDefInit->getDef();
  }
  return nullptr;
}
std::string
getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
  std::string Name = "GIFBS";
  for (const auto &Feature : FeatureBitset)
    Name += ("_" + Feature->getName()).str();
  return Name;
}
static std::string getScopedName(unsigned Scope, const std::string &Name) {
  return ("pred:" + Twine(Scope) + ":" + Name).str();
}
class MatchTable;
struct MatchTableRecord {
  enum RecordFlagsBits {
    MTRF_None = 0x0,
        MTRF_Comment = 0x1,
        MTRF_CommaFollows = 0x2,
        MTRF_LineBreakFollows = 0x4,
            MTRF_Label = 0x8,
            MTRF_JumpTarget = 0x10,
            MTRF_Indent = 0x20,
            MTRF_Outdent = 0x40,
  };
      unsigned LabelID;
      std::string EmitStr;
private:
        unsigned NumElements;
public:
    unsigned Flags;
    int64_t RawValue;
  MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
                   unsigned NumElements, unsigned Flags,
                   int64_t RawValue = std::numeric_limits<int64_t>::min())
      : LabelID(LabelID_.value_or(~0u)), EmitStr(EmitStr),
        NumElements(NumElements), Flags(Flags), RawValue(RawValue) {
    assert((!LabelID_ || LabelID != ~0u) &&
           "This value is reserved for non-labels");
  }
  MatchTableRecord(const MatchTableRecord &Other) = default;
  MatchTableRecord(MatchTableRecord &&Other) = default;
    void turnIntoComment() {
    Flags |= MTRF_Comment;
    Flags &= ~MTRF_CommaFollows;
    NumElements = 0;
  }
    bool operator<(const MatchTableRecord &Other) const {
    return RawValue < Other.RawValue;
  }
  int64_t getRawValue() const { return RawValue; }
  void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
            const MatchTable &Table) const;
  unsigned size() const { return NumElements; }
};
class Matcher;
class MatchTable {
      unsigned ID;
      std::vector<MatchTableRecord> Contents;
    DenseMap<unsigned, unsigned> LabelMap;
    unsigned CurrentSize = 0;
    unsigned CurrentLabelID = 0;
    bool IsWithCoverage;
public:
  static MatchTableRecord LineBreak;
  static MatchTableRecord Comment(StringRef Comment) {
    return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
  }
  static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
    unsigned ExtraFlags = 0;
    if (IndentAdjust > 0)
      ExtraFlags |= MatchTableRecord::MTRF_Indent;
    if (IndentAdjust < 0)
      ExtraFlags |= MatchTableRecord::MTRF_Outdent;
    return MatchTableRecord(None, Opcode, 1,
                            MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
  }
  static MatchTableRecord NamedValue(StringRef NamedValue) {
    return MatchTableRecord(None, NamedValue, 1,
                            MatchTableRecord::MTRF_CommaFollows);
  }
  static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
    return MatchTableRecord(None, NamedValue, 1,
                            MatchTableRecord::MTRF_CommaFollows, RawValue);
  }
  static MatchTableRecord NamedValue(StringRef Namespace,
                                     StringRef NamedValue) {
    return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
                            MatchTableRecord::MTRF_CommaFollows);
  }
  static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
                                     int64_t RawValue) {
    return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
                            MatchTableRecord::MTRF_CommaFollows, RawValue);
  }
  static MatchTableRecord IntValue(int64_t IntValue) {
    return MatchTableRecord(None, llvm::to_string(IntValue), 1,
                            MatchTableRecord::MTRF_CommaFollows);
  }
  static MatchTableRecord Label(unsigned LabelID) {
    return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
                            MatchTableRecord::MTRF_Label |
                                MatchTableRecord::MTRF_Comment |
                                MatchTableRecord::MTRF_LineBreakFollows);
  }
  static MatchTableRecord JumpTarget(unsigned LabelID) {
    return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
                            MatchTableRecord::MTRF_JumpTarget |
                                MatchTableRecord::MTRF_Comment |
                                MatchTableRecord::MTRF_CommaFollows);
  }
  static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
  MatchTable(bool WithCoverage, unsigned ID = 0)
      : ID(ID), IsWithCoverage(WithCoverage) {}
  bool isWithCoverage() const { return IsWithCoverage; }
  void push_back(const MatchTableRecord &Value) {
    if (Value.Flags & MatchTableRecord::MTRF_Label)
      defineLabel(Value.LabelID);
    Contents.push_back(Value);
    CurrentSize += Value.size();
  }
  unsigned allocateLabelID() { return CurrentLabelID++; }
  void defineLabel(unsigned LabelID) {
    LabelMap.insert(std::make_pair(LabelID, CurrentSize));
  }
  unsigned getLabelIndex(unsigned LabelID) const {
    const auto I = LabelMap.find(LabelID);
    assert(I != LabelMap.end() && "Use of undeclared label");
    return I->second;
  }
  void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
  void emitDeclaration(raw_ostream &OS) const {
    unsigned Indentation = 4;
    OS << "  constexpr static int64_t MatchTable" << ID << "[] = {";
    LineBreak.emit(OS, true, *this);
    OS << std::string(Indentation, ' ');
    for (auto I = Contents.begin(), E = Contents.end(); I != E;
         ++I) {
      bool LineBreakIsNext = false;
      const auto &NextI = std::next(I);
      if (NextI != E) {
        if (NextI->EmitStr == "" &&
            NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
          LineBreakIsNext = true;
      }
      if (I->Flags & MatchTableRecord::MTRF_Indent)
        Indentation += 2;
      I->emit(OS, LineBreakIsNext, *this);
      if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
        OS << std::string(Indentation, ' ');
      if (I->Flags & MatchTableRecord::MTRF_Outdent)
        Indentation -= 2;
    }
    OS << "};\n";
  }
};
MatchTableRecord MatchTable::LineBreak = {
    None, "" , 0 ,
    MatchTableRecord::MTRF_LineBreakFollows};
void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
                            const MatchTable &Table) const {
  bool UseLineComment =
      LineBreakIsNextAfterThis || (Flags & MTRF_LineBreakFollows);
  if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
    UseLineComment = false;
  if (Flags & MTRF_Comment)
    OS << (UseLineComment ? "// " : "/*");
  OS << EmitStr;
  if (Flags & MTRF_Label)
    OS << ": @" << Table.getLabelIndex(LabelID);
  if ((Flags & MTRF_Comment) && !UseLineComment)
    OS << "*/";
  if (Flags & MTRF_JumpTarget) {
    if (Flags & MTRF_Comment)
      OS << " ";
    OS << Table.getLabelIndex(LabelID);
  }
  if (Flags & MTRF_CommaFollows) {
    OS << ",";
    if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
      OS << " ";
  }
  if (Flags & MTRF_LineBreakFollows)
    OS << "\n";
}
MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
  Table.push_back(Value);
  return Table;
}
class OperandMatcher;
class MatchAction;
class PredicateMatcher;
class Matcher {
public:
  virtual ~Matcher() = default;
  virtual void optimize() {}
  virtual void emit(MatchTable &Table) = 0;
  virtual bool hasFirstCondition() const = 0;
  virtual const PredicateMatcher &getFirstCondition() const = 0;
  virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
};
MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
                                  bool WithCoverage) {
  MatchTable Table(WithCoverage);
  for (Matcher *Rule : Rules)
    Rule->emit(Table);
  return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
}
class GroupMatcher final : public Matcher {
    SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
    std::vector<Matcher *> Matchers;
      std::vector<std::unique_ptr<Matcher>> MatcherStorage;
public:
          bool addMatcher(Matcher &Candidate);
                                          void finalize();
  void optimize() override;
  void emit(MatchTable &Table) override;
        iterator_range<std::vector<Matcher *>::iterator> matchers() {
    return make_range(Matchers.begin(), Matchers.end());
  }
  size_t size() const { return Matchers.size(); }
  bool empty() const { return Matchers.empty(); }
  std::unique_ptr<PredicateMatcher> popFirstCondition() override {
    assert(!Conditions.empty() &&
           "Trying to pop a condition from a condition-less group");
    std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
    Conditions.erase(Conditions.begin());
    return P;
  }
  const PredicateMatcher &getFirstCondition() const override {
    assert(!Conditions.empty() &&
           "Trying to get a condition from a condition-less group");
    return *Conditions.front();
  }
  bool hasFirstCondition() const override { return !Conditions.empty(); }
private:
      bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
};
class SwitchMatcher : public Matcher {
            std::vector<Matcher *> Matchers;
      std::unique_ptr<PredicateMatcher> Condition = nullptr;
      std::set<MatchTableRecord> Values;
      std::vector<std::unique_ptr<Matcher>> MatcherStorage;
public:
  bool addMatcher(Matcher &Candidate);
  void finalize();
  void emit(MatchTable &Table) override;
  iterator_range<std::vector<Matcher *>::iterator> matchers() {
    return make_range(Matchers.begin(), Matchers.end());
  }
  size_t size() const { return Matchers.size(); }
  bool empty() const { return Matchers.empty(); }
  std::unique_ptr<PredicateMatcher> popFirstCondition() override {
                llvm_unreachable("Trying to pop a condition from a condition-less group");
  }
  const PredicateMatcher &getFirstCondition() const override {
    llvm_unreachable("Trying to pop a condition from a condition-less group");
  }
  bool hasFirstCondition() const override { return false; }
private:
    static bool isSupportedPredicateType(const PredicateMatcher &Predicate);
  bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
    static void emitPredicateSpecificOpcodes(const PredicateMatcher &P,
                                           MatchTable &Table);
};
class RuleMatcher : public Matcher {
public:
  using ActionList = std::list<std::unique_ptr<MatchAction>>;
  using action_iterator = ActionList::iterator;
protected:
          using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
  MatchersTy Matchers;
      ActionList Actions;
  using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
    DefinedInsnVariablesMap InsnVariableIDs;
  using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
      MutatableInsnSet MutatableInsns;
      StringMap<OperandMatcher *> DefinedOperands;
      DenseMap<Record *, OperandMatcher *> PhysRegOperands;
    unsigned NextInsnVarID;
    unsigned NextOutputInsnID;
    unsigned NextTempRegID;
  std::vector<Record *> RequiredFeatures;
  std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
  ArrayRef<SMLoc> SrcLoc;
  typedef std::tuple<Record *, unsigned, unsigned>
      DefinedComplexPatternSubOperand;
  typedef StringMap<DefinedComplexPatternSubOperand>
      DefinedComplexPatternSubOperandMap;
    DefinedComplexPatternSubOperandMap ComplexSubOperands;
          StringMap<std::string> ComplexSubOperandsParentName;
  uint64_t RuleID;
  static uint64_t NextRuleID;
public:
  RuleMatcher(ArrayRef<SMLoc> SrcLoc)
      : NextInsnVarID(0), NextOutputInsnID(0), NextTempRegID(0), SrcLoc(SrcLoc),
        RuleID(NextRuleID++) {}
  RuleMatcher(RuleMatcher &&Other) = default;
  RuleMatcher &operator=(RuleMatcher &&Other) = default;
  uint64_t getRuleID() const { return RuleID; }
  InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
  void addRequiredFeature(Record *Feature);
  const std::vector<Record *> &getRequiredFeatures() const;
  template <class Kind, class... Args> Kind &addAction(Args &&... args);
  template <class Kind, class... Args>
  action_iterator insertAction(action_iterator InsertPt, Args &&... args);
    unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
  unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
  DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
    return InsnVariableIDs.begin();
  }
  DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
    return InsnVariableIDs.end();
  }
  iterator_range<typename DefinedInsnVariablesMap::const_iterator>
  defined_insn_vars() const {
    return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
  }
  MutatableInsnSet::const_iterator mutatable_insns_begin() const {
    return MutatableInsns.begin();
  }
  MutatableInsnSet::const_iterator mutatable_insns_end() const {
    return MutatableInsns.end();
  }
  iterator_range<typename MutatableInsnSet::const_iterator>
  mutatable_insns() const {
    return make_range(mutatable_insns_begin(), mutatable_insns_end());
  }
  void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
    bool R = MutatableInsns.erase(InsnMatcher);
    assert(R && "Reserving a mutatable insn that isn't available");
    (void)R;
  }
  action_iterator actions_begin() { return Actions.begin(); }
  action_iterator actions_end() { return Actions.end(); }
  iterator_range<action_iterator> actions() {
    return make_range(actions_begin(), actions_end());
  }
  void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
  void definePhysRegOperand(Record *Reg, OperandMatcher &OM);
  Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
                                unsigned RendererID, unsigned SubOperandID,
                                StringRef ParentSymbolicName) {
    std::string ParentName(ParentSymbolicName);
    if (ComplexSubOperands.count(SymbolicName)) {
      const std::string &RecordedParentName =
          ComplexSubOperandsParentName[SymbolicName];
      if (RecordedParentName != ParentName)
        return failedImport("Error: Complex suboperand " + SymbolicName +
                            " referenced by different operands: " +
                            RecordedParentName + " and " + ParentName + ".");
                        return Error::success();
    }
    ComplexSubOperands[SymbolicName] =
        std::make_tuple(ComplexPattern, RendererID, SubOperandID);
    ComplexSubOperandsParentName[SymbolicName] = ParentName;
    return Error::success();
  }
  Optional<DefinedComplexPatternSubOperand>
  getComplexSubOperand(StringRef SymbolicName) const {
    const auto &I = ComplexSubOperands.find(SymbolicName);
    if (I == ComplexSubOperands.end())
      return None;
    return I->second;
  }
  InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
  const OperandMatcher &getOperandMatcher(StringRef Name) const;
  const OperandMatcher &getPhysRegOperandMatcher(Record *) const;
  void optimize() override;
  void emit(MatchTable &Table) override;
        bool isHigherPriorityThan(const RuleMatcher &B) const;
      unsigned countRendererFns() const;
  std::unique_ptr<PredicateMatcher> popFirstCondition() override;
  const PredicateMatcher &getFirstCondition() const override;
  LLTCodeGen getFirstConditionAsRootType();
  bool hasFirstCondition() const override;
  unsigned getNumOperands() const;
  StringRef getOpcode() const;
    InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
  unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
  unsigned allocateTempRegID() { return NextTempRegID++; }
  iterator_range<MatchersTy::iterator> insnmatchers() {
    return make_range(Matchers.begin(), Matchers.end());
  }
  bool insnmatchers_empty() const { return Matchers.empty(); }
  void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
};
uint64_t RuleMatcher::NextRuleID = 0;
using action_iterator = RuleMatcher::action_iterator;
template <class PredicateTy> class PredicateListMatcher {
private:
      std::string getNoPredicateComment() const;
protected:
  using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
  PredicatesTy Predicates;
      bool Optimized = false;
public:
  typename PredicatesTy::iterator predicates_begin() {
    return Predicates.begin();
  }
  typename PredicatesTy::iterator predicates_end() {
    return Predicates.end();
  }
  iterator_range<typename PredicatesTy::iterator> predicates() {
    return make_range(predicates_begin(), predicates_end());
  }
  typename PredicatesTy::size_type predicates_size() const {
    return Predicates.size();
  }
  bool predicates_empty() const { return Predicates.empty(); }
  std::unique_ptr<PredicateTy> predicates_pop_front() {
    std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
    Predicates.pop_front();
    Optimized = true;
    return Front;
  }
  void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
    Predicates.push_front(std::move(Predicate));
  }
  void eraseNullPredicates() {
    const auto NewEnd =
        std::stable_partition(Predicates.begin(), Predicates.end(),
                              std::logical_not<std::unique_ptr<PredicateTy>>());
    if (NewEnd != Predicates.begin()) {
      Predicates.erase(Predicates.begin(), NewEnd);
      Optimized = true;
    }
  }
    template <class... Args>
  void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
    if (Predicates.empty() && !Optimized) {
      Table << MatchTable::Comment(getNoPredicateComment())
            << MatchTable::LineBreak;
      return;
    }
    for (const auto &Predicate : predicates())
      Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
  }
      using PredicateFilterFunc = std::function<bool(const PredicateTy&)>;
        template <class... Args>
  void emitFilteredPredicateListOpcodes(PredicateFilterFunc ShouldEmitPredicate,
                                        MatchTable &Table, Args &&... args) {
    if (Predicates.empty() && !Optimized) {
      Table << MatchTable::Comment(getNoPredicateComment())
