//===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
#define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "LiveDebugValues.h"
class TransferTracker;
// Forward dec of unit test class, so that we can peer into the LDV object.
class InstrRefLDVTest;
namespace LiveDebugValues {
class MLocTracker;
using namespace llvm;
/// Handle-class for a particular "location". This value-type uniquely
/// symbolises a register or stack location, allowing manipulation of locations
/// without concern for where that location is. Practically, this allows us to
/// treat the state of the machine at a particular point as an array of values,
/// rather than a map of values.
class LocIdx {
unsigned Location;
// Default constructor is private, initializing to an illegal location number.
// Use only for "not an entry" elements in IndexedMaps.
LocIdx() : Location(UINT_MAX) {}
public:
#define NUM_LOC_BITS 24
LocIdx(unsigned L) : Location(L) {
assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
}
static LocIdx MakeIllegalLoc() { return LocIdx(); }
static LocIdx MakeTombstoneLoc() {
LocIdx L = LocIdx();
--L.Location;
return L;
}
bool isIllegal() const { return Location == UINT_MAX; }
uint64_t asU64() const { return Location; }
bool operator==(unsigned L) const { return Location == L; }
bool operator==(const LocIdx &L) const { return Location == L.Location; }
bool operator!=(unsigned L) const { return !(*this == L); }
bool operator!=(const LocIdx &L) const { return !(*this == L); }
bool operator<(const LocIdx &Other) const {
return Location < Other.Location;
}
};
// The location at which a spilled value resides. It consists of a register and
// an offset.
struct SpillLoc {
unsigned SpillBase;
StackOffset SpillOffset;
bool operator==(const SpillLoc &Other) const {
return std::make_pair(SpillBase, SpillOffset) ==
std::make_pair(Other.SpillBase, Other.SpillOffset);
}
bool operator<(const SpillLoc &Other) const {
return std::make_tuple(SpillBase, SpillOffset.getFixed(),
SpillOffset.getScalable()) <
std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
Other.SpillOffset.getScalable());
}
};
/// Unique identifier for a value defined by an instruction, as a value type.
/// Casts back and forth to a uint64_t. Probably replacable with something less
/// bit-constrained. Each value identifies the instruction and machine location
/// where the value is defined, although there may be no corresponding machine
/// operand for it (ex: regmasks clobbering values). The instructions are
/// one-based, and definitions that are PHIs have instruction number zero.
///
/// The obvious limits of a 1M block function or 1M instruction blocks are
/// problematic; but by that point we should probably have bailed out of
/// trying to analyse the function.
class ValueIDNum {
union {
struct {
uint64_t BlockNo : 20; /// The block where the def happens.
uint64_t InstNo : 20; /// The Instruction where the def happens.
/// One based, is distance from start of block.
uint64_t LocNo
: NUM_LOC_BITS; /// The machine location where the def happens.
} s;
uint64_t Value;
} u;
static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?");
public:
// Default-initialize to EmptyValue. This is necessary to make IndexedMaps
// of values to work.
ValueIDNum() { u.Value = EmptyValue.asU64(); }
ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) {
u.s = {Block, Inst, Loc};
}
ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) {
u.s = {Block, Inst, Loc.asU64()};
}
uint64_t getBlock() const { return u.s.BlockNo; }
uint64_t getInst() const { return u.s.InstNo; }
uint64_t getLoc() const { return u.s.LocNo; }
bool isPHI() const { return u.s.InstNo == 0; }
uint64_t asU64() const { return u.Value; }
static ValueIDNum fromU64(uint64_t v) {
ValueIDNum Val;
Val.u.Value = v;
return Val;
}
bool operator<(const ValueIDNum &Other) const {
return asU64() < Other.asU64();
}
bool operator==(const ValueIDNum &Other) const {
return u.Value == Other.u.Value;
}
bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
std::string asString(const std::string &mlocname) const {
return Twine("Value{bb: ")
.concat(Twine(u.s.BlockNo)
.concat(Twine(", inst: ")
.concat((u.s.InstNo ? Twine(u.s.InstNo)
: Twine("live-in"))
.concat(Twine(", loc: ").concat(
Twine(mlocname)))
.concat(Twine("}")))))
.str();
}
static ValueIDNum EmptyValue;
static ValueIDNum TombstoneValue;
};
/// Type for a table of values in a block.
using ValueTable = std::unique_ptr<ValueIDNum[]>;
/// Type for a table-of-table-of-values, i.e., the collection of either
/// live-in or live-out values for each block in the function.
using FuncValueTable = std::unique_ptr<ValueTable[]>;
/// Thin wrapper around an integer -- designed to give more type safety to
/// spill location numbers.
class SpillLocationNo {
public:
explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
unsigned SpillNo;
unsigned id() const { return SpillNo; }
bool operator<(const SpillLocationNo &Other) const {
return SpillNo < Other.SpillNo;
}
bool operator==(const SpillLocationNo &Other) const {
return SpillNo == Other.SpillNo;
}
bool operator!=(const SpillLocationNo &Other) const {
return !(*this == Other);
}
};
/// Meta qualifiers for a value. Pair of whatever expression is used to qualify
/// the value, and Boolean of whether or not it's indirect.
class DbgValueProperties {
public:
DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
: DIExpr(DIExpr), Indirect(Indirect) {}
/// Extract properties from an existing DBG_VALUE instruction.