            << MatchTable::LineBreak;
      return;
    }
    for (const auto &Predicate : predicates()) {
      if (ShouldEmitPredicate(*Predicate))
        Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
    }
  }
};
class PredicateMatcher {
public:
                      enum PredicateKind {
    IPM_Opcode,
    IPM_NumOperands,
    IPM_ImmPredicate,
    IPM_Imm,
    IPM_AtomicOrderingMMO,
    IPM_MemoryLLTSize,
    IPM_MemoryVsLLTSize,
    IPM_MemoryAddressSpace,
    IPM_MemoryAlignment,
    IPM_VectorSplatImm,
    IPM_NoUse,
    IPM_GenericPredicate,
    OPM_SameOperand,
    OPM_ComplexPattern,
    OPM_IntrinsicID,
    OPM_CmpPredicate,
    OPM_Instruction,
    OPM_Int,
    OPM_LiteralInt,
    OPM_LLT,
    OPM_PointerToAny,
    OPM_RegBank,
    OPM_MBB,
    OPM_RecordNamedOperand,
  };
protected:
  PredicateKind Kind;
  unsigned InsnVarID;
  unsigned OpIdx;
public:
  PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
      : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
  unsigned getInsnVarID() const { return InsnVarID; }
  unsigned getOpIdx() const { return OpIdx; }
  virtual ~PredicateMatcher() = default;
    virtual void emitPredicateOpcodes(MatchTable &Table,
                                    RuleMatcher &Rule) const = 0;
  PredicateKind getKind() const { return Kind; }
  bool dependsOnOperands() const {
                return Kind == IPM_GenericPredicate;
  }
  virtual bool isIdentical(const PredicateMatcher &B) const {
    return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
           OpIdx == B.OpIdx;
  }
  virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
    return hasValue() && PredicateMatcher::isIdentical(B);
  }
  virtual MatchTableRecord getValue() const {
    assert(hasValue() && "Can not get a value of a value-less predicate!");
    llvm_unreachable("Not implemented yet");
  }
  virtual bool hasValue() const { return false; }
      virtual unsigned countRendererFns() const { return 0; }
};
class OperandPredicateMatcher : public PredicateMatcher {
public:
  OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
                          unsigned OpIdx)
      : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
  virtual ~OperandPredicateMatcher() {}
        virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
};
template <>
std::string
PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
  return "No operand predicates";
}
class SameOperandMatcher : public OperandPredicateMatcher {
  std::string MatchingName;
  unsigned OrigOpIdx;
public:
  SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName,
                     unsigned OrigOpIdx)
      : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
        MatchingName(MatchingName), OrigOpIdx(OrigOpIdx) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_SameOperand;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override;
  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           OrigOpIdx == cast<SameOperandMatcher>(&B)->OrigOpIdx &&
           MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
  }
};
class LLTOperandMatcher : public OperandPredicateMatcher {
protected:
  LLTCodeGen Ty;
public:
  static std::map<LLTCodeGen, unsigned> TypeIDValues;
  static void initTypeIDValuesMap() {
    TypeIDValues.clear();
    unsigned ID = 0;
    for (const LLTCodeGen &LLTy : KnownTypes)
      TypeIDValues[LLTy] = ID++;
  }
  LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
      : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
    KnownTypes.insert(Ty);
  }
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_LLT;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           Ty == cast<LLTOperandMatcher>(&B)->Ty;
  }
  MatchTableRecord getValue() const override {
    const auto VI = TypeIDValues.find(Ty);
    if (VI == TypeIDValues.end())
      return MatchTable::NamedValue(getTy().getCxxEnumValue());
    return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
  }
  bool hasValue() const override {
    if (TypeIDValues.size() != KnownTypes.size())
      initTypeIDValuesMap();
    return TypeIDValues.count(Ty);
  }
  LLTCodeGen getTy() const { return Ty; }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
          << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
          << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
          << getValue() << MatchTable::LineBreak;
  }
};
std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
protected:
  unsigned SizeInBits;
public:
  PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                             unsigned SizeInBits)
      : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
        SizeInBits(SizeInBits) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_PointerToAny;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           SizeInBits == cast<PointerToAnyOperandMatcher>(&B)->SizeInBits;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckPointerToAny")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::Comment("SizeInBits")
          << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
  }
};
class RecordNamedOperandMatcher : public OperandPredicateMatcher {
protected:
  unsigned StoreIdx;
  std::string Name;
public:
  RecordNamedOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                            unsigned StoreIdx, StringRef Name)
      : OperandPredicateMatcher(OPM_RecordNamedOperand, InsnVarID, OpIdx),
        StoreIdx(StoreIdx), Name(Name) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_RecordNamedOperand;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           StoreIdx == cast<RecordNamedOperandMatcher>(&B)->StoreIdx &&
           Name == cast<RecordNamedOperandMatcher>(&B)->Name;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_RecordNamedOperand")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::Comment("StoreIdx") << MatchTable::IntValue(StoreIdx)
          << MatchTable::Comment("Name : " + Name) << MatchTable::LineBreak;
  }
};
class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
protected:
  const OperandMatcher &Operand;
  const Record &TheDef;
  unsigned getAllocatedTemporariesBaseID() const;
public:
  bool isIdentical(const PredicateMatcher &B) const override { return false; }
  ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                               const OperandMatcher &Operand,
                               const Record &TheDef)
      : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
        Operand(Operand), TheDef(TheDef) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_ComplexPattern;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    unsigned ID = getAllocatedTemporariesBaseID();
    Table << MatchTable::Opcode("GIM_CheckComplexPattern")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
          << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
          << MatchTable::LineBreak;
  }
  unsigned countRendererFns() const override {
    return 1;
  }
};
class RegisterBankOperandMatcher : public OperandPredicateMatcher {
protected:
  const CodeGenRegisterClass &RC;
public:
  RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                             const CodeGenRegisterClass &RC)
      : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
  }
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_RegBank;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::Comment("RC")
          << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
          << MatchTable::LineBreak;
  }
};
class MBBOperandMatcher : public OperandPredicateMatcher {
public:
  MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
      : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_MBB;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
          << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
          << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
  }
};
class ImmOperandMatcher : public OperandPredicateMatcher {
public:
  ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
      : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_Imm;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI")
          << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
          << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
  }
};
class ConstantIntOperandMatcher : public OperandPredicateMatcher {
protected:
  int64_t Value;
public:
  ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
      : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           Value == cast<ConstantIntOperandMatcher>(&B)->Value;
  }
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_Int;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckConstantInt")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::IntValue(Value) << MatchTable::LineBreak;
  }
};
class LiteralIntOperandMatcher : public OperandPredicateMatcher {
protected:
  int64_t Value;
public:
  LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
      : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
        Value(Value) {}
  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           Value == cast<LiteralIntOperandMatcher>(&B)->Value;
  }
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_LiteralInt;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckLiteralInt")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::IntValue(Value) << MatchTable::LineBreak;
  }
};
class CmpPredicateOperandMatcher : public OperandPredicateMatcher {
protected:
  std::string PredName;
public:
  CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                             std::string P)
    : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {}
  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName;
  }
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_CmpPredicate;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckCmpPredicate")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::Comment("Predicate")
          << MatchTable::NamedValue("CmpInst", PredName)
          << MatchTable::LineBreak;
  }
};
class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
protected:
  const CodeGenIntrinsic *II;
public:
  IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                            const CodeGenIntrinsic *II)
      : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           II == cast<IntrinsicIDOperandMatcher>(&B)->II;
  }
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_IntrinsicID;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
          << MatchTable::LineBreak;
  }
};
class OperandImmPredicateMatcher : public OperandPredicateMatcher {
protected:
  TreePredicateFn Predicate;
public:
  OperandImmPredicateMatcher(unsigned InsnVarID, unsigned OpIdx,
                             const TreePredicateFn &Predicate)
      : OperandPredicateMatcher(IPM_ImmPredicate, InsnVarID, OpIdx),
        Predicate(Predicate) {}
  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           Predicate.getOrigPatFragRecord() ==
               cast<OperandImmPredicateMatcher>(&B)
                   ->Predicate.getOrigPatFragRecord();
  }
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_ImmPredicate;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckImmOperandPredicate")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("MO") << MatchTable::IntValue(OpIdx)
          << MatchTable::Comment("Predicate")
          << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
          << MatchTable::LineBreak;
  }
};
class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
protected:
  InstructionMatcher &Insn;
  unsigned OpIdx;
  std::string SymbolicName;
        unsigned AllocatedTemporariesBaseID;
public:
  OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
                 const std::string &SymbolicName,
                 unsigned AllocatedTemporariesBaseID)
      : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
        AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
  bool hasSymbolicName() const { return !SymbolicName.empty(); }
  StringRef getSymbolicName() const { return SymbolicName; }
  void setSymbolicName(StringRef Name) {
    assert(SymbolicName.empty() && "Operand already has a symbolic name");
    SymbolicName = std::string(Name);
  }
    template <class Kind, class... Args>
  Optional<Kind *> addPredicate(Args &&... args) {
    if (isSameAsAnotherOperand())
      return None;
    Predicates.emplace_back(std::make_unique<Kind>(
        getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
    return static_cast<Kind *>(Predicates.back().get());
  }
  unsigned getOpIdx() const { return OpIdx; }
  unsigned getInsnVarID() const;
  std::string getOperandExpr(unsigned InsnVarID) const {
    return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
           llvm::to_string(OpIdx) + ")";
  }
  InstructionMatcher &getInstructionMatcher() const { return Insn; }
  Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
                              bool OperandIsAPointer);
      void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
    if (!Optimized) {
      std::string Comment;
      raw_string_ostream CommentOS(Comment);
      CommentOS << "MIs[" << getInsnVarID() << "] ";
      if (SymbolicName.empty())
        CommentOS << "Operand " << OpIdx;
      else
        CommentOS << SymbolicName;
      Table << MatchTable::Comment(Comment) << MatchTable::LineBreak;
    }
    emitPredicateListOpcodes(Table, Rule);
  }
        bool isHigherPriorityThan(OperandMatcher &B) {
        if (predicates_size() > B.predicates_size())
      return true;
    if (predicates_size() < B.predicates_size())
      return false;
        for (auto &&Predicate : zip(predicates(), B.predicates())) {
      if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
        return true;
      if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
        return false;
    }
    return false;
  };
      unsigned countRendererFns() {
    return std::accumulate(
        predicates().begin(), predicates().end(), 0,
        [](unsigned A,
           const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
          return A + Predicate->countRendererFns();
        });
  }
  unsigned getAllocatedTemporariesBaseID() const {
    return AllocatedTemporariesBaseID;
  }
  bool isSameAsAnotherOperand() {
    for (const auto &Predicate : predicates())
      if (isa<SameOperandMatcher>(Predicate))
        return true;
    return false;
  }
};
Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
                                            bool OperandIsAPointer) {
  if (!VTy.isMachineValueType())
    return failedImport("unsupported typeset");
  if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
    addPredicate<PointerToAnyOperandMatcher>(0);
    return Error::success();
  }
  auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
  if (!OpTyOrNone)
    return failedImport("unsupported type");
  if (OperandIsAPointer)
    addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
  else if (VTy.isPointer())
    addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(),
                                                 OpTyOrNone->get().getSizeInBits()));
  else
    addPredicate<LLTOperandMatcher>(*OpTyOrNone);
  return Error::success();
}
unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
  return Operand.getAllocatedTemporariesBaseID();
}
class InstructionPredicateMatcher : public PredicateMatcher {
public:
  InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
      : PredicateMatcher(Kind, InsnVarID) {}
  virtual ~InstructionPredicateMatcher() {}
        virtual bool
  isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
    return Kind < B.Kind;
  };
};
template <>
std::string
PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
  return "No instruction predicates";
}
class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
protected:
          SmallVector<const CodeGenInstruction *, 2> Insts;
  static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
  MatchTableRecord getInstValue(const CodeGenInstruction *I) const {
    const auto VI = OpcodeValues.find(I);
    if (VI != OpcodeValues.end())
      return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
                                    VI->second);
    return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
  }
public:
  static void initOpcodeValuesMap(const CodeGenTarget &Target) {
    OpcodeValues.clear();
    unsigned OpcodeValue = 0;
    for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
      OpcodeValues[I] = OpcodeValue++;
  }
  InstructionOpcodeMatcher(unsigned InsnVarID,
                           ArrayRef<const CodeGenInstruction *> I)
      : InstructionPredicateMatcher(IPM_Opcode, InsnVarID),
        Insts(I.begin(), I.end()) {
    assert((Insts.size() == 1 || Insts.size() == 2) &&
           "unexpected number of opcode alternatives");
  }
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_Opcode;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    return InstructionPredicateMatcher::isIdentical(B) &&
           Insts == cast<InstructionOpcodeMatcher>(&B)->Insts;
  }
  bool hasValue() const override {
    return Insts.size() == 1 && OpcodeValues.count(Insts[0]);
  }
      MatchTableRecord getValue() const override {
    assert(Insts.size() == 1);
    const CodeGenInstruction *I = Insts[0];
    const auto VI = OpcodeValues.find(I);
    if (VI != OpcodeValues.end())
      return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
                                    VI->second);
    return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    StringRef CheckType = Insts.size() == 1 ?
                          "GIM_CheckOpcode" : "GIM_CheckOpcodeIsEither";
    Table << MatchTable::Opcode(CheckType) << MatchTable::Comment("MI")
          << MatchTable::IntValue(InsnVarID);
    for (const CodeGenInstruction *I : Insts)
      Table << getInstValue(I);
    Table << MatchTable::LineBreak;
  }
        bool
  isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
    if (InstructionPredicateMatcher::isHigherPriorityThan(B))
      return true;
    if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
      return false;
                if (const InstructionOpcodeMatcher *BO =
            dyn_cast<InstructionOpcodeMatcher>(&B))
      return Insts[0]->TheDef->getName() < BO->Insts[0]->TheDef->getName();
    return false;
  };
  bool isConstantInstruction() const {
    return Insts.size() == 1 && Insts[0]->TheDef->getName() == "G_CONSTANT";
  }
    StringRef getOpcode() const {
    return Insts[0]->TheDef->getName();
  }
  ArrayRef<const CodeGenInstruction *> getAlternativeOpcodes() {
    return Insts;
  }
  bool isVariadicNumOperands() const {
        return Insts[0]->Operands.isVariadic;
  }
  StringRef getOperandType(unsigned OpIdx) const {
        return Insts[0]->Operands[OpIdx].OperandType;
  }
};
DenseMap<const CodeGenInstruction *, unsigned>
    InstructionOpcodeMatcher::OpcodeValues;
class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
  unsigned NumOperands = 0;
public:
  InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
      : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
        NumOperands(NumOperands) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_NumOperands;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    return InstructionPredicateMatcher::isIdentical(B) &&
           NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckNumOperands")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Expected")
          << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
  }
};
class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
protected:
  TreePredicateFn Predicate;
public:
  InstructionImmPredicateMatcher(unsigned InsnVarID,
                                 const TreePredicateFn &Predicate)
      : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
        Predicate(Predicate) {}
  bool isIdentical(const PredicateMatcher &B) const override {
    return InstructionPredicateMatcher::isIdentical(B) &&
           Predicate.getOrigPatFragRecord() ==
               cast<InstructionImmPredicateMatcher>(&B)
                   ->Predicate.getOrigPatFragRecord();
  }
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_ImmPredicate;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode(getMatchOpcodeForImmPredicate(Predicate))
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Predicate")
          << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
          << MatchTable::LineBreak;
  }
};
class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
public:
  enum AOComparator {
    AO_Exactly,
    AO_OrStronger,
    AO_WeakerThan,
  };
protected:
  StringRef Order;
  AOComparator Comparator;
public:
  AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
                                    AOComparator Comparator = AO_Exactly)
      : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
        Order(Order), Comparator(Comparator) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_AtomicOrderingMMO;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    if (!InstructionPredicateMatcher::isIdentical(B))
      return false;
    const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
    return Order == R.Order && Comparator == R.Comparator;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    StringRef Opcode = "GIM_CheckAtomicOrdering";
    if (Comparator == AO_OrStronger)
      Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
    if (Comparator == AO_WeakerThan)
      Opcode = "GIM_CheckAtomicOrderingWeakerThan";
    Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
          << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
          << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
          << MatchTable::LineBreak;
  }
};
class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
protected:
  unsigned MMOIdx;
  uint64_t Size;
public:
  MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
      : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
        MMOIdx(MMOIdx), Size(Size) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_MemoryLLTSize;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    return InstructionPredicateMatcher::isIdentical(B) &&
           MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
           Size == cast<MemorySizePredicateMatcher>(&B)->Size;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
          << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
          << MatchTable::LineBreak;
  }
};
class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher {
protected:
  unsigned MMOIdx;
  SmallVector<unsigned, 4> AddrSpaces;
public:
  MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
                                     ArrayRef<unsigned> AddrSpaces)
      : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID),
        MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_MemoryAddressSpace;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    if (!InstructionPredicateMatcher::isIdentical(B))
      return false;
    auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B);
    return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
                  << MatchTable::Comment("NumAddrSpace")
          << MatchTable::IntValue(AddrSpaces.size());
    for (unsigned AS : AddrSpaces)
      Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS);
    Table << MatchTable::LineBreak;
  }
};
class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher {
protected:
  unsigned MMOIdx;
  int MinAlign;
public:
  MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
                                  int MinAlign)
      : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID),
        MMOIdx(MMOIdx), MinAlign(MinAlign) {
    assert(MinAlign > 0);
  }
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_MemoryAlignment;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    if (!InstructionPredicateMatcher::isIdentical(B))
      return false;
    auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B);
    return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckMemoryAlignment")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
          << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign)
          << MatchTable::LineBreak;
  }
};
class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
public:
  enum RelationKind {
    GreaterThan,
    EqualTo,
    LessThan,
  };
protected:
  unsigned MMOIdx;
  RelationKind Relation;
  unsigned OpIdx;
public:
  MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
                                  enum RelationKind Relation,
                                  unsigned OpIdx)
      : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
        MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_MemoryVsLLTSize;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    return InstructionPredicateMatcher::isIdentical(B) &&
           MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
           Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
           OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode(Relation == EqualTo
                                    ? "GIM_CheckMemorySizeEqualToLLT"
                                    : Relation == GreaterThan
                                          ? "GIM_CheckMemorySizeGreaterThanLLT"
                                          : "GIM_CheckMemorySizeLessThanLLT")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
          << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
          << MatchTable::LineBreak;
  }
};
class VectorSplatImmPredicateMatcher : public InstructionPredicateMatcher {
public:
  enum SplatKind {
    AllZeros,
    AllOnes
  };
private:
  SplatKind Kind;
public:
  VectorSplatImmPredicateMatcher(unsigned InsnVarID, SplatKind K)
      : InstructionPredicateMatcher(IPM_VectorSplatImm, InsnVarID), Kind(K) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_VectorSplatImm;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    return InstructionPredicateMatcher::isIdentical(B) &&
           Kind == static_cast<const VectorSplatImmPredicateMatcher &>(B).Kind;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    if (Kind == AllOnes)
      Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllOnes");
    else
      Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllZeros");
    Table << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID);
    Table << MatchTable::LineBreak;
  }
};
class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher {
protected:
  TreePredicateFn Predicate;
public:
  GenericInstructionPredicateMatcher(unsigned InsnVarID,
                                     TreePredicateFn Predicate)
      : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID),
        Predicate(Predicate) {}
  static bool classof(const InstructionPredicateMatcher *P) {
    return P->getKind() == IPM_GenericPredicate;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    return InstructionPredicateMatcher::isIdentical(B) &&
           Predicate ==
               static_cast<const GenericInstructionPredicateMatcher &>(B)
                   .Predicate;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("FnId")
          << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
          << MatchTable::LineBreak;
  }
};
class NoUsePredicateMatcher : public InstructionPredicateMatcher {
public:
  NoUsePredicateMatcher(unsigned InsnVarID)
      : InstructionPredicateMatcher(IPM_NoUse, InsnVarID) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_NoUse;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    return InstructionPredicateMatcher::isIdentical(B);
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckHasNoUse")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::LineBreak;
  }
};
class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
protected:
  typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
  RuleMatcher &Rule;
      OperandVec Operands;
  bool NumOperandsCheck = true;
  std::string SymbolicName;
  unsigned InsnVarID;
        SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs;
public:
  InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName,
                     bool NumOpsCheck = true)
      : Rule(Rule), NumOperandsCheck(NumOpsCheck), SymbolicName(SymbolicName) {
            InsnVarID = Rule.implicitlyDefineInsnVar(*this);
  }
    template <class Kind, class... Args>
  Optional<Kind *> addPredicate(Args &&... args) {
    Predicates.emplace_back(
        std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
    return static_cast<Kind *>(Predicates.back().get());
  }
  RuleMatcher &getRuleMatcher() const { return Rule; }
  unsigned getInsnVarID() const { return InsnVarID; }
    OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
                             unsigned AllocatedTemporariesBaseID) {
    Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
                                             AllocatedTemporariesBaseID));
    if (!SymbolicName.empty())
      Rule.defineOperand(SymbolicName, *Operands.back());
    return *Operands.back();
  }
  OperandMatcher &getOperand(unsigned OpIdx) {
    auto I = llvm::find_if(Operands,
                           [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
                             return X->getOpIdx() == OpIdx;
                           });
    if (I != Operands.end())
      return **I;
    llvm_unreachable("Failed to lookup operand");
  }
  OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx,
                                  unsigned TempOpIdx) {
    assert(SymbolicName.empty());
    OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx);
    Operands.emplace_back(OM);
    Rule.definePhysRegOperand(Reg, *OM);
    PhysRegInputs.emplace_back(Reg, OpIdx);
    return *OM;
  }
  ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const {
    return PhysRegInputs;
  }
  StringRef getSymbolicName() const { return SymbolicName; }
  unsigned getNumOperands() const { return Operands.size(); }
  OperandVec::iterator operands_begin() { return Operands.begin(); }
  OperandVec::iterator operands_end() { return Operands.end(); }
  iterator_range<OperandVec::iterator> operands() {
    return make_range(operands_begin(), operands_end());
  }
  OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
  OperandVec::const_iterator operands_end() const { return Operands.end(); }
  iterator_range<OperandVec::const_iterator> operands() const {
    return make_range(operands_begin(), operands_end());
  }
  bool operands_empty() const { return Operands.empty(); }
  void pop_front() { Operands.erase(Operands.begin()); }
  void optimize();
      void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
    if (NumOperandsCheck)
      InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
          .emitPredicateOpcodes(Table, Rule);
            emitFilteredPredicateListOpcodes(
      [](const PredicateMatcher &P) {
        return !P.dependsOnOperands();
      }, Table, Rule);
        for (const auto &Operand : Operands)
      Operand->emitPredicateOpcodes(Table, Rule);
            emitFilteredPredicateListOpcodes(
      [](const PredicateMatcher &P) {
        return P.dependsOnOperands();
      }, Table, Rule);
  }
        bool isHigherPriorityThan(InstructionMatcher &B) {
        if (Operands.size() > B.Operands.size())
      return true;
    if (Operands.size() < B.Operands.size())
      return false;
    for (auto &&P : zip(predicates(), B.predicates())) {
      auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
      auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
      if (L->isHigherPriorityThan(*R))
        return true;
      if (R->isHigherPriorityThan(*L))
        return false;
    }
    for (auto Operand : zip(Operands, B.Operands)) {
      if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
        return true;
      if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
        return false;
    }
    return false;
  };
      unsigned countRendererFns() {
    return std::accumulate(
               predicates().begin(), predicates().end(), 0,
               [](unsigned A,
                  const std::unique_ptr<PredicateMatcher> &Predicate) {
                 return A + Predicate->countRendererFns();
               }) +
           std::accumulate(
               Operands.begin(), Operands.end(), 0,
               [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
                 return A + Operand->countRendererFns();
               });
  }
  InstructionOpcodeMatcher &getOpcodeMatcher() {
    for (auto &P : predicates())
      if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
        return *OpMatcher;
    llvm_unreachable("Didn't find an opcode matcher");
  }
  bool isConstantInstruction() {
    return getOpcodeMatcher().isConstantInstruction();
  }
  StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
};
StringRef RuleMatcher::getOpcode() const {
  return Matchers.front()->getOpcode();
}
unsigned RuleMatcher::getNumOperands() const {
  return Matchers.front()->getNumOperands();
}
LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
  InstructionMatcher &InsnMatcher = *Matchers.front();
  if (!InsnMatcher.predicates_empty())
    if (const auto *TM =
            dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
      if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
        return TM->getTy();
  return {};
}
class InstructionOperandMatcher : public OperandPredicateMatcher {
protected:
  std::unique_ptr<InstructionMatcher> InsnMatcher;
public:
  InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                            RuleMatcher &Rule, StringRef SymbolicName,
                            bool NumOpsCheck = true)
      : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
        InsnMatcher(new InstructionMatcher(Rule, SymbolicName, NumOpsCheck)) {}
  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_Instruction;
  }
  InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
  void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
    const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
    Table << MatchTable::Opcode("GIM_RecordInsn")
          << MatchTable::Comment("DefineMI")
          << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
          << MatchTable::IntValue(getInsnVarID())
          << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
          << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
          << MatchTable::LineBreak;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    emitCaptureOpcodes(Table, Rule);
    InsnMatcher->emitPredicateOpcodes(Table, Rule);
  }
  bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
    if (OperandPredicateMatcher::isHigherPriorityThan(B))
      return true;
    if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
      return false;
    if (const InstructionOperandMatcher *BP =
            dyn_cast<InstructionOperandMatcher>(&B))
      if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
        return true;
    return false;
  }
};
void InstructionMatcher::optimize() {
  SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
  const auto &OpcMatcher = getOpcodeMatcher();
  Stash.push_back(predicates_pop_front());
  if (Stash.back().get() == &OpcMatcher) {
    if (NumOperandsCheck && OpcMatcher.isVariadicNumOperands())
      Stash.emplace_back(
          new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
    NumOperandsCheck = false;
    for (auto &OM : Operands)
      for (auto &OP : OM->predicates())
        if (isa<IntrinsicIDOperandMatcher>(OP)) {
          Stash.push_back(std::move(OP));
          OM->eraseNullPredicates();
          break;
        }
  }
  if (InsnVarID > 0) {
    assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
    for (auto &OP : Operands[0]->predicates())
      OP.reset();
    Operands[0]->eraseNullPredicates();
  }
  for (auto &OM : Operands) {
    for (auto &OP : OM->predicates())
      if (isa<LLTOperandMatcher>(OP))
        Stash.push_back(std::move(OP));
    OM->eraseNullPredicates();
  }
  while (!Stash.empty())
    prependPredicate(Stash.pop_back_val());
}
class OperandRenderer {
public:
  enum RendererKind {
    OR_Copy,
    OR_CopyOrAddZeroReg,
    OR_CopySubReg,
    OR_CopyPhysReg,
    OR_CopyConstantAsImm,
    OR_CopyFConstantAsFPImm,
    OR_Imm,
    OR_SubRegIndex,
    OR_Register,
    OR_TempRegister,
    OR_ComplexPattern,
    OR_Custom,
    OR_CustomOperand
  };
protected:
  RendererKind Kind;
public:
  OperandRenderer(RendererKind Kind) : Kind(Kind) {}
  virtual ~OperandRenderer() {}
  RendererKind getKind() const { return Kind; }
  virtual void emitRenderOpcodes(MatchTable &Table,
                                 RuleMatcher &Rule) const = 0;
};
class CopyRenderer : public OperandRenderer {
protected:
  unsigned NewInsnID;
    const StringRef SymbolicName;
public:
  CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
      : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
        SymbolicName(SymbolicName) {
    assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
  }
  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_Copy;
  }
  StringRef getSymbolicName() const { return SymbolicName; }
  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
    unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
    Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
          << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
          << MatchTable::IntValue(Operand.getOpIdx())
          << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};
class CopyPhysRegRenderer : public OperandRenderer {
protected:
  unsigned NewInsnID;
  Record *PhysReg;
public:
  CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg)
      : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID),
        PhysReg(Reg) {
    assert(PhysReg);
  }
  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_CopyPhysReg;
  }
  Record *getPhysReg() const { return PhysReg; }
  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg);
    unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
    Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
          << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
          << MatchTable::IntValue(Operand.getOpIdx())
          << MatchTable::Comment(PhysReg->getName())
          << MatchTable::LineBreak;
  }
};
class CopyOrAddZeroRegRenderer : public OperandRenderer {
protected:
  unsigned NewInsnID;
    const StringRef SymbolicName;
  const Record *ZeroRegisterDef;
public:
  CopyOrAddZeroRegRenderer(unsigned NewInsnID,
                           StringRef SymbolicName, Record *ZeroRegisterDef)
      : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
        SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
    assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
  }
  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_CopyOrAddZeroReg;
  }
  StringRef getSymbolicName() const { return SymbolicName; }
  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
    unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
    Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
          << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
          << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
          << MatchTable::IntValue(Operand.getOpIdx())
          << MatchTable::NamedValue(
                 (ZeroRegisterDef->getValue("Namespace")
                      ? ZeroRegisterDef->getValueAsString("Namespace")
                      : ""),
                 ZeroRegisterDef->getName())
          << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};
class CopyConstantAsImmRenderer : public OperandRenderer {
protected:
  unsigned NewInsnID;
    const std::string SymbolicName;
  bool Signed;
public:
  CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
      : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
        SymbolicName(SymbolicName), Signed(true) {}
  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_CopyConstantAsImm;
  }
  StringRef getSymbolicName() const { return SymbolicName; }
  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
    unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
    Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
                                       : "GIR_CopyConstantAsUImm")
          << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
          << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OldInsnVarID)
          << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};
class CopyFConstantAsFPImmRenderer : public OperandRenderer {
protected:
  unsigned NewInsnID;
    const std::string SymbolicName;
public:
  CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
      : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
        SymbolicName(SymbolicName) {}
  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_CopyFConstantAsFPImm;
  }
  StringRef getSymbolicName() const { return SymbolicName; }
  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
    unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
    Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
          << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
          << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OldInsnVarID)
          << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};
class CopySubRegRenderer : public OperandRenderer {
protected:
  unsigned NewInsnID;
    const StringRef SymbolicName;
    const CodeGenSubRegIndex *SubReg;
public:
  CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
                     const CodeGenSubRegIndex *SubReg)
      : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
        SymbolicName(SymbolicName), SubReg(SubReg) {}
  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_CopySubReg;
  }
  StringRef getSymbolicName() const { return SymbolicName; }
  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
    unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
    Table << MatchTable::Opcode("GIR_CopySubReg")
          << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
          << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
          << MatchTable::IntValue(Operand.getOpIdx())
          << MatchTable::Comment("SubRegIdx")
          << MatchTable::IntValue(SubReg->EnumValue)
          << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};
class AddRegisterRenderer : public OperandRenderer {
protected:
  unsigned InsnID;
  const Record *RegisterDef;
  bool IsDef;
  const CodeGenTarget &Target;
public:
  AddRegisterRenderer(unsigned InsnID, const CodeGenTarget &Target,
                      const Record *RegisterDef, bool IsDef = false)
      : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef),
        IsDef(IsDef), Target(Target) {}
  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_Register;
  }
  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIR_AddRegister")
          << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID);
    if (RegisterDef->getName() != "zero_reg") {
      Table << MatchTable::NamedValue(
                   (RegisterDef->getValue("Namespace")
                        ? RegisterDef->getValueAsString("Namespace")
                        : ""),
                   RegisterDef->getName());
    } else {
      Table << MatchTable::NamedValue(Target.getRegNamespace(), "NoRegister");
    }
    Table << MatchTable::Comment("AddRegisterRegFlags");
                if (IsDef)
      Table << MatchTable::NamedValue("RegState::Define");
    else
      Table << MatchTable::IntValue(0);
    Table << MatchTable::LineBreak;
  }
};
class TempRegRenderer : public OperandRenderer {
protected:
  unsigned InsnID;
  unsigned TempRegID;
  const CodeGenSubRegIndex *SubRegIdx;
  bool IsDef;
  bool IsDead;
public:
  TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false,
                  const CodeGenSubRegIndex *SubReg = nullptr,
                  bool IsDead = false)
      : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
        SubRegIdx(SubReg), IsDef(IsDef), IsDead(IsDead) {}
  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_TempRegister;
  }
  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    if (SubRegIdx) {
      assert(!IsDef);
      Table << MatchTable::Opcode("GIR_AddTempSubRegister");
    } else
      Table << MatchTable::Opcode("GIR_AddTempRegister");
    Table << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
          << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
          << MatchTable::Comment("TempRegFlags");
    if (IsDef) {
      SmallString<32> RegFlags;
      RegFlags += "RegState::Define";
      if (IsDead)
        RegFlags += "|RegState::Dead";
      Table << MatchTable::NamedValue(RegFlags);
    } else
      Table << MatchTable::IntValue(0);
    if (SubRegIdx)
      Table << MatchTable::NamedValue(SubRegIdx->getQualifiedName());
    Table << MatchTable::LineBreak;
  }
};
class ImmRenderer : public OperandRenderer {
protected:
  unsigned InsnID;
  int64_t Imm;
public:
  ImmRenderer(unsigned InsnID, int64_t Imm)
      : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_Imm;
  }
  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
          << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
          << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
  }
};
class SubRegIndexRenderer : public OperandRenderer {
protected:
  unsigned InsnID;
  const CodeGenSubRegIndex *SubRegIdx;
public:
  SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI)
      : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {}
  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_SubRegIndex;
  }
  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
          << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex")
          << MatchTable::IntValue(SubRegIdx->EnumValue)
          << MatchTable::LineBreak;
  }
};
class RenderComplexPatternOperand : public OperandRenderer {
private:
  unsigned InsnID;
  const Record &TheDef;
    const StringRef SymbolicName;
      unsigned RendererID;
      Optional<unsigned> SubOperand;
  unsigned getNumOperands() const {
    return TheDef.getValueAsDag("Operands")->getNumArgs();
  }
public:
  RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
                              StringRef SymbolicName, unsigned RendererID,
                              Optional<unsigned> SubOperand = None)
      : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
        SymbolicName(SymbolicName), RendererID(RendererID),
        SubOperand(SubOperand) {}
  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_ComplexPattern;
  }
  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode(SubOperand ? "GIR_ComplexSubOperandRenderer"
                                           : "GIR_ComplexRenderer")
          << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
          << MatchTable::Comment("RendererID")
          << MatchTable::IntValue(RendererID);
    if (SubOperand)
      Table << MatchTable::Comment("SubOperand")
            << MatchTable::IntValue(SubOperand.value());
    Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};
class CustomRenderer : public OperandRenderer {
protected:
  unsigned InsnID;
  const Record &Renderer;
    const std::string SymbolicName;
public:
  CustomRenderer(unsigned InsnID, const Record &Renderer,
                 StringRef SymbolicName)
      : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
        SymbolicName(SymbolicName) {}
  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_Custom;
  }
  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
    unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
    Table << MatchTable::Opcode("GIR_CustomRenderer")
          << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
          << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OldInsnVarID)
          << MatchTable::Comment("Renderer")
          << MatchTable::NamedValue(
                 "GICR_" + Renderer.getValueAsString("RendererFn").str())
          << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};
class CustomOperandRenderer : public OperandRenderer {
protected:
  unsigned InsnID;
  const Record &Renderer;
    const std::string SymbolicName;
public:
  CustomOperandRenderer(unsigned InsnID, const Record &Renderer,
                        StringRef SymbolicName)
      : OperandRenderer(OR_CustomOperand), InsnID(InsnID), Renderer(Renderer),
        SymbolicName(SymbolicName) {}
  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_CustomOperand;
  }
  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    const OperandMatcher &OpdMatcher = Rule.getOperandMatcher(SymbolicName);
    Table << MatchTable::Opcode("GIR_CustomOperandRenderer")
          << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
          << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OpdMatcher.getInsnVarID())
          << MatchTable::Comment("OpIdx")
          << MatchTable::IntValue(OpdMatcher.getOpIdx())
          << MatchTable::Comment("OperandRenderer")
          << MatchTable::NamedValue(
            "GICR_" + Renderer.getValueAsString("RendererFn").str())
          << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};
class MatchAction {
public:
  virtual ~MatchAction() {}
    virtual void emitActionOpcodes(MatchTable &Table,
                                 RuleMatcher &Rule) const = 0;
};
class DebugCommentAction : public MatchAction {
private:
  std::string S;
public:
  DebugCommentAction(StringRef S) : S(std::string(S)) {}
  void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Comment(S) << MatchTable::LineBreak;
  }
};
class BuildMIAction : public MatchAction {
private:
  unsigned InsnID;
  const CodeGenInstruction *I;
  InstructionMatcher *Matched;
  std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
    bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
    if (!Insn)
      return false;
    if (OperandRenderers.size() != Insn->getNumOperands())
      return false;
    for (const auto &Renderer : enumerate(OperandRenderers)) {
      if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
        const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
        if (Insn != &OM.getInstructionMatcher() ||
            OM.getOpIdx() != Renderer.index())
          return false;
      } else
        return false;
    }
    return true;
  }
public:
  BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
      : InsnID(InsnID), I(I), Matched(nullptr) {}
  unsigned getInsnID() const { return InsnID; }
  const CodeGenInstruction *getCGI() const { return I; }
  void chooseInsnToMutate(RuleMatcher &Rule) {
    for (auto *MutateCandidate : Rule.mutatable_insns()) {
      if (canMutate(Rule, MutateCandidate)) {
                Rule.reserveInsnMatcherForMutation(MutateCandidate);
        Matched = MutateCandidate;
        return;
      }
    }
  }
  template <class Kind, class... Args>
  Kind &addRenderer(Args&&... args) {
    OperandRenderers.emplace_back(
        std::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
    return *static_cast<Kind *>(OperandRenderers.back().get());
  }
  void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    if (Matched) {
      assert(canMutate(Rule, Matched) &&
             "Arranged to mutate an insn that isn't mutatable");
      unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
      Table << MatchTable::Opcode("GIR_MutateOpcode")
            << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
            << MatchTable::Comment("RecycleInsnID")
            << MatchTable::IntValue(RecycleInsnID)
            << MatchTable::Comment("Opcode")
            << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
            << MatchTable::LineBreak;
      if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
        for (auto Def : I->ImplicitDefs) {
          auto Namespace = Def->getValue("Namespace")
                               ? Def->getValueAsString("Namespace")
                               : "";
          Table << MatchTable::Opcode("GIR_AddImplicitDef")
                << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
                << MatchTable::NamedValue(Namespace, Def->getName())
                << MatchTable::LineBreak;
        }
        for (auto Use : I->ImplicitUses) {
          auto Namespace = Use->getValue("Namespace")
                               ? Use->getValueAsString("Namespace")
                               : "";
          Table << MatchTable::Opcode("GIR_AddImplicitUse")
                << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
                << MatchTable::NamedValue(Namespace, Use->getName())
                << MatchTable::LineBreak;
        }
      }
      return;
    }
        
    Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
          << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
          << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
          << MatchTable::LineBreak;
    for (const auto &Renderer : OperandRenderers)
      Renderer->emitRenderOpcodes(Table, Rule);
    if (I->mayLoad || I->mayStore) {
      Table << MatchTable::Opcode("GIR_MergeMemOperands")
            << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
            << MatchTable::Comment("MergeInsnID's");
                                                std::vector<unsigned> MergeInsnIDs;
      for (const auto &IDMatcherPair : Rule.defined_insn_vars())
        MergeInsnIDs.push_back(IDMatcherPair.second);
      llvm::sort(MergeInsnIDs);
      for (const auto &MergeInsnID : MergeInsnIDs)
        Table << MatchTable::IntValue(MergeInsnID);
      Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
            << MatchTable::LineBreak;
    }
                if (InsnID == 0)
      Table << MatchTable::Opcode("GIR_EraseFromParent")
            << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
            << MatchTable::LineBreak;
  }
};
class ConstrainOperandsToDefinitionAction : public MatchAction {
  unsigned InsnID;
public:
  ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
  void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
          << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
          << MatchTable::LineBreak;
  }
};
class ConstrainOperandToRegClassAction : public MatchAction {
  unsigned InsnID;
  unsigned OpIdx;
  const CodeGenRegisterClass &RC;
public:
  ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
                                   const CodeGenRegisterClass &RC)
      : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
  void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
          << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
          << MatchTable::LineBreak;
  }
};
class MakeTempRegisterAction : public MatchAction {
private:
  LLTCodeGen Ty;
  unsigned TempRegID;
public:
  MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
      : Ty(Ty), TempRegID(TempRegID) {
    KnownTypes.insert(Ty);
  }
  void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIR_MakeTempReg")
          << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
          << MatchTable::Comment("TypeID")
          << MatchTable::NamedValue(Ty.getCxxEnumValue())
          << MatchTable::LineBreak;
  }
};
InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
  Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
  MutatableInsns.insert(Matchers.back().get());
  return *Matchers.back();
}
void RuleMatcher::addRequiredFeature(Record *Feature) {
  RequiredFeatures.push_back(Feature);
}
const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
  return RequiredFeatures;
}
template <class Kind, class... Args>
Kind &RuleMatcher::addAction(Args &&... args) {
  Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...));
  return *static_cast<Kind *>(Actions.back().get());
}
template <class Kind, class... Args>
action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
                                          Args &&... args) {
  return Actions.emplace(InsertPt,
                         std::make_unique<Kind>(std::forward<Args>(args)...));
}
unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
  unsigned NewInsnVarID = NextInsnVarID++;
  InsnVariableIDs[&Matcher] = NewInsnVarID;
  return NewInsnVarID;
}
unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
  const auto &I = InsnVariableIDs.find(&InsnMatcher);
  if (I != InsnVariableIDs.end())
    return I->second;
  llvm_unreachable("Matched Insn was not captured in a local variable");
}
void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
  if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
    DefinedOperands[SymbolicName] = &OM;
    return;
  }
      OM.addPredicate<SameOperandMatcher>(
      OM.getSymbolicName(), getOperandMatcher(OM.getSymbolicName()).getOpIdx());
}
void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) {
  if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) {
    PhysRegOperands[Reg] = &OM;
    return;
  }
}
InstructionMatcher &
RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
  for (const auto &I : InsnVariableIDs)
    if (I.first->getSymbolicName() == SymbolicName)
      return *I.first;
  llvm_unreachable(
      ("Failed to lookup instruction " + SymbolicName).str().c_str());
}
const OperandMatcher &
RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const {
  const auto &I = PhysRegOperands.find(Reg);
  if (I == PhysRegOperands.end()) {
    PrintFatalError(SrcLoc, "Register " + Reg->getName() +
                    " was not declared in matcher");
  }
  return *I->second;
}
const OperandMatcher &
RuleMatcher::getOperandMatcher(StringRef Name) const {
  const auto &I = DefinedOperands.find(Name);
  if (I == DefinedOperands.end())
    PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
  return *I->second;
}
void RuleMatcher::emit(MatchTable &Table) {
  if (Matchers.empty())
    llvm_unreachable("Unexpected empty matcher!");
                    assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
  unsigned LabelID = Table.allocateLabelID();
  Table << MatchTable::Opcode("GIM_Try", +1)
        << MatchTable::Comment("On fail goto")
        << MatchTable::JumpTarget(LabelID)
        << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
        << MatchTable::LineBreak;
  if (!RequiredFeatures.empty()) {
    Table << MatchTable::Opcode("GIM_CheckFeatures")
          << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
          << MatchTable::LineBreak;
  }
  Matchers.front()->emitPredicateOpcodes(Table, *this);
    if (InsnVariableIDs.size() >= 2) {
        SmallVector<unsigned, 2> InsnIDs;
    for (const auto &Pair : InsnVariableIDs) {
                  if (Pair.first == Matchers.front().get())
        continue;
      InsnIDs.push_back(Pair.second);
    }
    llvm::sort(InsnIDs);
    for (const auto &InsnID : InsnIDs) {
            Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
            << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
            << MatchTable::LineBreak;
                                                                                                                                                                                                                }
  }
  for (const auto &PM : EpilogueMatchers)
    PM->emitPredicateOpcodes(Table, *this);
  for (const auto &MA : Actions)
    MA->emitActionOpcodes(Table, *this);
  if (Table.isWithCoverage())
    Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
          << MatchTable::LineBreak;
  else
    Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
          << MatchTable::LineBreak;
  Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
        << MatchTable::Label(LabelID);
  ++NumPatternEmitted;
}
bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
    if (Matchers.size() > B.Matchers.size())
    return true;
  if (Matchers.size() < B.Matchers.size())
    return false;
  for (auto Matcher : zip(Matchers, B.Matchers)) {
    if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
      return true;
    if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
      return false;
  }
  return false;
}
unsigned RuleMatcher::countRendererFns() const {
  return std::accumulate(
      Matchers.begin(), Matchers.end(), 0,
      [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
        return A + Matcher->countRendererFns();
      });
}
bool OperandPredicateMatcher::isHigherPriorityThan(
    const OperandPredicateMatcher &B) const {
        
  const InstructionOperandMatcher *AOM =
      dyn_cast<InstructionOperandMatcher>(this);
  const InstructionOperandMatcher *BOM =
      dyn_cast<InstructionOperandMatcher>(&B);
  bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
  bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
  if (AOM && BOM) {
                    if (AIsConstantInsn != BIsConstantInsn)
      return AIsConstantInsn < BIsConstantInsn;
    return false;