DbgValueProperties(const MachineInstr &MI) {
assert(MI.isDebugValue());
DIExpr = MI.getDebugExpression();
Indirect = MI.getOperand(1).isImm();
}
bool operator==(const DbgValueProperties &Other) const {
return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
}
bool operator!=(const DbgValueProperties &Other) const {
return !(*this == Other);
}
const DIExpression *DIExpr;
bool Indirect;
};
/// Class recording the (high level) _value_ of a variable. Identifies either
/// the value of the variable as a ValueIDNum, or a constant MachineOperand.
/// This class also stores meta-information about how the value is qualified.
/// Used to reason about variable values when performing the second
/// (DebugVariable specific) dataflow analysis.
class DbgValue {
public:
/// If Kind is Def, the value number that this value is based on. VPHIs set
/// this field to EmptyValue if there is no machine-value for this VPHI, or
/// the corresponding machine-value if there is one.
ValueIDNum ID;
/// If Kind is Const, the MachineOperand defining this value.
Optional<MachineOperand> MO;
/// For a NoVal or VPHI DbgValue, which block it was generated in.
int BlockNo;
/// Qualifiers for the ValueIDNum above.
DbgValueProperties Properties;
typedef enum {
Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
Def, // This value is defined by an inst, or is a PHI value.
Const, // A constant value contained in the MachineOperand field.
VPHI, // Incoming values to BlockNo differ, those values must be joined by
// a PHI in this block.
NoVal, // Empty DbgValue indicating an unknown value. Used as initializer,
// before dominating blocks values are propagated in.
} KindT;
/// Discriminator for whether this is a constant or an in-program value.
KindT Kind;
DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
: ID(Val), MO(None), BlockNo(0), Properties(Prop), Kind(Kind) {
assert(Kind == Def);
}
DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
: ID(ValueIDNum::EmptyValue), MO(None), BlockNo(BlockNo),
Properties(Prop), Kind(Kind) {
assert(Kind == NoVal || Kind == VPHI);
}
DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
: ID(ValueIDNum::EmptyValue), MO(MO), BlockNo(0), Properties(Prop),
Kind(Kind) {
assert(Kind == Const);
}
DbgValue(const DbgValueProperties &Prop, KindT Kind)
: ID(ValueIDNum::EmptyValue), MO(None), BlockNo(0), Properties(Prop),
Kind(Kind) {
assert(Kind == Undef &&
"Empty DbgValue constructor must pass in Undef kind");
}
#ifndef NDEBUG
void dump(const MLocTracker *MTrack) const;
#endif
bool operator==(const DbgValue &Other) const {
if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
return false;
else if (Kind == Def && ID != Other.ID)
return false;
else if (Kind == NoVal && BlockNo != Other.BlockNo)
return false;
else if (Kind == Const)
return MO->isIdenticalTo(*Other.MO);
else if (Kind == VPHI && BlockNo != Other.BlockNo)
return false;
else if (Kind == VPHI && ID != Other.ID)
return false;
return true;
}
bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
};
class LocIdxToIndexFunctor {
public:
using argument_type = LocIdx;
unsigned operator()(const LocIdx &L) const { return L.asU64(); }
};
/// Tracker for what values are in machine locations. Listens to the Things
/// being Done by various instructions, and maintains a table of what machine
/// locations have what values (as defined by a ValueIDNum).
///
/// There are potentially a much larger number of machine locations on the
/// target machine than the actual working-set size of the function. On x86 for
/// example, we're extremely unlikely to want to track values through control
/// or debug registers. To avoid doing so, MLocTracker has several layers of
/// indirection going on, described below, to avoid unnecessarily tracking
/// any location.
///
/// Here's a sort of diagram of the indexes, read from the bottom up:
///
/// Size on stack Offset on stack
/// \ /
/// Stack Idx (Where in slot is this?)
/// /
/// /
/// Slot Num (%stack.0) /
/// FrameIdx => SpillNum /
/// \ /
/// SpillID (int) Register number (int)
/// \ /
/// LocationID => LocIdx
/// |
/// LocIdx => ValueIDNum
///
/// The aim here is that the LocIdx => ValueIDNum vector is just an array of
/// values in numbered locations, so that later analyses can ignore whether the
/// location is a register or otherwise. To map a register / spill location to
/// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to
/// build a LocationID for a stack slot, you need to combine identifiers for
/// which stack slot it is and where within that slot is being described.
///
/// Register mask operands cause trouble by technically defining every register;
/// various hacks are used to avoid tracking registers that are never read and
/// only written by regmasks.
class MLocTracker {
public:
MachineFunction &MF;
const TargetInstrInfo &TII;
const TargetRegisterInfo &TRI;
const TargetLowering &TLI;
/// IndexedMap type, mapping from LocIdx to ValueIDNum.
using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
/// Map of LocIdxes to the ValueIDNums that they store. This is tightly
/// packed, entries only exist for locations that are being tracked.
LocToValueType LocIdxToIDNum;
/// "Map" of machine location IDs (i.e., raw register or spill number) to the
/// LocIdx key / number for that location. There are always at least as many
/// as the number of registers on the target -- if the value in the register
/// is not being tracked, then the LocIdx value will be zero. New entries are
/// appended if a new spill slot begins being tracked.
/// This, and the corresponding reverse map persist for the analysis of the
/// whole function, and is necessarying for decoding various vectors of
/// values.
std::vector<LocIdx> LocIDToLocIdx;
/// Inverse map of LocIDToLocIdx.
IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
/// When clobbering register masks, we chose to not believe the machine model
/// and don't clobber SP. Do the same for SP aliases, and for efficiency,
/// keep a set of them here.
SmallSet<Register, 8> SPAliases;
/// Unique-ification of spill. Used to number them -- their LocID number is
/// the index in SpillLocs minus one plus NumRegs.
UniqueVector<SpillLoc> SpillLocs;
// If we discover a new machine location, assign it an mphi with this
// block number.
unsigned CurBB;
/// Cached local copy of the number of registers the target has.
unsigned NumRegs;
/// Number of slot indexes the target has -- distinct segments of a stack
/// slot that can take on the value of a subregister, when a super-register
/// is written to the stack.
unsigned NumSlotIdxes;
/// Collection of register mask operands that have been observed. Second part
/// of pair indicates the instruction that they happened in. Used to
/// reconstruct where defs happened if we start tracking a location later
/// on.
SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
/// Pair for describing a position within a stack slot -- first the size in
/// bits, then the offset.
typedef std::pair<unsigned short, unsigned short> StackSlotPos;
/// Map from a size/offset pair describing a position in a stack slot, to a
/// numeric identifier for that position. Allows easier identification of
/// individual positions.
DenseMap<StackSlotPos, unsigned> StackSlotIdxes;
/// Inverse of StackSlotIdxes.
DenseMap<unsigned, StackSlotPos> StackIdxesToPos;
/// Iterator for locations and the values they contain. Dereferencing
/// produces a struct/pair containing the LocIdx key for this location,
/// and a reference to the value currently stored. Simplifies the process
/// of seeking a particular location.
class MLocIterator {
LocToValueType &ValueMap;
LocIdx Idx;
public:
class value_type {
public:
value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
const LocIdx Idx; /// Read-only index of this location.
ValueIDNum &Value; /// Reference to the stored value at this location.
};
MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
: ValueMap(ValueMap), Idx(Idx) {}
bool operator==(const MLocIterator &Other) const {
assert(&ValueMap == &Other.ValueMap);
return Idx == Other.Idx;
}
bool operator!=(const MLocIterator &Other) const {
return !(*this == Other);
}
void operator++() { Idx = LocIdx(Idx.asU64() + 1); }
value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
};
MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
const TargetRegisterInfo &TRI, const TargetLowering &TLI);
/// Produce location ID number for a Register. Provides some small amount of
/// type safety.
/// \param Reg The register we're looking up.
unsigned getLocID(Register Reg) { return Reg.id(); }
/// Produce location ID number for a spill position.
/// \param Spill The number of the spill we're fetching the location for.
/// \param SpillSubReg Subregister within the spill we're addressing.
unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) {
unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg);
unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg);
return getLocID(Spill, {Size, Offs});
}
/// Produce location ID number for a spill position.
/// \param Spill The number of the spill we're fetching the location for.
/// \apram SpillIdx size/offset within the spill slot to be addressed.
unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) {
unsigned SlotNo = Spill.id() - 1;
SlotNo *= NumSlotIdxes;
assert(StackSlotIdxes.find(Idx) != StackSlotIdxes.end());
SlotNo += StackSlotIdxes[Idx];
SlotNo += NumRegs;
return SlotNo;
}
/// Given a spill number, and a slot within the spill, calculate the ID number
/// for that location.
unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) {
unsigned SlotNo = Spill.id() - 1;
SlotNo *= NumSlotIdxes;
SlotNo += Idx;
SlotNo += NumRegs;
return SlotNo;
}
/// Return the spill number that a location ID corresponds to.