  }
  if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
    return false;
  if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
    return true;
  return Kind < B.Kind;
}
void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
                                              RuleMatcher &Rule) const {
  const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
  unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
  assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());
  Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
        << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
        << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
        << MatchTable::Comment("OtherMI")
        << MatchTable::IntValue(OtherInsnVarID)
        << MatchTable::Comment("OtherOpIdx")
        << MatchTable::IntValue(OtherOM.getOpIdx())
        << MatchTable::LineBreak;
}
static Expected<LLTCodeGen> getInstResultType(const TreePatternNode *Dst) {
  ArrayRef<TypeSetByHwMode> ChildTypes = Dst->getExtTypes();
  if (ChildTypes.size() != 1)
    return failedImport("Dst pattern child has multiple results");
  Optional<LLTCodeGen> MaybeOpTy;
  if (ChildTypes.front().isMachineValueType()) {
    MaybeOpTy =
      MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
  }
  if (!MaybeOpTy)
    return failedImport("Dst operand has an unsupported type");
  return *MaybeOpTy;
}
class GlobalISelEmitter {
public:
  explicit GlobalISelEmitter(RecordKeeper &RK);
  void run(raw_ostream &OS);
private:
  const RecordKeeper &RK;
  const CodeGenDAGPatterns CGP;
  const CodeGenTarget &Target;
  CodeGenRegBank &CGRegs;
          DenseMap<Record *, Record *> NodeEquivs;
        DenseMap<const Record *, const Record *> ComplexPatternEquivs;
        DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
      DenseMap<uint64_t, int> RuleMatcherScores;
    SubtargetFeatureInfoMap SubtargetFeatures;
    Optional<CodeGenCoverage> RuleCoverage;
                unsigned WaitingForNamedOperands = 0;
  StringMap<unsigned> StoreIdxForName;
  void gatherOpcodeValues();
  void gatherTypeIDValues();
  void gatherNodeEquivs();
  Record *findNodeEquiv(Record *N) const;
  const CodeGenInstruction *getEquivNode(Record &Equiv,
                                         const TreePatternNode *N) const;
  Error importRulePredicates(RuleMatcher &M, ArrayRef<Record *> Predicates);
  Expected<InstructionMatcher &>
  createAndImportSelDAGMatcher(RuleMatcher &Rule,
                               InstructionMatcher &InsnMatcher,
                               const TreePatternNode *Src, unsigned &TempOpIdx);
  Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
                                           unsigned &TempOpIdx) const;
  Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
                           const TreePatternNode *SrcChild,
                           bool OperandIsAPointer, bool OperandIsImmArg,
                           unsigned OpIdx, unsigned &TempOpIdx);
  Expected<BuildMIAction &> createAndImportInstructionRenderer(
      RuleMatcher &M, InstructionMatcher &InsnMatcher,
      const TreePatternNode *Src, const TreePatternNode *Dst);
  Expected<action_iterator> createAndImportSubInstructionRenderer(
      action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
      unsigned TempReg);
  Expected<action_iterator>
  createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
                            const TreePatternNode *Dst);
  Expected<action_iterator>
  importExplicitDefRenderers(action_iterator InsertPt, RuleMatcher &M,
                             BuildMIAction &DstMIBuilder,
                             const TreePatternNode *Dst);
  Expected<action_iterator>
  importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
                             BuildMIAction &DstMIBuilder,
                             const llvm::TreePatternNode *Dst);
  Expected<action_iterator>
  importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
                            BuildMIAction &DstMIBuilder,
                            TreePatternNode *DstChild);
  Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M,
                                      BuildMIAction &DstMIBuilder,
                                      DagInit *DefaultOps) const;
  Error
  importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
                             const std::vector<Record *> &ImplicitDefs) const;
  void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName,
                           StringRef TypeIdentifier, StringRef ArgType,
                           StringRef ArgName, StringRef AdditionalArgs,
                           StringRef AdditionalDeclarations,
                           std::function<bool(const Record *R)> Filter);
  void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier,
                           StringRef ArgType,
                           std::function<bool(const Record *R)> Filter);
  void emitMIPredicateFns(raw_ostream &OS);
      Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
  void declareSubtargetFeature(Record *Predicate);
  MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
                             bool WithCoverage);
          Optional<const CodeGenRegisterClass *>
  inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty,
                                 TreePatternNode *SuperRegNode,
                                 TreePatternNode *SubRegIdxNode);
  Optional<CodeGenSubRegIndex *>
  inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode);
      Optional<const CodeGenRegisterClass *>
  inferSuperRegisterClass(const TypeSetByHwMode &Ty,
                          TreePatternNode *SubRegIdxNode);
    Optional<const CodeGenRegisterClass *>
  getRegClassFromLeaf(TreePatternNode *Leaf);
      Optional<const CodeGenRegisterClass *>
  inferRegClassFromPattern(TreePatternNode *N);
    Optional<unsigned>
  getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate);
    Expected<InstructionMatcher &>
  addBuiltinPredicates(const Record *SrcGIEquivOrNull,
                       const TreePredicateFn &Predicate,
                       InstructionMatcher &InsnMatcher, bool &HasAddedMatcher);
public:
                                                    template <class GroupT>
  static std::vector<Matcher *> optimizeRules(
      ArrayRef<Matcher *> Rules,
      std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
};
void GlobalISelEmitter::gatherOpcodeValues() {
  InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
}
void GlobalISelEmitter::gatherTypeIDValues() {
  LLTOperandMatcher::initTypeIDValuesMap();
}
void GlobalISelEmitter::gatherNodeEquivs() {
  assert(NodeEquivs.empty());
  for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
    NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
  assert(ComplexPatternEquivs.empty());
  for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
    Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
    if (!SelDAGEquiv)
      continue;
    ComplexPatternEquivs[SelDAGEquiv] = Equiv;
 }
 assert(SDNodeXFormEquivs.empty());
 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
   Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
   if (!SelDAGEquiv)
     continue;
   SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
 }
}
Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
  return NodeEquivs.lookup(N);
}
const CodeGenInstruction *
GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
  if (N->getNumChildren() >= 1) {
        if (!Equiv.isValueUnset("IfFloatingPoint") &&
        MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint())
      return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint"));
  }
  for (const TreePredicateCall &Call : N->getPredicateCalls()) {
    const TreePredicateFn &Predicate = Call.Fn;
    if (!Equiv.isValueUnset("IfSignExtend") &&
        (Predicate.isLoad() || Predicate.isAtomic()) &&
        Predicate.isSignExtLoad())
      return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
    if (!Equiv.isValueUnset("IfZeroExtend") &&
        (Predicate.isLoad() || Predicate.isAtomic()) &&
        Predicate.isZeroExtLoad())
      return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
  }
  return &Target.getInstruction(Equiv.getValueAsDef("I"));
}
GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
    : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
      CGRegs(Target.getRegBank()) {}
Error GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
                                              ArrayRef<Record *> Predicates) {
  for (Record *Pred : Predicates) {
    if (Pred->getValueAsString("CondString").empty())
      continue;
    declareSubtargetFeature(Pred);
    M.addRequiredFeature(Pred);
  }
  return Error::success();
}
Optional<unsigned> GlobalISelEmitter::getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate) {
  Optional<LLTCodeGen> MemTyOrNone =
      MVTToLLT(getValueType(Predicate.getMemoryVT()));
  if (!MemTyOrNone)
    return None;
    return llvm::alignTo(
      static_cast<unsigned>(MemTyOrNone->get().getSizeInBits()), 8);
}
Expected<InstructionMatcher &> GlobalISelEmitter::addBuiltinPredicates(
    const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate,
    InstructionMatcher &InsnMatcher, bool &HasAddedMatcher) {
  if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
    if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) {
      SmallVector<unsigned, 4> ParsedAddrSpaces;
      for (Init *Val : AddrSpaces->getValues()) {
        IntInit *IntVal = dyn_cast<IntInit>(Val);
        if (!IntVal)
          return failedImport("Address space is not an integer");
        ParsedAddrSpaces.push_back(IntVal->getValue());
      }
      if (!ParsedAddrSpaces.empty()) {
        InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>(
            0, ParsedAddrSpaces);
        return InsnMatcher;
      }
    }
    int64_t MinAlign = Predicate.getMinAlignment();
    if (MinAlign > 0) {
      InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign);
      return InsnMatcher;
    }
  }
    if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
    InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
        0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
    return InsnMatcher;
  }
  if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
    InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
        0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
    return InsnMatcher;
  }
  if (Predicate.isStore()) {
    if (Predicate.isTruncStore()) {
      if (Predicate.getMemoryVT() != nullptr) {
                auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate);
        if (!MemSizeInBits)
          return failedImport("MemVT could not be converted to LLT");
        InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0, *MemSizeInBits /
                                                                    8);
      } else {
        InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
            0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
      }
      return InsnMatcher;
    }
    if (Predicate.isNonTruncStore()) {
                  InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
          0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
    }
  }
    if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
      Predicate.isSignExtLoad())
    return InsnMatcher;
    if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
      Predicate.isZeroExtLoad())
    return InsnMatcher;
    if (Predicate.isNonTruncStore())
    return InsnMatcher;
  if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
    if (Predicate.getMemoryVT() != nullptr) {
      auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate);
      if (!MemSizeInBits)
        return failedImport("MemVT could not be converted to LLT");
      InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0,
                                                           *MemSizeInBits / 8);
      return InsnMatcher;
    }
  }
  if (Predicate.isLoad() || Predicate.isStore()) {
        if (Predicate.isUnindexed())
      return InsnMatcher;
  }
  if (Predicate.isAtomic()) {
    if (Predicate.isAtomicOrderingMonotonic()) {
      InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Monotonic");
      return InsnMatcher;
    }
    if (Predicate.isAtomicOrderingAcquire()) {
      InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
      return InsnMatcher;
    }
    if (Predicate.isAtomicOrderingRelease()) {
      InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
      return InsnMatcher;
    }
    if (Predicate.isAtomicOrderingAcquireRelease()) {
      InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
          "AcquireRelease");
      return InsnMatcher;
    }
    if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
      InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
          "SequentiallyConsistent");
      return InsnMatcher;
    }
  }
  if (Predicate.isAtomicOrderingAcquireOrStronger()) {
    InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
        "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
    return InsnMatcher;
  }
  if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
    InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
        "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
    return InsnMatcher;
  }
  if (Predicate.isAtomicOrderingReleaseOrStronger()) {
    InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
        "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
    return InsnMatcher;
  }
  if (Predicate.isAtomicOrderingWeakerThanRelease()) {
    InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
        "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
    return InsnMatcher;
  }
  HasAddedMatcher = false;
  return InsnMatcher;
}
Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
    RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
    const TreePatternNode *Src, unsigned &TempOpIdx) {
  Record *SrcGIEquivOrNull = nullptr;
  const CodeGenInstruction *SrcGIOrNull = nullptr;
    if (Src->getExtTypes().size() > 1)
    return failedImport("Src pattern has multiple results");
  if (Src->isLeaf()) {
    Init *SrcInit = Src->getLeafValue();
    if (isa<IntInit>(SrcInit)) {
      InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
          &Target.getInstruction(RK.getDef("G_CONSTANT")));
    } else
      return failedImport(
          "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
  } else {
    SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
    if (!SrcGIEquivOrNull)
      return failedImport("Pattern operator lacks an equivalent Instruction" +
                          explainOperator(Src->getOperator()));
    SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
        InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
  }
  unsigned OpIdx = 0;
  for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
            OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
    if (auto Error = OM.addTypeCheckPredicate(VTy, false ))
      return failedImport(toString(std::move(Error)) +
                          " for result of Src pattern operator");
  }
  for (const TreePredicateCall &Call : Src->getPredicateCalls()) {
    const TreePredicateFn &Predicate = Call.Fn;
    bool HasAddedBuiltinMatcher = true;
    if (Predicate.isAlwaysTrue())
      continue;
    if (Predicate.isImmediatePattern()) {
      InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
      continue;
    }
    auto InsnMatcherOrError = addBuiltinPredicates(
        SrcGIEquivOrNull, Predicate, InsnMatcher, HasAddedBuiltinMatcher);
    if (auto Error = InsnMatcherOrError.takeError())
      return std::move(Error);
                            if (Predicate.hasNoUse()) {
      InsnMatcher.addPredicate<NoUsePredicateMatcher>();
      HasAddedBuiltinMatcher = true;
    }
    if (Predicate.hasGISelPredicateCode()) {
      if (Predicate.usesOperands()) {
        assert(WaitingForNamedOperands == 0 &&
               "previous predicate didn't find all operands or "
               "nested predicate that uses operands");
        TreePattern *TP = Predicate.getOrigPatFragRecord();
        WaitingForNamedOperands = TP->getNumArgs();
        for (unsigned i = 0; i < WaitingForNamedOperands; ++i)
          StoreIdxForName[getScopedName(Call.Scope, TP->getArgName(i))] = i;
      }
      InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate);
      continue;
    }
    if (!HasAddedBuiltinMatcher) {
      return failedImport("Src pattern child has predicate (" +
                          explainPredicates(Src) + ")");
    }
  }
  bool IsAtomic = false;
  if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
    InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
  else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) {
    IsAtomic = true;
    InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
      "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
  }
  if (Src->isLeaf()) {
    Init *SrcInit = Src->getLeafValue();
    if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
      OperandMatcher &OM =
          InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
      OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
    } else
      return failedImport(
          "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
  } else {
    assert(SrcGIOrNull &&
           "Expected to have already found an equivalent Instruction");
    if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
        SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
                        InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
      return InsnMatcher;
    }
            
    unsigned NumChildren = Src->getNumChildren();
    bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP";
    if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") {
      TreePatternNode *SrcChild = Src->getChild(NumChildren - 1);
      if (SrcChild->isLeaf()) {
        DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue());
        Record *CCDef = DI ? DI->getDef() : nullptr;
        if (!CCDef || !CCDef->isSubClassOf("CondCode"))
          return failedImport("Unable to handle CondCode");
        OperandMatcher &OM =
          InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
        StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") :
                                      CCDef->getValueAsString("ICmpPredicate");
        if (!PredType.empty()) {
          OM.addPredicate<CmpPredicateOperandMatcher>(std::string(PredType));
                    --NumChildren;
        }
      }
    }
                        if (IsAtomic && SrcGIOrNull->TheDef->getName() == "G_STORE") {
      assert(NumChildren == 2 && "wrong operands for atomic store");
      TreePatternNode *PtrChild = Src->getChild(0);
      TreePatternNode *ValueChild = Src->getChild(1);
      if (auto Error = importChildMatcher(Rule, InsnMatcher, PtrChild, true,
                                          false, 1, TempOpIdx))
        return std::move(Error);
      if (auto Error = importChildMatcher(Rule, InsnMatcher, ValueChild, false,
                                          false, 0, TempOpIdx))
        return std::move(Error);
      return InsnMatcher;
    }
        bool IsIntrinsic =
        SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
        SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS";
    const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP);
    if (IsIntrinsic && !II)
      return failedImport("Expected IntInit containing intrinsic ID)");
    for (unsigned i = 0; i != NumChildren; ++i) {
      TreePatternNode *SrcChild = Src->getChild(i);
                                                bool OperandIsImmArg = SrcGIOrNull->isOperandImmArg(i);
                              bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
      if (IsIntrinsic) {
                        if (i == 0) {
          OperandMatcher &OM =
              InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
          OM.addPredicate<IntrinsicIDOperandMatcher>(II);
          continue;
        }
                                        OperandIsAPointer |= II->isParamAPointer(i - 1);
        OperandIsImmArg |= II->isParamImmArg(i - 1);
      }
      if (auto Error =
              importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
                                 OperandIsImmArg, OpIdx++, TempOpIdx))
        return std::move(Error);
    }
  }
  return InsnMatcher;
}
Error GlobalISelEmitter::importComplexPatternOperandMatcher(
    OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
  const auto &ComplexPattern = ComplexPatternEquivs.find(R);
  if (ComplexPattern == ComplexPatternEquivs.end())
    return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
                        ") not mapped to GlobalISel");
  OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
  TempOpIdx++;
  return Error::success();
}
static StringRef getSrcChildName(const TreePatternNode *SrcChild,
                                 Record *&PhysReg) {
  StringRef SrcChildName = SrcChild->getName();
  if (SrcChildName.empty() && SrcChild->isLeaf()) {
    if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
      auto *ChildRec = ChildDefInit->getDef();
      if (ChildRec->isSubClassOf("Register")) {
        SrcChildName = ChildRec->getName();
        PhysReg = ChildRec;
      }
    }
  }
  return SrcChildName;
}
Error GlobalISelEmitter::importChildMatcher(
    RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
    const TreePatternNode *SrcChild, bool OperandIsAPointer,
    bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) {
  Record *PhysReg = nullptr;
  std::string SrcChildName = std::string(getSrcChildName(SrcChild, PhysReg));
  if (!SrcChild->isLeaf() &&
      SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
            std::string PatternName = std::string(SrcChild->getOperator()->getName());
    for (unsigned i = 0; i < SrcChild->getNumChildren(); ++i) {
      PatternName += ":";
      PatternName += SrcChild->getChild(i)->getName();
    }
    SrcChildName = PatternName;
  }
  OperandMatcher &OM =
      PhysReg ? InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx)
              : InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx);
  if (OM.isSameAsAnotherOperand())
    return Error::success();
  ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
  if (ChildTypes.size() != 1)
    return failedImport("Src pattern child has multiple results");
    if (!SrcChild->isLeaf()) {
    if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
      auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
      if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
        OM.addPredicate<MBBOperandMatcher>();
        return Error::success();
      }
      if (SrcChild->getOperator()->getName() == "timm") {
        OM.addPredicate<ImmOperandMatcher>();
                for (const TreePredicateCall &Call : SrcChild->getPredicateCalls()) {
          const TreePredicateFn &Predicate = Call.Fn;
                    if (Predicate.isImmediatePattern()) {
            OM.addPredicate<OperandImmPredicateMatcher>(Predicate);
          }
        }
        return Error::success();
      }
    }
  }
      if (!OperandIsImmArg) {
    if (auto Error =
            OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
      return failedImport(toString(std::move(Error)) + " for Src operand (" +
                          to_string(*SrcChild) + ")");
  }
    if (!SrcChild->isLeaf()) {
    if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
                              unsigned RendererID = TempOpIdx;
      if (auto Error = importComplexPatternOperandMatcher(
              OM, SrcChild->getOperator(), TempOpIdx))
        return Error;
      for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
        auto *SubOperand = SrcChild->getChild(i);
        if (!SubOperand->getName().empty()) {
          if (auto Error = Rule.defineComplexSubOperand(
                  SubOperand->getName(), SrcChild->getOperator(), RendererID, i,
                  SrcChildName))
            return Error;
        }
      }
      return Error::success();
    }
    auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
        InsnMatcher.getRuleMatcher(), SrcChild->getName());
    if (!MaybeInsnOperand) {
                        return failedImport("Nested instruction cannot be the same as another operand");
    }
        InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
    auto InsnMatcherOrError = createAndImportSelDAGMatcher(
        Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
    if (auto Error = InsnMatcherOrError.takeError())
      return Error;
    return Error::success();
  }
  if (SrcChild->hasAnyPredicate())
    return failedImport("Src pattern child has unsupported predicate");
    if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
    if (OperandIsImmArg) {
            OM.addPredicate<LiteralIntOperandMatcher>(ChildInt->getValue());
    } else {
            OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
    }
    return Error::success();
  }
    if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
    auto *ChildRec = ChildDefInit->getDef();
    if (WaitingForNamedOperands) {
      auto PA = SrcChild->getNamesAsPredicateArg().begin();
      std::string Name = getScopedName(PA->getScope(), PA->getIdentifier());
      OM.addPredicate<RecordNamedOperandMatcher>(StoreIdxForName[Name], Name);
      --WaitingForNamedOperands;
    }
        if (ChildRec->isSubClassOf("RegisterClass") ||
        ChildRec->isSubClassOf("RegisterOperand")) {
      OM.addPredicate<RegisterBankOperandMatcher>(
          Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
      return Error::success();
    }
    if (ChildRec->isSubClassOf("Register")) {
            ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode();
      const CodeGenRegisterClass *RC
        = CGRegs.getMinimalPhysRegClass(ChildRec, &VT);
      if (!RC) {
        return failedImport(
          "Could not determine physical register class of pattern source");
      }
      OM.addPredicate<RegisterBankOperandMatcher>(*RC);
      return Error::success();
    }
        if (ChildRec->isSubClassOf("ValueType")) {
                  return Error::success();
    }
        if (ChildRec->isSubClassOf("ComplexPattern"))
      return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
    if (ChildRec->isSubClassOf("ImmLeaf")) {
      return failedImport(
          "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
    }
        if (ChildRec->getName() == "srcvalue")
      return Error::success();
    const bool ImmAllOnesV = ChildRec->getName() == "immAllOnesV";
    if (ImmAllOnesV || ChildRec->getName() == "immAllZerosV") {
      auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
          InsnMatcher.getRuleMatcher(), SrcChild->getName(), false);
      InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
      ValueTypeByHwMode VTy = ChildTypes.front().getValueTypeByHwMode();
      const CodeGenInstruction &BuildVector
        = Target.getInstruction(RK.getDef("G_BUILD_VECTOR"));
      const CodeGenInstruction &BuildVectorTrunc
        = Target.getInstruction(RK.getDef("G_BUILD_VECTOR_TRUNC"));
                  InsnOperand.getInsnMatcher().addPredicate<InstructionOpcodeMatcher>(
      makeArrayRef({&BuildVector, &BuildVectorTrunc}));
                        OperandMatcher &OM =
          InsnOperand.getInsnMatcher().addOperand(0, "", TempOpIdx);
      if (auto Error =
              OM.addTypeCheckPredicate(VTy, false ))
        return failedImport(toString(std::move(Error)) +
                            " for result of Src pattern operator");
      InsnOperand.getInsnMatcher().addPredicate<VectorSplatImmPredicateMatcher>(
          ImmAllOnesV ? VectorSplatImmPredicateMatcher::AllOnes
                      : VectorSplatImmPredicateMatcher::AllZeros);
      return Error::success();
    }
    return failedImport(
        "Src pattern child def is an unsupported tablegen class");
  }
  return failedImport("Src pattern child is an unsupported kind");
}
Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
    action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
    TreePatternNode *DstChild) {
  const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
  if (SubOperand) {
    DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
        *std::get<0>(*SubOperand), DstChild->getName(),
        std::get<1>(*SubOperand), std::get<2>(*SubOperand));
    return InsertPt;
  }
  if (!DstChild->isLeaf()) {
    if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
      auto Child = DstChild->getChild(0);
      auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
      if (I != SDNodeXFormEquivs.end()) {
        Record *XFormOpc = DstChild->getOperator()->getValueAsDef("Opcode");
        if (XFormOpc->getName() == "timm") {
                                        DstMIBuilder.addRenderer<CustomOperandRenderer>(*I->second,
                                                          Child->getName());
        } else {
          DstMIBuilder.addRenderer<CustomRenderer>(*I->second,
                                                   Child->getName());
        }
        return InsertPt;
      }
      return failedImport("SDNodeXForm " + Child->getName() +
                          " has no custom renderer");
    }
            if (DstChild->getOperator()->isSubClassOf("SDNode")) {
      auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
      if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
        DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
        return InsertPt;
      }
    }
                    if (DstChild->getOperator()->getName() == "timm") {
      DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
      return InsertPt;
    } else if (DstChild->getOperator()->getName() == "imm") {
      DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
      return InsertPt;
    } else if (DstChild->getOperator()->getName() == "fpimm") {
      DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
          DstChild->getName());
      return InsertPt;
    }
    if (DstChild->getOperator()->isSubClassOf("Instruction")) {
      auto OpTy = getInstResultType(DstChild);
      if (!OpTy)
        return OpTy.takeError();
      unsigned TempRegID = Rule.allocateTempRegID();
      InsertPt = Rule.insertAction<MakeTempRegisterAction>(
          InsertPt, *OpTy, TempRegID);
      DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
      auto InsertPtOrError = createAndImportSubInstructionRenderer(
          ++InsertPt, Rule, DstChild, TempRegID);
      if (auto Error = InsertPtOrError.takeError())
        return std::move(Error);
      return InsertPtOrError.get();
    }
    return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
  }
      if (const IntInit *ChildIntInit =
          dyn_cast<IntInit>(DstChild->getLeafValue())) {
    DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
    return InsertPt;
  }
    if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
    auto *ChildRec = ChildDefInit->getDef();
    ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
    if (ChildTypes.size() != 1)
      return failedImport("Dst pattern child has multiple results");
    Optional<LLTCodeGen> OpTyOrNone = None;
    if (ChildTypes.front().isMachineValueType())
      OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
    if (!OpTyOrNone)
      return failedImport("Dst operand has an unsupported type");
    if (ChildRec->isSubClassOf("Register")) {
      DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, ChildRec);
      return InsertPt;
    }
    if (ChildRec->isSubClassOf("RegisterClass") ||
        ChildRec->isSubClassOf("RegisterOperand") ||
        ChildRec->isSubClassOf("ValueType")) {
      if (ChildRec->isSubClassOf("RegisterOperand") &&
          !ChildRec->isValueUnset("GIZeroRegister")) {
        DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
            DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
        return InsertPt;
      }
      DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
      return InsertPt;
    }
    if (ChildRec->isSubClassOf("SubRegIndex")) {
      CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec);
      DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue);
      return InsertPt;
    }
    if (ChildRec->isSubClassOf("ComplexPattern")) {
      const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
      if (ComplexPattern == ComplexPatternEquivs.end())
        return failedImport(
            "SelectionDAG ComplexPattern not mapped to GlobalISel");
      const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
      DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
          *ComplexPattern->second, DstChild->getName(),
          OM.getAllocatedTemporariesBaseID());
      return InsertPt;
    }
    return failedImport(
        "Dst pattern child def is an unsupported tablegen class");
  }
  return failedImport("Dst pattern child is an unsupported kind");
}
Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
    RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src,
    const TreePatternNode *Dst) {
  auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
  if (auto Error = InsertPtOrError.takeError())
    return std::move(Error);
  action_iterator InsertPt = InsertPtOrError.get();
  BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
  for (auto PhysInput : InsnMatcher.getPhysRegInputs()) {
    InsertPt = M.insertAction<BuildMIAction>(
        InsertPt, M.allocateOutputInsnID(),
        &Target.getInstruction(RK.getDef("COPY")));
    BuildMIAction &CopyToPhysRegMIBuilder =
        *static_cast<BuildMIAction *>(InsertPt->get());
    CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(Target,
                                                            PhysInput.first,
                                                            true);
    CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first);
  }
  if (auto Error = importExplicitDefRenderers(InsertPt, M, DstMIBuilder, Dst)
                       .takeError())
    return std::move(Error);
  if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
                       .takeError())
    return std::move(Error);
  return DstMIBuilder;
}
Expected<action_iterator>
GlobalISelEmitter::createAndImportSubInstructionRenderer(
    const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
    unsigned TempRegID) {
  auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
  
  if (auto Error = InsertPtOrError.takeError())
    return std::move(Error);
  BuildMIAction &DstMIBuilder =
      *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
    DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
  InsertPtOrError =
      importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
  if (auto Error = InsertPtOrError.takeError())
    return std::move(Error);
        auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName();
  if (OpName == "INSERT_SUBREG") {
    auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
    if (!SubClass)
      return failedImport(
          "Cannot infer register class from INSERT_SUBREG operand #1");
    Optional<const CodeGenRegisterClass *> SuperClass =
        inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0),
                                       Dst->getChild(2));
    if (!SuperClass)
      return failedImport(
          "Cannot infer register class for INSERT_SUBREG operand #0");
            M.insertAction<ConstrainOperandToRegClassAction>(
        InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
    M.insertAction<ConstrainOperandToRegClassAction>(
        InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass);
    M.insertAction<ConstrainOperandToRegClassAction>(
        InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
    return InsertPtOrError.get();
  }
  if (OpName == "EXTRACT_SUBREG") {
                    auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
    if (!SuperClass)
      return failedImport(
        "Cannot infer register class from EXTRACT_SUBREG operand #0");
    auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
    if (!SubIdx)
      return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
    const auto SrcRCDstRCPair =
      (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
    assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
    M.insertAction<ConstrainOperandToRegClassAction>(
      InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second);
    M.insertAction<ConstrainOperandToRegClassAction>(
      InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first);
            return InsertPtOrError.get();
  }
      if (OpName == "SUBREG_TO_REG") {
    auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
    if (!SubClass)
      return failedImport(
        "Cannot infer register class from SUBREG_TO_REG child #1");
    auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0),
                                              Dst->getChild(2));
    if (!SuperClass)
      return failedImport(
        "Cannot infer register class for SUBREG_TO_REG operand #0");
    M.insertAction<ConstrainOperandToRegClassAction>(
      InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
    M.insertAction<ConstrainOperandToRegClassAction>(
      InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
    return InsertPtOrError.get();
  }
  if (OpName == "REG_SEQUENCE") {
    auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
    M.insertAction<ConstrainOperandToRegClassAction>(
      InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
    unsigned Num = Dst->getNumChildren();
    for (unsigned I = 1; I != Num; I += 2) {
      TreePatternNode *SubRegChild = Dst->getChild(I + 1);
      auto SubIdx = inferSubRegIndexForNode(SubRegChild);
      if (!SubIdx)
        return failedImport("REG_SEQUENCE child is not a subreg index");
      const auto SrcRCDstRCPair =
        (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
      assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
      M.insertAction<ConstrainOperandToRegClassAction>(
        InsertPt, DstMIBuilder.getInsnID(), I, *SrcRCDstRCPair->second);
    }
    return InsertPtOrError.get();
  }
  M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
                                                      DstMIBuilder.getInsnID());
  return InsertPtOrError.get();
}
Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
    action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
  Record *DstOp = Dst->getOperator();
  if (!DstOp->isSubClassOf("Instruction")) {
    if (DstOp->isSubClassOf("ValueType"))
      return failedImport(
          "Pattern operator isn't an instruction (it's a ValueType)");
    return failedImport("Pattern operator isn't an instruction");
  }
  CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
      StringRef Name = DstI->TheDef->getName();
  if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG")
    DstI = &Target.getInstruction(RK.getDef("COPY"));
  return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
                                       DstI);
}
Expected<action_iterator> GlobalISelEmitter::importExplicitDefRenderers(
    action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
    const TreePatternNode *Dst) {
  const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
  const unsigned NumDefs = DstI->Operands.NumDefs;
  if (NumDefs == 0)
    return InsertPt;
  DstMIBuilder.addRenderer<CopyRenderer>(DstI->Operands[0].Name);
      if (Dst->getExtTypes().size() < NumDefs)
    return failedImport("unhandled discarded def");
      for (unsigned I = 1; I < NumDefs; ++I) {
    const TypeSetByHwMode &ExtTy = Dst->getExtType(I);
    if (!ExtTy.isMachineValueType())
      return failedImport("unsupported typeset");
    auto OpTy = MVTToLLT(ExtTy.getMachineValueType().SimpleTy);
    if (!OpTy)
      return failedImport("unsupported type");
    unsigned TempRegID = M.allocateTempRegID();
    InsertPt =
      M.insertAction<MakeTempRegisterAction>(InsertPt, *OpTy, TempRegID);
    DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true, nullptr, true);
  }
  return InsertPt;
}
Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
    action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
    const llvm::TreePatternNode *Dst) {
  const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
  CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
  StringRef Name = OrigDstI->TheDef->getName();
  unsigned ExpectedDstINumUses = Dst->getNumChildren();
    if (Name == "EXTRACT_SUBREG") {
    if (!Dst->getChild(1)->isLeaf())
      return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
    DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
    if (!SubRegInit)
      return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
    CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
    TreePatternNode *ValChild = Dst->getChild(0);
    if (!ValChild->isLeaf()) {
                  auto ExtractSrcTy = getInstResultType(ValChild);
      if (!ExtractSrcTy)
        return ExtractSrcTy.takeError();
      unsigned TempRegID = M.allocateTempRegID();
      InsertPt = M.insertAction<MakeTempRegisterAction>(
        InsertPt, *ExtractSrcTy, TempRegID);
      auto InsertPtOrError = createAndImportSubInstructionRenderer(
        ++InsertPt, M, ValChild, TempRegID);
      if (auto Error = InsertPtOrError.takeError())
        return std::move(Error);
      DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, false, SubIdx);
      return InsertPt;
    }
        Record *RCDef = getInitValueAsRegClass(ValChild->getLeafValue());
    if (!RCDef)
      return failedImport("EXTRACT_SUBREG child #0 could not "
                          "be coerced to a register class");
    CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
    const auto SrcRCDstRCPair =
      RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
    if (SrcRCDstRCPair) {
      assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
      if (SrcRCDstRCPair->first != RC)
        return failedImport("EXTRACT_SUBREG requires an additional COPY");
    }
    DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
                                                 SubIdx);
    return InsertPt;
  }
  if (Name == "REG_SEQUENCE") {
    if (!Dst->getChild(0)->isLeaf())
      return failedImport("REG_SEQUENCE child #0 is not a leaf");
    Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
    if (!RCDef)
      return failedImport("REG_SEQUENCE child #0 could not "
                          "be coerced to a register class");
    if ((ExpectedDstINumUses - 1) % 2 != 0)
      return failedImport("Malformed REG_SEQUENCE");
    for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) {
      TreePatternNode *ValChild = Dst->getChild(I);
      TreePatternNode *SubRegChild = Dst->getChild(I + 1);
      if (DefInit *SubRegInit =
              dyn_cast<DefInit>(SubRegChild->getLeafValue())) {
        CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
        auto InsertPtOrError =
            importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild);