SpillLocationNo locIDToSpill(unsigned ID) const {
assert(ID >= NumRegs);
ID -= NumRegs;
// Truncate away the index part, leaving only the spill number.
ID /= NumSlotIdxes;
return SpillLocationNo(ID + 1); // The UniqueVector is one-based.
}
/// Returns the spill-slot size/offs that a location ID corresponds to.
StackSlotPos locIDToSpillIdx(unsigned ID) const {
assert(ID >= NumRegs);
ID -= NumRegs;
unsigned Idx = ID % NumSlotIdxes;
return StackIdxesToPos.find(Idx)->second;
}
unsigned getNumLocs() const { return LocIdxToIDNum.size(); }
/// Reset all locations to contain a PHI value at the designated block. Used
/// sometimes for actual PHI values, othertimes to indicate the block entry
/// value (before any more information is known).
void setMPhis(unsigned NewCurBB) {
CurBB = NewCurBB;
for (auto Location : locations())
Location.Value = {CurBB, 0, Location.Idx};
}
/// Load values for each location from array of ValueIDNums. Take current
/// bbnum just in case we read a value from a hitherto untouched register.
void loadFromArray(ValueTable &Locs, unsigned NewCurBB) {
CurBB = NewCurBB;
// Iterate over all tracked locations, and load each locations live-in
// value into our local index.
for (auto Location : locations())
Location.Value = Locs[Location.Idx.asU64()];
}
/// Wipe any un-necessary location records after traversing a block.
void reset() {
// We could reset all the location values too; however either loadFromArray
// or setMPhis should be called before this object is re-used. Just
// clear Masks, they're definitely not needed.
Masks.clear();
}
/// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
/// the information in this pass uninterpretable.
void clear() {
reset();
LocIDToLocIdx.clear();
LocIdxToLocID.clear();
LocIdxToIDNum.clear();
// SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
// 0
SpillLocs = decltype(SpillLocs)();
StackSlotIdxes.clear();
StackIdxesToPos.clear();
LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
}
/// Set a locaiton to a certain value.
void setMLoc(LocIdx L, ValueIDNum Num) {
assert(L.asU64() < LocIdxToIDNum.size());
LocIdxToIDNum[L] = Num;
}
/// Read the value of a particular location
ValueIDNum readMLoc(LocIdx L) {
assert(L.asU64() < LocIdxToIDNum.size());
return LocIdxToIDNum[L];
}
/// Create a LocIdx for an untracked register ID. Initialize it to either an
/// mphi value representing a live-in, or a recent register mask clobber.
LocIdx trackRegister(unsigned ID);
LocIdx lookupOrTrackRegister(unsigned ID) {
LocIdx &Index = LocIDToLocIdx[ID];
if (Index.isIllegal())
Index = trackRegister(ID);
return Index;
}
/// Is register R currently tracked by MLocTracker?
bool isRegisterTracked(Register R) {
LocIdx &Index = LocIDToLocIdx[R];
return !Index.isIllegal();
}
/// Record a definition of the specified register at the given block / inst.
/// This doesn't take a ValueIDNum, because the definition and its location
/// are synonymous.
void defReg(Register R, unsigned BB, unsigned Inst) {
unsigned ID = getLocID(R);
LocIdx Idx = lookupOrTrackRegister(ID);
ValueIDNum ValueID = {BB, Inst, Idx};
LocIdxToIDNum[Idx] = ValueID;
}
/// Set a register to a value number. To be used if the value number is
/// known in advance.
void setReg(Register R, ValueIDNum ValueID) {
unsigned ID = getLocID(R);
LocIdx Idx = lookupOrTrackRegister(ID);
LocIdxToIDNum[Idx] = ValueID;
}
ValueIDNum readReg(Register R) {
unsigned ID = getLocID(R);
LocIdx Idx = lookupOrTrackRegister(ID);
return LocIdxToIDNum[Idx];
}
/// Reset a register value to zero / empty. Needed to replicate the
/// VarLoc implementation where a copy to/from a register effectively
/// clears the contents of the source register. (Values can only have one
/// machine location in VarLocBasedImpl).
void wipeRegister(Register R) {
unsigned ID = getLocID(R);
LocIdx Idx = LocIDToLocIdx[ID];
LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
}
/// Determine the LocIdx of an existing register.
LocIdx getRegMLoc(Register R) {
unsigned ID = getLocID(R);
assert(ID < LocIDToLocIdx.size());
assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinal for IndexedMap.
return LocIDToLocIdx[ID];
}
/// Record a RegMask operand being executed. Defs any register we currently
/// track, stores a pointer to the mask in case we have to account for it
/// later.
void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);
/// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
/// Returns None when in scenarios where a spill slot could be tracked, but
/// we would likely run into resource limitations.
Optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L);
// Get LocIdx of a spill ID.
LocIdx getSpillMLoc(unsigned SpillID) {
assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinal for IndexedMap.
return LocIDToLocIdx[SpillID];
}
/// Return true if Idx is a spill machine location.
bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }
/// How large is this location (aka, how wide is a value defined there?).
unsigned getLocSizeInBits(LocIdx L) const {
unsigned ID = LocIdxToLocID[L];
if (!isSpill(L)) {
return TRI.getRegSizeInBits(Register(ID), MF.getRegInfo());
} else {
// The slot location on the stack is uninteresting, we care about the
// position of the value within the slot (which comes with a size).
StackSlotPos Pos = locIDToSpillIdx(ID);
return Pos.first;
}
}
MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }
MLocIterator end() {
return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
}
/// Return a range over all locations currently tracked.
iterator_range<MLocIterator> locations() {
return llvm::make_range(begin(), end());
}
std::string LocIdxToName(LocIdx Idx) const;
std::string IDAsString(const ValueIDNum &Num) const;
#ifndef NDEBUG
LLVM_DUMP_METHOD void dump();
LLVM_DUMP_METHOD void dump_mloc_map();
#endif
/// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the
/// information in \pProperties, for variable Var. Don't insert it anywhere,
/// just return the builder for it.
MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
const DbgValueProperties &Properties);
};
/// Types for recording sets of variable fragments that overlap. For a given
/// local variable, we record all other fragments of that variable that could
/// overlap it, to reduce search time.
using FragmentOfVar =
std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
using OverlapMap =
DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
/// Collection of DBG_VALUEs observed when traversing a block. Records each
/// variable and the value the DBG_VALUE refers to. Requires the machine value
/// location dataflow algorithm to have run already, so that values can be
/// identified.
class VLocTracker {
public:
/// Map DebugVariable to the latest Value it's defined to have.
/// Needs to be a MapVector because we determine order-in-the-input-MIR from
/// the order in this container.
/// We only retain the last DbgValue in each block for each variable, to
/// determine the blocks live-out variable value. The Vars container forms the
/// transfer function for this block, as part of the dataflow analysis. The
/// movement of values between locations inside of a block is handled at a
/// much later stage, in the TransferTracker class.
MapVector<DebugVariable, DbgValue> Vars;
SmallDenseMap<DebugVariable, const DILocation *, 8> Scopes;
MachineBasicBlock *MBB = nullptr;
const OverlapMap &OverlappingFragments;
DbgValueProperties EmptyProperties;
public:
VLocTracker(const OverlapMap &O, const DIExpression *EmptyExpr)
: OverlappingFragments(O), EmptyProperties(EmptyExpr, false) {}
void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
Optional<ValueIDNum> ID) {
assert(MI.isDebugValue() || MI.isDebugRef());
DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
MI.getDebugLoc()->getInlinedAt());
DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
: DbgValue(Properties, DbgValue::Undef);
// Attempt insertion; overwrite if it's already mapped.
auto Result = Vars.insert(std::make_pair(Var, Rec));
if (!Result.second)
Result.first->second = Rec;
Scopes[Var] = MI.getDebugLoc().get();
considerOverlaps(Var, MI.getDebugLoc().get());
}
void defVar(const MachineInstr &MI, const MachineOperand &MO) {
// Only DBG_VALUEs can define constant-valued variables.
assert(MI.isDebugValue());
DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
MI.getDebugLoc()->getInlinedAt());
DbgValueProperties Properties(MI);
DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
// Attempt insertion; overwrite if it's already mapped.
auto Result = Vars.insert(std::make_pair(Var, Rec));
if (!Result.second)
Result.first->second = Rec;
Scopes[Var] = MI.getDebugLoc().get();
considerOverlaps(Var, MI.getDebugLoc().get());
}
void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) {
auto Overlaps = OverlappingFragments.find(
{Var.getVariable(), Var.getFragmentOrDefault()});
if (Overlaps == OverlappingFragments.end())
return;
// Otherwise: terminate any overlapped variable locations.
for (auto FragmentInfo : Overlaps->second) {
// The "empty" fragment is stored as DebugVariable::DefaultFragment, so
// that it overlaps with everything, however its cannonical representation
// in a DebugVariable is as "None".
Optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo;
if (DebugVariable::isDefaultFragment(FragmentInfo))
OptFragmentInfo = None;
DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo,
Var.getInlinedAt());
DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef);
// Attempt insertion; overwrite if it's already mapped.
auto Result = Vars.insert(std::make_pair(Overlapped, Rec));
if (!Result.second)
Result.first->second = Rec;
Scopes[Overlapped] = Loc;
}
}
void clear() {
Vars.clear();
Scopes.clear();
}
};
// XXX XXX docs
class InstrRefBasedLDV : public LDVImpl {
public:
friend class ::InstrRefLDVTest;
using FragmentInfo = DIExpression::FragmentInfo;
using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
// Helper while building OverlapMap, a map of all fragments seen for a given
// DILocalVariable.
using VarToFragments =
DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
/// Machine location/value transfer function, a mapping of which locations
/// are assigned which new values.
using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>;
/// Live in/out structure for the variable values: a per-block map of
/// variables to their values.
using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>;
using VarAndLoc = std::pair<DebugVariable, DbgValue>;
/// Type for a live-in value: the predecessor block, and its value.
using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
/// Vector (per block) of a collection (inner smallvector) of live-ins.
/// Used as the result type for the variable value dataflow problem.
using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
/// Mapping from lexical scopes to a DILocation in that scope.
using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>;
/// Mapping from lexical scopes to variables in that scope.
using ScopeToVarsT = DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>>;
/// Mapping from lexical scopes to blocks where variables in that scope are
/// assigned. Such blocks aren't necessarily "in" the lexical scope, it's
/// just a block where an assignment happens.
using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>;
private:
MachineDominatorTree *DomTree;
const TargetRegisterInfo *TRI;
const MachineRegisterInfo *MRI;
const TargetInstrInfo *TII;
const TargetFrameLowering *TFI;
const MachineFrameInfo *MFI;
BitVector CalleeSavedRegs;
LexicalScopes LS;
TargetPassConfig *TPC;
// An empty DIExpression. Used default / placeholder DbgValueProperties
// objects, as we can't have null expressions.
const DIExpression *EmptyExpr;
/// Object to track machine locations as we step through a block. Could
/// probably be a field rather than a pointer, as it's always used.
MLocTracker *MTracker = nullptr;
/// Number of the current block LiveDebugValues is stepping through.
unsigned CurBB;
/// Number of the current instruction LiveDebugValues is evaluating.
unsigned CurInst;
/// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
/// steps through a block. Reads the values at each location from the
/// MLocTracker object.
VLocTracker *VTracker = nullptr;
/// Tracker for transfers, listens to DBG_VALUEs and transfers of values
/// between locations during stepping, creates new DBG_VALUEs when values move
/// location.
TransferTracker *TTracker = nullptr;
/// Blocks which are artificial, i.e. blocks which exclusively contain
/// instructions without DebugLocs, or with line 0 locations.
SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks;
// Mapping of blocks to and from their RPOT order.
DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder;
DenseMap<unsigned, unsigned> BBNumToRPO;
/// Pair of MachineInstr, and its 1-based offset into the containing block.
using InstAndNum = std::pair<const MachineInstr *, unsigned>;
/// Map from debug instruction number to the MachineInstr labelled with that
/// number, and its location within the function. Used to transform
/// instruction numbers in DBG_INSTR_REFs into machine value numbers.
std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
/// Record of where we observed a DBG_PHI instruction.
class DebugPHIRecord {
public:
/// Instruction number of this DBG_PHI.
uint64_t InstrNum;
/// Block where DBG_PHI occurred.
MachineBasicBlock *MBB;
/// The value number read by the DBG_PHI -- or None if it didn't refer to
/// a value.
Optional<ValueIDNum> ValueRead;
/// Register/Stack location the DBG_PHI reads -- or None if it referred to
/// something unexpected.
Optional<LocIdx> ReadLoc;
operator unsigned() const { return InstrNum; }
};
/// Map from instruction numbers defined by DBG_PHIs to a record of what that
/// DBG_PHI read and where. Populated and edited during the machine value
/// location problem -- we use LLVMs SSA Updater to fix changes by
/// optimizations that destroy PHI instructions.
SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
// Map of overlapping variable fragments.
OverlapMap OverlapFragments;
VarToFragments SeenFragments;
/// Mapping of DBG_INSTR_REF instructions to their values, for those
/// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve
/// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches
/// the result.
DenseMap<MachineInstr *, Optional<ValueIDNum>> SeenDbgPHIs;
/// True if we need to examine call instructions for stack clobbers. We
/// normally assume that they don't clobber SP, but stack probes on Windows
/// do.
bool AdjustsStackInCalls = false;
/// If AdjustsStackInCalls is true, this holds the name of the target's stack
/// probe function, which is the function we expect will alter the stack
/// pointer.
StringRef StackProbeSymbolName;
/// Tests whether this instruction is a spill to a stack slot.
Optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI,
MachineFunction *MF);
/// Decide if @MI is a spill instruction and return true if it is. We use 2
/// criteria to make this decision:
/// - Is this instruction a store to a spill slot?
/// - Is there a register operand that is both used and killed?
/// TODO: Store optimization can fold spills into other stores (including
/// other spills). We do not handle this yet (more than one memory operand).
bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
unsigned &Reg);
/// If a given instruction is identified as a spill, return the spill slot
/// and set \p Reg to the spilled register.
Optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI,
MachineFunction *MF, unsigned &Reg);
/// Given a spill instruction, extract the spill slot information, ensure it's
/// tracked, and return the spill number.
Optional<SpillLocationNo>
extractSpillBaseRegAndOffset(const MachineInstr &MI);
/// Observe a single instruction while stepping through a block.
void process(MachineInstr &MI, const ValueTable *MLiveOuts,
const ValueTable *MLiveIns);
/// Examines whether \p MI is a DBG_VALUE and notifies trackers.
/// \returns true if MI was recognized and processed.
bool transferDebugValue(const MachineInstr &MI);
/// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
/// \returns true if MI was recognized and processed.
bool transferDebugInstrRef(MachineInstr &MI, const ValueTable *MLiveOuts,
const ValueTable *MLiveIns);
/// Stores value-information about where this PHI occurred, and what
/// instruction number is associated with it.
/// \returns true if MI was recognized and processed.
bool transferDebugPHI(MachineInstr &MI);
/// Examines whether \p MI is copy instruction, and notifies trackers.
/// \returns true if MI was recognized and processed.
bool transferRegisterCopy(MachineInstr &MI);
/// Examines whether \p MI is stack spill or restore instruction, and
/// notifies trackers. \returns true if MI was recognized and processed.
bool transferSpillOrRestoreInst(MachineInstr &MI);
/// Examines \p MI for any registers that it defines, and notifies trackers.
void transferRegisterDef(MachineInstr &MI);
/// Copy one location to the other, accounting for movement of subregisters
/// too.
void performCopy(Register Src, Register Dst);
void accumulateFragmentMap(MachineInstr &MI);
/// Determine the machine value number referred to by (potentially several)
/// DBG_PHI instructions. Block duplication and tail folding can duplicate
/// DBG_PHIs, shifting the position where values in registers merge, and
/// forming another mini-ssa problem to solve.
/// \p Here the position of a DBG_INSTR_REF seeking a machine value number
/// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
/// \returns The machine value number at position Here, or None.
Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
const ValueTable *MLiveOuts,
const ValueTable *MLiveIns,
MachineInstr &Here, uint64_t InstrNum);
Optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF,
const ValueTable *MLiveOuts,
const ValueTable *MLiveIns,
MachineInstr &Here,
uint64_t InstrNum);
/// Step through the function, recording register definitions and movements
/// in an MLocTracker. Convert the observations into a per-block transfer
/// function in \p MLocTransfer, suitable for using with the machine value
/// location dataflow problem.
void
produceMLocTransferFunction(MachineFunction &MF,
SmallVectorImpl<MLocTransferMap> &MLocTransfer,
unsigned MaxNumBlocks);
/// Solve the machine value location dataflow problem. Takes as input the
/// transfer functions in \p MLocTransfer. Writes the output live-in and
/// live-out arrays to the (initialized to zero) multidimensional arrays in
/// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
/// number, the inner by LocIdx.
void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs,
FuncValueTable &MOutLocs,
SmallVectorImpl<MLocTransferMap> &MLocTransfer);
/// Examine the stack indexes (i.e. offsets within the stack) to find the
/// basic units of interference -- like reg units, but for the stack.
void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots);
/// Install PHI values into the live-in array for each block, according to
/// the IDF of each register.
void placeMLocPHIs(MachineFunction &MF,
SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
FuncValueTable &MInLocs,
SmallVectorImpl<MLocTransferMap> &MLocTransfer);
/// Propagate variable values to blocks in the common case where there's
/// only one value assigned to the variable. This function has better
/// performance as it doesn't have to find the dominance frontier between
/// different assignments.
void placePHIsForSingleVarDefinition(
const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
const DebugVariable &Var, LiveInsT &Output);
/// Calculate the iterated-dominance-frontier for a set of defs, using the
/// existing LLVM facilities for this. Works for a single "value" or
/// machine/variable location.
/// \p AllBlocks Set of blocks where we might consume the value.
/// \p DefBlocks Set of blocks where the value/location is defined.
/// \p PHIBlocks Output set of blocks where PHIs must be placed.
void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
SmallVectorImpl<MachineBasicBlock *> &PHIBlocks);
/// Perform a control flow join (lattice value meet) of the values in machine
/// locations at \p MBB. Follows the algorithm described in the file-comment,
/// reading live-outs of predecessors from \p OutLocs, the current live ins
/// from \p InLocs, and assigning the newly computed live ins back into
/// \p InLocs. \returns two bools -- the first indicates whether a change
/// was made, the second whether a lattice downgrade occurred. If the latter
/// is true, revisiting this block is necessary.
bool mlocJoin(MachineBasicBlock &MBB,
SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
FuncValueTable &OutLocs, ValueTable &InLocs);
/// Produce a set of blocks that are in the current lexical scope. This means
/// those blocks that contain instructions "in" the scope, blocks where
/// assignments to variables in scope occur, and artificial blocks that are
/// successors to any of the earlier blocks. See https://llvm.org/PR48091 for
/// more commentry on what "in scope" means.