        if (auto Error = InsertPtOrError.takeError())
          return std::move(Error);
        InsertPt = InsertPtOrError.get();
        DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx);
      }
    }
    return InsertPt;
  }
    unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
  if (Name == "COPY_TO_REGCLASS") {
    DstINumUses--;     ExpectedDstINumUses--;
  }
      unsigned NumResults = OrigDstI->Operands.NumDefs;
      unsigned NumFixedOperands = DstI->Operands.size();
              unsigned Child = 0;
              unsigned NonOverridableOperands = NumFixedOperands;
  while (NonOverridableOperands > NumResults &&
         CGP.operandHasDefault(DstI->Operands[NonOverridableOperands - 1].Rec))
    --NonOverridableOperands;
  unsigned NumDefaultOps = 0;
  for (unsigned I = 0; I != DstINumUses; ++I) {
    unsigned InstOpNo = DstI->Operands.NumDefs + I;
        Record *OperandNode = DstI->Operands[InstOpNo].Rec;
        if (CGP.operandHasDefault(OperandNode) &&
        (InstOpNo < NonOverridableOperands || Child >= Dst->getNumChildren())) {
                  
      const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[InstOpNo];
      DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
      if (auto Error = importDefaultOperandRenderers(
            InsertPt, M, DstMIBuilder, DefaultOps))
        return std::move(Error);
      ++NumDefaultOps;
      continue;
    }
    auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
                                                     Dst->getChild(Child));
    if (auto Error = InsertPtOrError.takeError())
      return std::move(Error);
    InsertPt = InsertPtOrError.get();
    ++Child;
  }
  if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
    return failedImport("Expected " + llvm::to_string(DstINumUses) +
                        " used operands but found " +
                        llvm::to_string(ExpectedDstINumUses) +
                        " explicit ones and " + llvm::to_string(NumDefaultOps) +
                        " default ones");
  return InsertPt;
}
Error GlobalISelEmitter::importDefaultOperandRenderers(
    action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
    DagInit *DefaultOps) const {
  for (const auto *DefaultOp : DefaultOps->getArgs()) {
    Optional<LLTCodeGen> OpTyOrNone = None;
        if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
      if (const DefInit *DefaultDagOperator =
              dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
        if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) {
          OpTyOrNone = MVTToLLT(getValueType(
                                  DefaultDagOperator->getDef()));
          DefaultOp = DefaultDagOp->getArg(0);
        }
      }
    }
    if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
      auto Def = DefaultDefOp->getDef();
      if (Def->getName() == "undef_tied_input") {
        unsigned TempRegID = M.allocateTempRegID();
        M.insertAction<MakeTempRegisterAction>(InsertPt, OpTyOrNone.value(),
                                               TempRegID);
        InsertPt = M.insertAction<BuildMIAction>(
          InsertPt, M.allocateOutputInsnID(),
          &Target.getInstruction(RK.getDef("IMPLICIT_DEF")));
        BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>(
          InsertPt->get());
        IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
        DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
      } else {
        DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, Def);
      }
      continue;
    }
    if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
      DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
      continue;
    }
    return failedImport("Could not add default op");
  }
  return Error::success();
}
Error GlobalISelEmitter::importImplicitDefRenderers(
    BuildMIAction &DstMIBuilder,
    const std::vector<Record *> &ImplicitDefs) const {
  if (!ImplicitDefs.empty())
    return failedImport("Pattern defines a physical register");
  return Error::success();
}
Optional<const CodeGenRegisterClass *>
GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) {
  assert(Leaf && "Expected node?");
  assert(Leaf->isLeaf() && "Expected leaf?");
  Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue());
  if (!RCRec)
    return None;
  CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec);
  if (!RC)
    return None;
  return RC;
}
Optional<const CodeGenRegisterClass *>
GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) {
  if (!N)
    return None;
  if (N->isLeaf())
    return getRegClassFromLeaf(N);
    
    if (N->getNumTypes() != 1)
    return None;
  Record *OpRec = N->getOperator();
    if (!OpRec->isSubClassOf("Instruction"))
    return None;
      auto &Inst = Target.getInstruction(OpRec);
  if (Inst.Operands.NumDefs > 1)
    return None;
      StringRef InstName = Inst.TheDef->getName();
  bool IsRegSequence = InstName == "REG_SEQUENCE";
  if (IsRegSequence || InstName == "COPY_TO_REGCLASS") {
            TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1);
    if (!RCChild->isLeaf())
      return None;
    return getRegClassFromLeaf(RCChild);
  }
  if (InstName == "INSERT_SUBREG") {
    TreePatternNode *Child0 = N->getChild(0);
    assert(Child0->getNumTypes() == 1 && "Unexpected number of types!");
    const TypeSetByHwMode &VTy = Child0->getExtType(0);
    return inferSuperRegisterClassForNode(VTy, Child0, N->getChild(2));
  }
  if (InstName == "EXTRACT_SUBREG") {
    assert(N->getNumTypes() == 1 && "Unexpected number of types!");
    const TypeSetByHwMode &VTy = N->getExtType(0);
    return inferSuperRegisterClass(VTy, N->getChild(1));
  }
      const auto &DstIOperand = Inst.Operands[0];
  Record *DstIOpRec = DstIOperand.Rec;
  if (DstIOpRec->isSubClassOf("RegisterOperand")) {
    DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
    const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
    return &RC;
  }
  if (DstIOpRec->isSubClassOf("RegisterClass")) {
    const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
    return &RC;
  }
  return None;
}
Optional<const CodeGenRegisterClass *>
GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty,
                                           TreePatternNode *SubRegIdxNode) {
  assert(SubRegIdxNode && "Expected subregister index node!");
    if (!Ty.isValueTypeByHwMode(false))
    return None;
  if (!SubRegIdxNode->isLeaf())
    return None;
  DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
  if (!SubRegInit)
    return None;
  CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
      auto RC =
      Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx,
                                   true);
  if (!RC)
    return None;
  return *RC;
}
Optional<const CodeGenRegisterClass *>
GlobalISelEmitter::inferSuperRegisterClassForNode(
    const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode,
    TreePatternNode *SubRegIdxNode) {
  assert(SuperRegNode && "Expected super register node!");
            if (Optional<const CodeGenRegisterClass *> SuperRegisterClass =
          inferRegClassFromPattern(SuperRegNode))
    return *SuperRegisterClass;
  return inferSuperRegisterClass(Ty, SubRegIdxNode);
}
Optional<CodeGenSubRegIndex *>
GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) {
  if (!SubRegIdxNode->isLeaf())
    return None;
  DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
  if (!SubRegInit)
    return None;
  return CGRegs.getSubRegIdx(SubRegInit->getDef());
}
Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
    int Score = P.getPatternComplexity(CGP);
  RuleMatcher M(P.getSrcRecord()->getLoc());
  RuleMatcherScores[M.getRuleID()] = Score;
  M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
                                  "  =>  " +
                                  llvm::to_string(*P.getDstPattern()));
  SmallVector<Record *, 4> Predicates;
  P.getPredicateRecords(Predicates);
  if (auto Error = importRulePredicates(M, Predicates))
    return std::move(Error);
    TreePatternNode *Src = P.getSrcPattern();
  TreePatternNode *Dst = P.getDstPattern();
    if (auto Err = isTrivialOperatorNode(Dst))
    return failedImport("Dst pattern root isn't a trivial operator (" +
                        toString(std::move(Err)) + ")");
  if (auto Err = isTrivialOperatorNode(Src))
    return failedImport("Src pattern root isn't a trivial operator (" +
                        toString(std::move(Err)) + ")");
                                            InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
  unsigned TempOpIdx = 0;
  auto InsnMatcherOrError =
      createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
  if (auto Error = InsnMatcherOrError.takeError())
    return std::move(Error);
  InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
  if (Dst->isLeaf()) {
    Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
    if (RCDef) {
      const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
                        auto &DstI = Target.getInstruction(RK.getDef("COPY"));
      const auto &DstIOperand = DstI.Operands[0];
      OperandMatcher &OM0 = InsnMatcher.getOperand(0);
      OM0.setSymbolicName(DstIOperand.Name);
      M.defineOperand(OM0.getSymbolicName(), OM0);
      OM0.addPredicate<RegisterBankOperandMatcher>(RC);
      auto &DstMIBuilder =
          M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
      DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
      DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
      M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
                  ++NumPatternImported;
      return std::move(M);
    }
    return failedImport("Dst pattern root isn't a known leaf");
  }
    Record *DstOp = Dst->getOperator();
  if (!DstOp->isSubClassOf("Instruction"))
    return failedImport("Pattern operator isn't an instruction");
  auto &DstI = Target.getInstruction(DstOp);
  StringRef DstIName = DstI.TheDef->getName();
  unsigned DstNumDefs = DstI.Operands.NumDefs,
           SrcNumDefs = Src->getExtTypes().size();
  if (DstNumDefs < SrcNumDefs) {
    if (DstNumDefs != 0)
      return failedImport("Src pattern result has more defs than dst MI (" +
                          to_string(SrcNumDefs) + " def(s) vs " +
                          to_string(DstNumDefs) + " def(s))");
    bool FoundNoUsePred = false;
    for (const auto &Pred : InsnMatcher.predicates()) {
      if ((FoundNoUsePred = isa<NoUsePredicateMatcher>(Pred.get())))
        break;
    }
    if (!FoundNoUsePred)
      return failedImport("Src pattern result has " + to_string(SrcNumDefs) +
                          " def(s) without the HasNoUse predicate set to true "
                          "but Dst MI has no def");
  }
      unsigned OpIdx = 0;
  unsigned N = std::min(DstNumDefs, SrcNumDefs);
  for (unsigned I = 0; I < N; ++I) {
    const TypeSetByHwMode &VTy = Src->getExtType(I);
    const auto &DstIOperand = DstI.Operands[OpIdx];
    Record *DstIOpRec = DstIOperand.Rec;
    if (DstIName == "COPY_TO_REGCLASS") {
      DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
      if (DstIOpRec == nullptr)
        return failedImport(
            "COPY_TO_REGCLASS operand #1 isn't a register class");
    } else if (DstIName == "REG_SEQUENCE") {
      DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
      if (DstIOpRec == nullptr)
        return failedImport("REG_SEQUENCE operand #0 isn't a register class");
    } else if (DstIName == "EXTRACT_SUBREG") {
      auto InferredClass = inferRegClassFromPattern(Dst->getChild(0));
      if (!InferredClass)
        return failedImport("Could not infer class for EXTRACT_SUBREG operand #0");
                  DstIOpRec = (*InferredClass)->getDef();
    } else if (DstIName == "INSERT_SUBREG") {
      auto MaybeSuperClass = inferSuperRegisterClassForNode(
          VTy, Dst->getChild(0), Dst->getChild(2));
      if (!MaybeSuperClass)
        return failedImport(
            "Cannot infer register class for INSERT_SUBREG operand #0");
                        OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
      OM.setSymbolicName(DstIOperand.Name);
      M.defineOperand(OM.getSymbolicName(), OM);
      OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass);
      ++OpIdx;
      continue;
    } else if (DstIName == "SUBREG_TO_REG") {
      auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2));
      if (!MaybeRegClass)
        return failedImport(
            "Cannot infer register class for SUBREG_TO_REG operand #0");
      OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
      OM.setSymbolicName(DstIOperand.Name);
      M.defineOperand(OM.getSymbolicName(), OM);
      OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass);
      ++OpIdx;
      continue;
    } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
      DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
    else if (!DstIOpRec->isSubClassOf("RegisterClass"))
      return failedImport("Dst MI def isn't a register class" +
                          to_string(*Dst));
    OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
    OM.setSymbolicName(DstIOperand.Name);
    M.defineOperand(OM.getSymbolicName(), OM);
    OM.addPredicate<RegisterBankOperandMatcher>(
        Target.getRegisterClass(DstIOpRec));
    ++OpIdx;
  }
  auto DstMIBuilderOrError =
      createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst);
  if (auto Error = DstMIBuilderOrError.takeError())
    return std::move(Error);
  BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
      if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
    return std::move(Error);
  DstMIBuilder.chooseInsnToMutate(M);
      if (DstIName == "COPY_TO_REGCLASS") {
            Record *DstIOpRec =
        getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
    if (DstIOpRec == nullptr)
      return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
    M.addAction<ConstrainOperandToRegClassAction>(
        0, 0, Target.getRegisterClass(DstIOpRec));
            ++NumPatternImported;
    return std::move(M);
  }
  if (DstIName == "EXTRACT_SUBREG") {
    auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
    if (!SuperClass)
      return failedImport(
        "Cannot infer register class from EXTRACT_SUBREG operand #0");
    auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
    if (!SubIdx)
      return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
                            assert(Src->getExtTypes().size() == 1 &&
             "Expected Src of EXTRACT_SUBREG to have one result type");
    const auto SrcRCDstRCPair =
      (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
    if (!SrcRCDstRCPair) {
      return failedImport("subreg index is incompatible "
                          "with inferred reg class");
    }
    assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
    M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
    M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
            ++NumPatternImported;
    return std::move(M);
  }
  if (DstIName == "INSERT_SUBREG") {
    assert(Src->getExtTypes().size() == 1 &&
           "Expected Src of INSERT_SUBREG to have one result type");
            auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
    if (!SubClass)
      return failedImport(
          "Cannot infer register class from INSERT_SUBREG operand #1");
    auto SuperClass = inferSuperRegisterClassForNode(
        Src->getExtType(0), Dst->getChild(0), Dst->getChild(2));
    if (!SuperClass)
      return failedImport(
          "Cannot infer register class for INSERT_SUBREG operand #0");
    M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
    M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass);
    M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
    ++NumPatternImported;
    return std::move(M);
  }
  if (DstIName == "SUBREG_TO_REG") {
        assert(Src->getExtTypes().size() == 1 &&
           "Expected Src of SUBREG_TO_REG to have one result type");
                auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
    if (!SubClass)
      return failedImport(
          "Cannot infer register class from SUBREG_TO_REG child #1");
        auto SuperClass =
        inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2));
    if (!SuperClass)
      return failedImport(
          "Cannot infer register class for SUBREG_TO_REG operand #0");
    M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
    M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
    ++NumPatternImported;
    return std::move(M);
  }
  if (DstIName == "REG_SEQUENCE") {
    auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
    M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
    unsigned Num = Dst->getNumChildren();
    for (unsigned I = 1; I != Num; I += 2) {
      TreePatternNode *SubRegChild = Dst->getChild(I + 1);
      auto SubIdx = inferSubRegIndexForNode(SubRegChild);
      if (!SubIdx)
        return failedImport("REG_SEQUENCE child is not a subreg index");
      const auto SrcRCDstRCPair =
        (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
      M.addAction<ConstrainOperandToRegClassAction>(0, I,
                                                    *SrcRCDstRCPair->second);
    }
    ++NumPatternImported;
    return std::move(M);
  }
  M.addAction<ConstrainOperandsToDefinitionAction>(0);
    ++NumPatternImported;
  return std::move(M);
}
void GlobalISelEmitter::emitCxxPredicateFns(
    raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier,
    StringRef ArgType, StringRef ArgName, StringRef AdditionalArgs,
    StringRef AdditionalDeclarations,
    std::function<bool(const Record *R)> Filter) {
  std::vector<const Record *> MatchedRecords;
  const auto &Defs = RK.getAllDerivedDefinitions("PatFrags");
  std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
               [&](Record *Record) {
                 return !Record->getValueAsString(CodeFieldName).empty() &&
                        Filter(Record);
               });
  if (!MatchedRecords.empty()) {
    OS << "// PatFrag predicates.\n"
       << "enum {\n";
    std::string EnumeratorSeparator =
        (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
    for (const auto *Record : MatchedRecords) {
      OS << "  GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
         << EnumeratorSeparator;
      EnumeratorSeparator = ",\n";
    }
    OS << "};\n";
  }
  OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName
     << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " "
     << ArgName << AdditionalArgs <<") const {\n"
     << AdditionalDeclarations;
  if (!AdditionalDeclarations.empty())
    OS << "\n";
  if (!MatchedRecords.empty())
    OS << "  switch (PredicateID) {\n";
  for (const auto *Record : MatchedRecords) {
    OS << "  case GIPFP_" << TypeIdentifier << "_Predicate_"
       << Record->getName() << ": {\n"
       << "    " << Record->getValueAsString(CodeFieldName) << "\n"
       << "    llvm_unreachable(\"" << CodeFieldName
       << " should have returned\");\n"
       << "    return false;\n"
       << "  }\n";
  }
  if (!MatchedRecords.empty())
    OS << "  }\n";
  OS << "  llvm_unreachable(\"Unknown predicate\");\n"
     << "  return false;\n"
     << "}\n";
}
void GlobalISelEmitter::emitImmPredicateFns(
    raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType,
    std::function<bool(const Record *R)> Filter) {
  return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType,
                             "Imm", "", "", Filter);
}
void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) {
  return emitCxxPredicateFns(
      OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
      ", const std::array<const MachineOperand *, 3> &Operands",
      "  const MachineFunction &MF = *MI.getParent()->getParent();\n"
      "  const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
      "  (void)MRI;",
      [](const Record *R) { return true; });
}
template <class GroupT>
std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
    ArrayRef<Matcher *> Rules,
    std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
  std::vector<Matcher *> OptRules;
  std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>();
  assert(CurrentGroup->empty() && "Newly created group isn't empty!");
  unsigned NumGroups = 0;
  auto ProcessCurrentGroup = [&]() {
    if (CurrentGroup->empty())
            return;
                if (CurrentGroup->size() < 2)
      append_range(OptRules, CurrentGroup->matchers());
    else {
      CurrentGroup->finalize();
      OptRules.push_back(CurrentGroup.get());
      MatcherStorage.emplace_back(std::move(CurrentGroup));
      ++NumGroups;
    }
    CurrentGroup = std::make_unique<GroupT>();
  };
  for (Matcher *Rule : Rules) {
        if (CurrentGroup->addMatcher(*Rule))
      continue;
    ProcessCurrentGroup();
    assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");
        if (!CurrentGroup->addMatcher(*Rule))
                  OptRules.push_back(Rule);
  }
  ProcessCurrentGroup();
  LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
  (void) NumGroups;
  assert(CurrentGroup->empty() && "The last group wasn't properly processed");
  return OptRules;
}
MatchTable
GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
                                   bool Optimize, bool WithCoverage) {
  std::vector<Matcher *> InputRules;
  for (Matcher &Rule : Rules)
    InputRules.push_back(&Rule);
  if (!Optimize)
    return MatchTable::buildTable(InputRules, WithCoverage);
  unsigned CurrentOrdering = 0;
  StringMap<unsigned> OpcodeOrder;
  for (RuleMatcher &Rule : Rules) {
    const StringRef Opcode = Rule.getOpcode();
    assert(!Opcode.empty() && "Didn't expect an undefined opcode");
    if (OpcodeOrder.count(Opcode) == 0)
      OpcodeOrder[Opcode] = CurrentOrdering++;
  }
  llvm::stable_sort(InputRules, [&OpcodeOrder](const Matcher *A,
                                               const Matcher *B) {
    auto *L = static_cast<const RuleMatcher *>(A);
    auto *R = static_cast<const RuleMatcher *>(B);
    return std::make_tuple(OpcodeOrder[L->getOpcode()], L->getNumOperands()) <
           std::make_tuple(OpcodeOrder[R->getOpcode()], R->getNumOperands());
  });
  for (Matcher *Rule : InputRules)
    Rule->optimize();
  std::vector<std::unique_ptr<Matcher>> MatcherStorage;
  std::vector<Matcher *> OptRules =
      optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
  for (Matcher *Rule : OptRules)
    Rule->optimize();
  OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);
  return MatchTable::buildTable(OptRules, WithCoverage);
}
void GroupMatcher::optimize() {
      auto F = Matchers.begin();
  auto T = F;
  auto E = Matchers.end();
  while (T != E) {
    while (T != E) {
      auto *R = static_cast<RuleMatcher *>(*T);
      if (!R->getFirstConditionAsRootType().get().isValid())
        break;
      ++T;
    }
    std::stable_sort(F, T, [](Matcher *A, Matcher *B) {
      auto *L = static_cast<RuleMatcher *>(A);
      auto *R = static_cast<RuleMatcher *>(B);
      return L->getFirstConditionAsRootType() <
             R->getFirstConditionAsRootType();
    });
    if (T != E)
      F = ++T;
  }
  GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage)
      .swap(Matchers);
  GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage)
      .swap(Matchers);
}
void GlobalISelEmitter::run(raw_ostream &OS) {
  if (!UseCoverageFile.empty()) {
    RuleCoverage = CodeGenCoverage();
    auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
    if (!RuleCoverageBufOrErr) {
      PrintWarning(SMLoc(), "Missing rule coverage data");
      RuleCoverage = None;
    } else {
      if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
        PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
        RuleCoverage = None;
      }
    }
  }
    gatherOpcodeValues();
    gatherTypeIDValues();
    gatherNodeEquivs();
  emitSourceFileHeader(("Global Instruction Selector for the " +
                       Target.getName() + " target").str(), OS);
  std::vector<RuleMatcher> Rules;
    for (const PatternToMatch &Pat : CGP.ptms()) {
    ++NumPatternTotal;
    auto MatcherOrErr = runOnPattern(Pat);
            if (auto Err = MatcherOrErr.takeError()) {
      if (WarnOnSkippedPatterns) {
        PrintWarning(Pat.getSrcRecord()->getLoc(),
                     "Skipped pattern: " + toString(std::move(Err)));
      } else {
        consumeError(std::move(Err));
      }
      ++NumPatternImportsSkipped;
      continue;
    }
    if (RuleCoverage) {
      if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
        ++NumPatternsTested;
      else
        PrintWarning(Pat.getSrcRecord()->getLoc(),
                     "Pattern is not covered by a test");
    }
    Rules.push_back(std::move(MatcherOrErr.get()));
  }
    auto orderByName = [](const Record *A, const Record *B) {
    return A->getName() < B->getName();
  };
  std::vector<Record *> ComplexPredicates =
      RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
  llvm::sort(ComplexPredicates, orderByName);
  std::vector<StringRef> CustomRendererFns;
  transform(RK.getAllDerivedDefinitions("GICustomOperandRenderer"),
            std::back_inserter(CustomRendererFns), [](const auto &Record) {
              return Record->getValueAsString("RendererFn");
            });
      llvm::sort(CustomRendererFns);
  CustomRendererFns.erase(
      std::unique(CustomRendererFns.begin(), CustomRendererFns.end()),
      CustomRendererFns.end());
  unsigned MaxTemporaries = 0;
  for (const auto &Rule : Rules)
    MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
  OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
     << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
     << ";\n"
     << "using PredicateBitset = "
        "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
     << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
  OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
     << "  mutable MatcherState State;\n"
     << "  typedef "
        "ComplexRendererFns("
     << Target.getName()
     << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
     << "  typedef void(" << Target.getName()
     << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
        "MachineInstr &, int) "
        "const;\n"
     << "  const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
        "CustomRendererFn> "
        "ISelInfo;\n";
  OS << "  static " << Target.getName()
     << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
     << "  static " << Target.getName()
     << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
     << "  bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
        "override;\n"
     << "  bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
        "const override;\n"
     << "  bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
        "&Imm) const override;\n"
     << "  const int64_t *getMatchTable() const override;\n"
     << "  bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI"
        ", const std::array<const MachineOperand *, 3> &Operands) "
        "const override;\n"
     << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
  OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
     << ", State(" << MaxTemporaries << "),\n"
     << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
     << ", ComplexPredicateFns, CustomRenderers)\n"
     << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
  OS << "#ifdef GET_GLOBALISEL_IMPL\n";
  SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
                                                           OS);
    SubtargetFeatureInfoMap ModuleFeatures;
  std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
               std::inserter(ModuleFeatures, ModuleFeatures.end()),
               [](const SubtargetFeatureInfoMap::value_type &X) {
                 return !X.second.mustRecomputePerFunction();
               });
  SubtargetFeatureInfoMap FunctionFeatures;
  std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
               std::inserter(FunctionFeatures, FunctionFeatures.end()),
               [](const SubtargetFeatureInfoMap::value_type &X) {
                 return X.second.mustRecomputePerFunction();
               });
  SubtargetFeatureInfo::emitComputeAvailableFeatures(
    Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
      ModuleFeatures, OS);
  OS << "void " << Target.getName() << "InstructionSelector"
    "::setupGeneratedPerFunctionState(MachineFunction &MF) {\n"
    "  AvailableFunctionFeatures = computeAvailableFunctionFeatures("
    "(const " << Target.getName() << "Subtarget *)&MF.getSubtarget(), &MF);\n"
    "}\n";
  SubtargetFeatureInfo::emitComputeAvailableFeatures(
      Target.getName(), "InstructionSelector",
      "computeAvailableFunctionFeatures", FunctionFeatures, OS,
      "const MachineFunction *MF");
      std::vector<LLTCodeGen> TypeObjects;
  append_range(TypeObjects, KnownTypes);
  llvm::sort(TypeObjects);
  OS << "// LLT Objects.\n"
     << "enum {\n";
  for (const auto &TypeObject : TypeObjects) {
    OS << "  ";
    TypeObject.emitCxxEnumValue(OS);
    OS << ",\n";
  }
  OS << "};\n";
  OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
     << "const static LLT TypeObjects[] = {\n";
  for (const auto &TypeObject : TypeObjects) {
    OS << "  ";
    TypeObject.emitCxxConstructorCall(OS);
    OS << ",\n";
  }
  OS << "};\n\n";
      std::vector<std::vector<Record *>> FeatureBitsets;
  for (auto &Rule : Rules)
    FeatureBitsets.push_back(Rule.getRequiredFeatures());
  llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
                                 const std::vector<Record *> &B) {
    if (A.size() < B.size())
      return true;
    if (A.size() > B.size())
      return false;
    for (auto Pair : zip(A, B)) {
      if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
        return true;
      if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
        return false;
    }
    return false;
  });
  FeatureBitsets.erase(
      std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
      FeatureBitsets.end());
  OS << "// Feature bitsets.\n"
     << "enum {\n"
     << "  GIFBS_Invalid,\n";
  for (const auto &FeatureBitset : FeatureBitsets) {
    if (FeatureBitset.empty())
      continue;
    OS << "  " << getNameForFeatureBitset(FeatureBitset) << ",\n";
  }
  OS << "};\n"
     << "const static PredicateBitset FeatureBitsets[] {\n"
     << "  {}, // GIFBS_Invalid\n";
  for (const auto &FeatureBitset : FeatureBitsets) {
    if (FeatureBitset.empty())
      continue;
    OS << "  {";
    for (const auto &Feature : FeatureBitset) {
      const auto &I = SubtargetFeatures.find(Feature);
      assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
      OS << I->second.getEnumBitName() << ", ";
    }
    OS << "},\n";
  }
  OS << "};\n\n";
    OS << "// ComplexPattern predicates.\n"
     << "enum {\n"
     << "  GICP_Invalid,\n";
  for (const auto &Record : ComplexPredicates)
    OS << "  GICP_" << Record->getName() << ",\n";
  OS << "};\n"
     << "// See constructor for table contents\n\n";
  emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) {
    bool Unset;
    return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
           !R->getValueAsBit("IsAPInt");
  });
  emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) {
    bool Unset;
    return R->getValueAsBitOrUnset("IsAPFloat", Unset);
  });
  emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) {
    return R->getValueAsBit("IsAPInt");
  });
  emitMIPredicateFns(OS);
  OS << "\n";
  OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
     << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
     << "  nullptr, // GICP_Invalid\n";
  for (const auto &Record : ComplexPredicates)
    OS << "  &" << Target.getName()
       << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
       << ", // " << Record->getName() << "\n";
  OS << "};\n\n";
  OS << "// Custom renderers.\n"
     << "enum {\n"
     << "  GICR_Invalid,\n";
  for (const auto &Fn : CustomRendererFns)
    OS << "  GICR_" << Fn << ",\n";
  OS << "};\n";
  OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
     << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
     << "  nullptr, // GICR_Invalid\n";
  for (const auto &Fn : CustomRendererFns)
    OS << "  &" << Target.getName() << "InstructionSelector::" << Fn << ",\n";
  OS << "};\n\n";
  llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) {
    int ScoreA = RuleMatcherScores[A.getRuleID()];
    int ScoreB = RuleMatcherScores[B.getRuleID()];
    if (ScoreA > ScoreB)
      return true;
    if (ScoreB > ScoreA)
      return false;
    if (A.isHigherPriorityThan(B)) {
      assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
                                           "and less important at "
                                           "the same time");
      return true;
    }
    return false;
  });
  OS << "bool " << Target.getName()
     << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
        "&CoverageInfo) const {\n"
     << "  MachineFunction &MF = *I.getParent()->getParent();\n"
     << "  MachineRegisterInfo &MRI = MF.getRegInfo();\n"
     << "  const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
     << "  NewMIVector OutMIs;\n"
     << "  State.MIs.clear();\n"
     << "  State.MIs.push_back(&I);\n\n"
     << "  if (executeMatchTable(*this, OutMIs, State, ISelInfo"
     << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
     << ", CoverageInfo)) {\n"
     << "    return true;\n"
     << "  }\n\n"
     << "  return false;\n"
     << "}\n\n";
  const MatchTable Table =
      buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
  OS << "const int64_t *" << Target.getName()
     << "InstructionSelector::getMatchTable() const {\n";
  Table.emitDeclaration(OS);
  OS << "  return ";
  Table.emitUse(OS);
  OS << ";\n}\n";
  OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
  OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
     << "PredicateBitset AvailableModuleFeatures;\n"
     << "mutable PredicateBitset AvailableFunctionFeatures;\n"
     << "PredicateBitset getAvailableFeatures() const {\n"
     << "  return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
     << "}\n"
     << "PredicateBitset\n"
     << "computeAvailableModuleFeatures(const " << Target.getName()
     << "Subtarget *Subtarget) const;\n"
     << "PredicateBitset\n"
     << "computeAvailableFunctionFeatures(const " << Target.getName()
     << "Subtarget *Subtarget,\n"
     << "                                 const MachineFunction *MF) const;\n"
     << "void setupGeneratedPerFunctionState(MachineFunction &MF) override;\n"
     << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
  OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
     << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
     << "AvailableFunctionFeatures()\n"
     << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
}
void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
  if (SubtargetFeatures.count(Predicate) == 0)
    SubtargetFeatures.emplace(
        Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
}
void RuleMatcher::optimize() {
  for (auto &Item : InsnVariableIDs) {
    InstructionMatcher &InsnMatcher = *Item.first;
    for (auto &OM : InsnMatcher.operands()) {
                                          for (auto &OP : OM->predicates())
        if (isa<ComplexPatternOperandMatcher>(OP))
          EpilogueMatchers.emplace_back(std::move(OP));
      OM->eraseNullPredicates();
    }
    InsnMatcher.optimize();
  }
  llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L,
                                  const std::unique_ptr<PredicateMatcher> &R) {
    return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
           std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
  });
}
bool RuleMatcher::hasFirstCondition() const {
  if (insnmatchers_empty())
    return false;
  InstructionMatcher &Matcher = insnmatchers_front();
  if (!Matcher.predicates_empty())
    return true;
  for (auto &OM : Matcher.operands())
    for (auto &OP : OM->predicates())
      if (!isa<InstructionOperandMatcher>(OP))
        return true;
  return false;
}
const PredicateMatcher &RuleMatcher::getFirstCondition() const {
  assert(!insnmatchers_empty() &&
         "Trying to get a condition from an empty RuleMatcher");
  InstructionMatcher &Matcher = insnmatchers_front();
  if (!Matcher.predicates_empty())
    return **Matcher.predicates_begin();
      for (auto &OM : Matcher.operands())
    for (auto &OP : OM->predicates())
      if (!isa<InstructionOperandMatcher>(OP))
        return *OP;
  llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
                   "no conditions");
}
std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
  assert(!insnmatchers_empty() &&
         "Trying to pop a condition from an empty RuleMatcher");
  InstructionMatcher &Matcher = insnmatchers_front();
  if (!Matcher.predicates_empty())
    return Matcher.predicates_pop_front();
      for (auto &OM : Matcher.operands())
    for (auto &OP : OM->predicates())
      if (!isa<InstructionOperandMatcher>(OP)) {
        std::unique_ptr<PredicateMatcher> Result = std::move(OP);
        OM->eraseNullPredicates();
        return Result;
      }
  llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
                   "no conditions");
}
bool GroupMatcher::candidateConditionMatches(
    const PredicateMatcher &Predicate) const {
  if (empty()) {
                if (Predicate.getInsnVarID() != 0)
      return false;
            return true;
  }
  const Matcher &Representative = **Matchers.begin();
  const auto &RepresentativeCondition = Representative.getFirstCondition();
      return Predicate.isIdentical(RepresentativeCondition);
}
bool GroupMatcher::addMatcher(Matcher &Candidate) {
  if (!Candidate.hasFirstCondition())
    return false;
  const PredicateMatcher &Predicate = Candidate.getFirstCondition();
  if (!candidateConditionMatches(Predicate))
    return false;
  Matchers.push_back(&Candidate);
  return true;
}
void GroupMatcher::finalize() {
  assert(Conditions.empty() && "Already finalized?");
  if (empty())
    return;
  Matcher &FirstRule = **Matchers.begin();
  for (;;) {
        for (const auto &Rule : Matchers)
      if (!Rule->hasFirstCondition())
        return;
    const auto &FirstCondition = FirstRule.getFirstCondition();
    for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
      if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition))
        return;
    Conditions.push_back(FirstRule.popFirstCondition());
    for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
      Matchers[I]->popFirstCondition();
  }
}
void GroupMatcher::emit(MatchTable &Table) {
  unsigned LabelID = ~0U;
  if (!Conditions.empty()) {
    LabelID = Table.allocateLabelID();
    Table << MatchTable::Opcode("GIM_Try", +1)
          << MatchTable::Comment("On fail goto")
          << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
  }
  for (auto &Condition : Conditions)
    Condition->emitPredicateOpcodes(
        Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
  for (const auto &M : Matchers)
    M->emit(Table);
    if (!Conditions.empty())
    Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
          << MatchTable::Label(LabelID);
}
bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) {
  return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P);
}
bool SwitchMatcher::candidateConditionMatches(
    const PredicateMatcher &Predicate) const {
  if (empty()) {
                if (Predicate.getInsnVarID() != 0)
      return false;
            if (!isSupportedPredicateType(Predicate))
      return false;
            if (!Predicate.hasValue())
      return false;
            return true;
  }
  const Matcher &CaseRepresentative = **Matchers.begin();
  const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition();
      if (!Predicate.isIdenticalDownToValue(RepresentativeCondition))
    return false;
  const auto Value = Predicate.getValue();
    return Values.count(Value) == 0;
}
bool SwitchMatcher::addMatcher(Matcher &Candidate) {
  if (!Candidate.hasFirstCondition())
    return false;
  const PredicateMatcher &Predicate = Candidate.getFirstCondition();
  if (!candidateConditionMatches(Predicate))
    return false;
  const auto Value = Predicate.getValue();
  Values.insert(Value);
  Matchers.push_back(&Candidate);
  return true;
}
void SwitchMatcher::finalize() {
  assert(Condition == nullptr && "Already finalized");
  assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
  if (empty())
    return;
  llvm::stable_sort(Matchers, [](const Matcher *L, const Matcher *R) {
    return L->getFirstCondition().getValue() <
           R->getFirstCondition().getValue();
  });
  Condition = Matchers[0]->popFirstCondition();
  for (unsigned I = 1, E = Values.size(); I < E; ++I)
    Matchers[I]->popFirstCondition();
}
void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P,
                                                 MatchTable &Table) {
  assert(isSupportedPredicateType(P) && "Predicate type is not supported");
  if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) {
    Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
          << MatchTable::IntValue(Condition->getInsnVarID());
    return;
  }
  if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) {
    Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
          << MatchTable::IntValue(Condition->getInsnVarID())
          << MatchTable::Comment("Op")
          << MatchTable::IntValue(Condition->getOpIdx());
    return;
  }
  llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
                   "predicate type that is claimed to be supported");
}
void SwitchMatcher::emit(MatchTable &Table) {
  assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
  if (empty())
    return;
  assert(Condition != nullptr &&
         "Broken SwitchMatcher, hasn't been finalized?");
  std::vector<unsigned> LabelIDs(Values.size());
  std::generate(LabelIDs.begin(), LabelIDs.end(),
                [&Table]() { return Table.allocateLabelID(); });
  const unsigned Default = Table.allocateLabelID();
  const int64_t LowerBound = Values.begin()->getRawValue();
  const int64_t UpperBound = Values.rbegin()->getRawValue() + 1;
  emitPredicateSpecificOpcodes(*Condition, Table);
  Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound)
        << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")")
        << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default);
  int64_t J = LowerBound;
  auto VI = Values.begin();
  for (unsigned I = 0, E = Values.size(); I < E; ++I) {
    auto V = *VI++;
    while (J++ < V.getRawValue())
      Table << MatchTable::IntValue(0);
    V.turnIntoComment();
    Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]);
  }
  Table << MatchTable::LineBreak;
  for (unsigned I = 0, E = Values.size(); I < E; ++I) {
    Table << MatchTable::Label(LabelIDs[I]);
    Matchers[I]->emit(Table);
    Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
  }
  Table << MatchTable::Label(Default);
}
unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
} 
namespace llvm {
void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
  GlobalISelEmitter(RK).run(OS);
}
}