/// \p DILoc A location in the scope that we're fetching blocks for.
/// \p Output Set to put in-scope-blocks into.
/// \p AssignBlocks Blocks known to contain assignments of variables in scope.
void
getBlocksForScope(const DILocation *DILoc,
SmallPtrSetImpl<const MachineBasicBlock *> &Output,
const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks);
/// Solve the variable value dataflow problem, for a single lexical scope.
/// Uses the algorithm from the file comment to resolve control flow joins
/// using PHI placement and value propagation. Reads the locations of machine
/// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap)
/// and reads the variable values transfer function from \p AllTheVlocs.
/// Live-in and Live-out variable values are stored locally, with the live-ins
/// permanently stored to \p Output once a fixedpoint is reached.
/// \p VarsWeCareAbout contains a collection of the variables in \p Scope
/// that we should be tracking.
/// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's
/// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks
/// locations through.
void buildVLocValueMap(const DILocation *DILoc,
const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
LiveInsT &Output, FuncValueTable &MOutLocs,
FuncValueTable &MInLocs,
SmallVectorImpl<VLocTracker> &AllTheVLocs);
/// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the
/// live-in values coming from predecessors live-outs, and replaces any PHIs
/// already present in this blocks live-ins with a live-through value if the
/// PHI isn't needed.
/// \p LiveIn Old live-in value, overwritten with new one if live-in changes.
/// \returns true if any live-ins change value, either from value propagation
/// or PHI elimination.
bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
DbgValue &LiveIn);
/// For the given block and live-outs feeding into it, try to find a
/// machine location where all the variable values join together.
/// \returns Value ID of a machine PHI if an appropriate one is available.
Optional<ValueIDNum>
pickVPHILoc(const MachineBasicBlock &MBB, const DebugVariable &Var,
const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
/// Take collections of DBG_VALUE instructions stored in TTracker, and
/// install them into their output blocks. Preserves a stable order of
/// DBG_VALUEs produced (which would otherwise cause nondeterminism) through
/// the AllVarsNumbering order.
bool emitTransfers(DenseMap<DebugVariable, unsigned> &AllVarsNumbering);
/// Boilerplate computation of some initial sets, artifical blocks and
/// RPOT block ordering.
void initialSetup(MachineFunction &MF);
/// Produce a map of the last lexical scope that uses a block, using the
/// scopes DFSOut number. Mapping is block-number to DFSOut.
/// \p EjectionMap Pre-allocated vector in which to install the built ma.
/// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations.
/// \p AssignBlocks Map of blocks where assignments happen for a scope.
void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap,
const ScopeToDILocT &ScopeToDILocation,
ScopeToAssignBlocksT &AssignBlocks);
/// When determining per-block variable values and emitting to DBG_VALUEs,
/// this function explores by lexical scope depth. Doing so means that per
/// block information can be fully computed before exploration finishes,
/// allowing us to emit it and free data structures earlier than otherwise.
/// It's also good for locality.
bool depthFirstVLocAndEmit(
unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToBlocks,
LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
const TargetPassConfig &TPC);
bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
TargetPassConfig *TPC, unsigned InputBBLimit,
unsigned InputDbgValLimit) override;
public:
/// Default construct and initialize the pass.
InstrRefBasedLDV();
LLVM_DUMP_METHOD
void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
bool isCalleeSaved(LocIdx L) const;
bool hasFoldedStackStore(const MachineInstr &MI) {
// Instruction must have a memory operand that's a stack slot, and isn't
// aliased, meaning it's a spill from regalloc instead of a variable.
// If it's aliased, we can't guarantee its value.
if (!MI.hasOneMemOperand())
return false;
auto *MemOperand = *MI.memoperands_begin();
return MemOperand->isStore() &&
MemOperand->getPseudoValue() &&
MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack
&& !MemOperand->getPseudoValue()->isAliased(MFI);
}
Optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI);
};
} // namespace LiveDebugValues
namespace llvm {
using namespace LiveDebugValues;
template <> struct DenseMapInfo<LocIdx> {
static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); }
static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); }
static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); }
static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; }
};
template <> struct DenseMapInfo<ValueIDNum> {
static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; }
static inline ValueIDNum getTombstoneKey() {
return ValueIDNum::TombstoneValue;
}
static unsigned getHashValue(const ValueIDNum &Val) {
return hash_value(Val.asU64());
}
static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) {
return A == B;
}
};
} // end namespace llvm
#endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */