#include "llvm/Transforms/Scalar/JumpThreading.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>
#include <utility>
using namespace llvm;
using namespace jumpthreading;
#define DEBUG_TYPE "jump-threading"
STATISTIC(NumThreads, "Number of jumps threaded");
STATISTIC(NumFolds,   "Number of terminators folded");
STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
static cl::opt<unsigned>
BBDuplicateThreshold("jump-threading-threshold",
          cl::desc("Max block size to duplicate for jump threading"),
          cl::init(6), cl::Hidden);
static cl::opt<unsigned>
ImplicationSearchThreshold(
  "jump-threading-implication-search-threshold",
  cl::desc("The number of predecessors to search for a stronger "
           "condition to use to thread over a weaker condition"),
  cl::init(3), cl::Hidden);
static cl::opt<bool> PrintLVIAfterJumpThreading(
    "print-lvi-after-jump-threading",
    cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
    cl::Hidden);
static cl::opt<bool> ThreadAcrossLoopHeaders(
    "jump-threading-across-loop-headers",
    cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
    cl::init(false), cl::Hidden);
namespace {
                                class JumpThreading : public FunctionPass {
    JumpThreadingPass Impl;
  public:
    static char ID; 
    JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
    }
    bool runOnFunction(Function &F) override;
    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<DominatorTreeWrapperPass>();
      AU.addPreserved<DominatorTreeWrapperPass>();
      AU.addRequired<AAResultsWrapperPass>();
      AU.addRequired<LazyValueInfoWrapperPass>();
      AU.addPreserved<LazyValueInfoWrapperPass>();
      AU.addPreserved<GlobalsAAWrapperPass>();
      AU.addRequired<TargetLibraryInfoWrapperPass>();
      AU.addRequired<TargetTransformInfoWrapperPass>();
    }
    void releaseMemory() override { Impl.releaseMemory(); }
  };
} 
char JumpThreading::ID = 0;
INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
                "Jump Threading", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(JumpThreading, "jump-threading",
                "Jump Threading", false, false)
FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
  return new JumpThreading(Threshold);
}
JumpThreadingPass::JumpThreadingPass(int T) {
  DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
}
static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
  if (!CondBr)
    return;
  uint64_t TrueWeight, FalseWeight;
  if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
    return;
  if (TrueWeight + FalseWeight == 0)
                return;
      auto GetPredOutEdge =
      [](BasicBlock *IncomingBB,
         BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
    auto *PredBB = IncomingBB;
    auto *SuccBB = PhiBB;
    SmallPtrSet<BasicBlock *, 16> Visited;
    while (true) {
      BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
      if (PredBr && PredBr->isConditional())
        return {PredBB, SuccBB};
      Visited.insert(PredBB);
      auto *SinglePredBB = PredBB->getSinglePredecessor();
      if (!SinglePredBB)
        return {nullptr, nullptr};
                  if (Visited.count(SinglePredBB))
        return {nullptr, nullptr};
      SuccBB = PredBB;
      PredBB = SinglePredBB;
    }
  };
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    Value *PhiOpnd = PN->getIncomingValue(i);
    ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
    if (!CI || !CI->getType()->isIntegerTy(1))
      continue;
    BranchProbability BP =
        (CI->isOne() ? BranchProbability::getBranchProbability(
                           TrueWeight, TrueWeight + FalseWeight)
                     : BranchProbability::getBranchProbability(
                           FalseWeight, TrueWeight + FalseWeight));
    auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
    if (!PredOutEdge.first)
      return;
    BasicBlock *PredBB = PredOutEdge.first;
    BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
    if (!PredBr)
      return;
    uint64_t PredTrueWeight, PredFalseWeight;
                    if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
      continue;
            if (BP >= BranchProbability(50, 100))
      continue;
    SmallVector<uint32_t, 2> Weights;
    if (PredBr->getSuccessor(0) == PredOutEdge.second) {
      Weights.push_back(BP.getNumerator());
      Weights.push_back(BP.getCompl().getNumerator());
    } else {
      Weights.push_back(BP.getCompl().getNumerator());
      Weights.push_back(BP.getNumerator());
    }
    PredBr->setMetadata(LLVMContext::MD_prof,
                        MDBuilder(PredBr->getParent()->getContext())
                            .createBranchWeights(Weights));
  }
}
bool JumpThreading::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;
  auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    if (TTI->hasBranchDivergence())
    return false;
  auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
  std::unique_ptr<BlockFrequencyInfo> BFI;
  std::unique_ptr<BranchProbabilityInfo> BPI;
  if (F.hasProfileData()) {
    LoopInfo LI{*DT};
    BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
    BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
  }
  bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(),
                              std::move(BFI), std::move(BPI));
  if (PrintLVIAfterJumpThreading) {
    dbgs() << "LVI for function '" << F.getName() << "':\n";
    LVI->printLVI(F, DTU.getDomTree(), dbgs());
  }
  return Changed;
}
PreservedAnalyses JumpThreadingPass::run(Function &F,
                                         FunctionAnalysisManager &AM) {
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
    if (TTI.hasBranchDivergence())
    return PreservedAnalyses::all();
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &LVI = AM.getResult<LazyValueAnalysis>(F);
  auto &AA = AM.getResult<AAManager>(F);
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
  std::unique_ptr<BlockFrequencyInfo> BFI;
  std::unique_ptr<BranchProbabilityInfo> BPI;
  if (F.hasProfileData()) {
    LoopInfo LI{DominatorTree(F)};
    BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
    BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
  }
  bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(),
                         std::move(BFI), std::move(BPI));
  if (PrintLVIAfterJumpThreading) {
    dbgs() << "LVI for function '" << F.getName() << "':\n";
    LVI.printLVI(F, DTU.getDomTree(), dbgs());
  }
  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<LazyValueAnalysis>();
  return PA;
}
bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
                                TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
                                AliasAnalysis *AA_, DomTreeUpdater *DTU_,
                                bool HasProfileData_,
                                std::unique_ptr<BlockFrequencyInfo> BFI_,
                                std::unique_ptr<BranchProbabilityInfo> BPI_) {
  LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
  TLI = TLI_;
  TTI = TTI_;
  LVI = LVI_;
  AA = AA_;
  DTU = DTU_;
  BFI.reset();
  BPI.reset();
      HasProfileData = HasProfileData_;
  auto *GuardDecl = F.getParent()->getFunction(
      Intrinsic::getName(Intrinsic::experimental_guard));
  HasGuards = GuardDecl && !GuardDecl->use_empty();
  if (HasProfileData) {
    BPI = std::move(BPI_);
    BFI = std::move(BFI_);
  }
      if (BBDuplicateThreshold.getNumOccurrences())
    BBDupThreshold = BBDuplicateThreshold;
  else if (F.hasFnAttribute(Attribute::MinSize))
    BBDupThreshold = 3;
  else
    BBDupThreshold = DefaultBBDupThreshold;
      SmallPtrSet<BasicBlock *, 16> Unreachable;
  assert(DTU && "DTU isn't passed into JumpThreading before using it.");
  assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
  DominatorTree &DT = DTU->getDomTree();
  for (auto &BB : F)
    if (!DT.isReachableFromEntry(&BB))
      Unreachable.insert(&BB);
  if (!ThreadAcrossLoopHeaders)
    findLoopHeaders(F);
  bool EverChanged = false;
  bool Changed;
  do {
    Changed = false;
    for (auto &BB : F) {
      if (Unreachable.count(&BB))
        continue;
      while (processBlock(&BB))         Changed = true;
                  if (Changed)
        RemoveRedundantDbgInstrs(&BB);
                        if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
        continue;
      if (pred_empty(&BB)) {
                        LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
                          << "' with terminator: " << *BB.getTerminator()
                          << '\n');
        LoopHeaders.erase(&BB);
        LVI->eraseBlock(&BB);
        DeleteDeadBlock(&BB, DTU);
        Changed = true;
        continue;
      }
                  auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
      if (BI && BI->isUnconditional()) {
        BasicBlock *Succ = BI->getSuccessor(0);
        if (
                        BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
                                    !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
            TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
          RemoveRedundantDbgInstrs(Succ);
                              LVI->eraseBlock(&BB);
          Changed = true;
        }
      }
    }
    EverChanged |= Changed;
  } while (Changed);
  LoopHeaders.clear();
  return EverChanged;
}
static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
                                BasicBlock *KnownAtEndOfBB) {
  bool Changed = false;
  assert(Cond->getType() == ToVal->getType());
        if (Cond->getParent() == KnownAtEndOfBB)
    Changed |= replaceNonLocalUsesWith(Cond, ToVal);
  for (Instruction &I : reverse(*KnownAtEndOfBB)) {
            if (&I == Cond)
      break;
            if (!isGuaranteedToTransferExecutionToSuccessor(&I))
      break;
    Changed |= I.replaceUsesOfWith(Cond, ToVal);
  }
  if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
    Cond->eraseFromParent();
    Changed = true;
  }
  return Changed;
}
static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
                                             BasicBlock *BB,
                                             Instruction *StopAt,
                                             unsigned Threshold) {
  assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
    BasicBlock::const_iterator I(BB->getFirstNonPHI());
    
  unsigned Bonus = 0;
  if (BB->getTerminator() == StopAt) {
                if (isa<SwitchInst>(StopAt))
      Bonus = 6;
        if (isa<IndirectBrInst>(StopAt))
      Bonus = 8;
  }
      Threshold += Bonus;
      unsigned Size = 0;
  for (; &*I != StopAt; ++I) {
        if (Size > Threshold)
      return Size;
            if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
      return ~0U;
            if (const CallInst *CI = dyn_cast<CallInst>(I))
      if (CI->cannotDuplicate() || CI->isConvergent())
        return ~0U;
    if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency)
            == TargetTransformInfo::TCC_Free)
      continue;
        ++Size;
                    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
      if (!isa<IntrinsicInst>(CI))
        Size += 3;
      else if (!CI->getType()->isVectorTy())
        Size += 1;
    }
  }
  return Size > Bonus ? Size - Bonus : 0;
}
void JumpThreadingPass::findLoopHeaders(Function &F) {
  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
  FindFunctionBackedges(F, Edges);
  for (const auto &Edge : Edges)
    LoopHeaders.insert(Edge.second);
}
static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
  if (!Val)
    return nullptr;
    if (UndefValue *U = dyn_cast<UndefValue>(Val))
    return U;
  if (Preference == WantBlockAddress)
    return dyn_cast<BlockAddress>(Val->stripPointerCasts());
  return dyn_cast<ConstantInt>(Val);
}
bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
    Value *V, BasicBlock *BB, PredValueInfo &Result,
    ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
    Instruction *CxtI) {
          if (!RecursionSet.insert(V).second)
    return false;
    if (Constant *KC = getKnownConstant(V, Preference)) {
    for (BasicBlock *Pred : predecessors(BB))
      Result.emplace_back(KC, Pred);
    return !Result.empty();
  }
      Instruction *I = dyn_cast<Instruction>(V);
  if (!I || I->getParent() != BB) {
                                                    for (BasicBlock *P : predecessors(BB)) {
                  Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
      if (Constant *KC = getKnownConstant(PredCst, Preference))
        Result.emplace_back(KC, P);
    }
    return !Result.empty();
  }
    if (PHINode *PN = dyn_cast<PHINode>(I)) {
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      Value *InVal = PN->getIncomingValue(i);
      if (Constant *KC = getKnownConstant(InVal, Preference)) {
        Result.emplace_back(KC, PN->getIncomingBlock(i));
      } else {
        Constant *CI = LVI->getConstantOnEdge(InVal,
                                              PN->getIncomingBlock(i),
                                              BB, CxtI);
        if (Constant *KC = getKnownConstant(CI, Preference))
          Result.emplace_back(KC, PN->getIncomingBlock(i));
      }
    }
    return !Result.empty();
  }
    if (CastInst *CI = dyn_cast<CastInst>(I)) {
    Value *Source = CI->getOperand(0);
    computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
                                        RecursionSet, CxtI);
    if (Result.empty())
      return false;
        for (auto &R : Result)
      R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
    return true;
  }
  if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
    Value *Source = FI->getOperand(0);
    computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
                                        RecursionSet, CxtI);
    erase_if(Result, [](auto &Pair) {
      return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
    });
    return !Result.empty();
  }
    if (I->getType()->getPrimitiveSizeInBits() == 1) {
    using namespace PatternMatch;
    if (Preference != WantInteger)
      return false;
            Value *Op0, *Op1;
    if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
        match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
      PredValueInfoTy LHSVals, RHSVals;
      computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
                                          RecursionSet, CxtI);
      computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
                                          RecursionSet, CxtI);
      if (LHSVals.empty() && RHSVals.empty())
        return false;
      ConstantInt *InterestingVal;
      if (match(I, m_LogicalOr()))
        InterestingVal = ConstantInt::getTrue(I->getContext());
      else
        InterestingVal = ConstantInt::getFalse(I->getContext());
      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
                  for (const auto &LHSVal : LHSVals)
        if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
          Result.emplace_back(InterestingVal, LHSVal.second);
          LHSKnownBBs.insert(LHSVal.second);
        }
      for (const auto &RHSVal : RHSVals)
        if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
                              if (!LHSKnownBBs.count(RHSVal.second))
            Result.emplace_back(InterestingVal, RHSVal.second);
        }
      return !Result.empty();
    }
        if (I->getOpcode() == Instruction::Xor &&
        isa<ConstantInt>(I->getOperand(1)) &&
        cast<ConstantInt>(I->getOperand(1))->isOne()) {
      computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
                                          WantInteger, RecursionSet, CxtI);
      if (Result.empty())
        return false;
            for (auto &R : Result)
        R.first = ConstantExpr::getNot(R.first);
      return true;
    }
    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    if (Preference != WantInteger)
      return false;
    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
      const DataLayout &DL = BO->getModule()->getDataLayout();
      PredValueInfoTy LHSVals;
      computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
                                          WantInteger, RecursionSet, CxtI);
            for (const auto &LHSVal : LHSVals) {
        Constant *V = LHSVal.first;
        Constant *Folded =
            ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
        if (Constant *KC = getKnownConstant(Folded, WantInteger))
          Result.emplace_back(KC, LHSVal.second);
      }
    }
    return !Result.empty();
  }
    if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
    if (Preference != WantInteger)
      return false;
    Type *CmpType = Cmp->getType();
    Value *CmpLHS = Cmp->getOperand(0);
    Value *CmpRHS = Cmp->getOperand(1);
    CmpInst::Predicate Pred = Cmp->getPredicate();
    PHINode *PN = dyn_cast<PHINode>(CmpLHS);
    if (!PN)
      PN = dyn_cast<PHINode>(CmpRHS);
    if (PN && PN->getParent() == BB) {
      const DataLayout &DL = PN->getModule()->getDataLayout();
                  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        BasicBlock *PredBB = PN->getIncomingBlock(i);
        Value *LHS, *RHS;
        if (PN == CmpLHS) {
          LHS = PN->getIncomingValue(i);
          RHS = CmpRHS->DoPHITranslation(BB, PredBB);
        } else {
          LHS = CmpLHS->DoPHITranslation(BB, PredBB);
          RHS = PN->getIncomingValue(i);
        }
        Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
        if (!Res) {
          if (!isa<Constant>(RHS))
            continue;
                    auto LHSInst = dyn_cast<Instruction>(LHS);
          if (LHSInst && LHSInst->getParent() == BB)
            continue;
          LazyValueInfo::Tristate
            ResT = LVI->getPredicateOnEdge(Pred, LHS,
                                           cast<Constant>(RHS), PredBB, BB,
                                           CxtI ? CxtI : Cmp);
          if (ResT == LazyValueInfo::Unknown)
            continue;
          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
        }
        if (Constant *KC = getKnownConstant(Res, WantInteger))
          Result.emplace_back(KC, PredBB);
      }
      return !Result.empty();
    }
            if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
      Constant *CmpConst = cast<Constant>(CmpRHS);
      if (!isa<Instruction>(CmpLHS) ||
          cast<Instruction>(CmpLHS)->getParent() != BB) {
        for (BasicBlock *P : predecessors(BB)) {
                              LazyValueInfo::Tristate Res =
            LVI->getPredicateOnEdge(Pred, CmpLHS,
                                    CmpConst, P, BB, CxtI ? CxtI : Cmp);
          if (Res == LazyValueInfo::Unknown)
            continue;
          Constant *ResC = ConstantInt::get(CmpType, Res);
          Result.emplace_back(ResC, P);
        }
        return !Result.empty();
      }
                        {
        using namespace PatternMatch;
        Value *AddLHS;
        ConstantInt *AddConst;
        if (isa<ConstantInt>(CmpConst) &&
            match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
          if (!isa<Instruction>(AddLHS) ||
              cast<Instruction>(AddLHS)->getParent() != BB) {
            for (BasicBlock *P : predecessors(BB)) {
                                                        ConstantRange CR = LVI->getConstantRangeOnEdge(
                  AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
                            CR = CR.add(AddConst->getValue());
                            ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
                  Pred, cast<ConstantInt>(CmpConst)->getValue());
              Constant *ResC;
              if (CmpRange.contains(CR))
                ResC = ConstantInt::getTrue(CmpType);
              else if (CmpRange.inverse().contains(CR))
                ResC = ConstantInt::getFalse(CmpType);
              else
                continue;
              Result.emplace_back(ResC, P);
            }
            return !Result.empty();
          }
        }
      }
                  PredValueInfoTy LHSVals;
      computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
                                          WantInteger, RecursionSet, CxtI);
      for (const auto &LHSVal : LHSVals) {
        Constant *V = LHSVal.first;
        Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
        if (Constant *KC = getKnownConstant(Folded, WantInteger))
          Result.emplace_back(KC, LHSVal.second);
      }
      return !Result.empty();
    }
  }
  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
            Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
    PredValueInfoTy Conds;
    if ((TrueVal || FalseVal) &&
        computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
                                            WantInteger, RecursionSet, CxtI)) {
      for (auto &C : Conds) {
        Constant *Cond = C.first;
                bool KnownCond;
        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
                    KnownCond = CI->isOne();
        } else {
          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
                                        KnownCond = (TrueVal != nullptr);
        }
                if (Constant *Val = KnownCond ? TrueVal : FalseVal)
          Result.emplace_back(Val, C.second);
      }
      return !Result.empty();
    }
  }
    assert(CxtI->getParent() == BB && "CxtI should be in BB");
  Constant *CI = LVI->getConstant(V, CxtI);
  if (Constant *KC = getKnownConstant(CI, Preference)) {
    for (BasicBlock *Pred : predecessors(BB))
      Result.emplace_back(KC, Pred);
  }
  return !Result.empty();
}
static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
  Instruction *BBTerm = BB->getTerminator();
  unsigned MinSucc = 0;
  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
    unsigned MinNumPreds = pred_size(TestBB);
  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
    TestBB = BBTerm->getSuccessor(i);
    unsigned NumPreds = pred_size(TestBB);
    if (NumPreds < MinNumPreds) {
      MinSucc = i;
      MinNumPreds = NumPreds;
    }
  }
  return MinSucc;
}
static bool hasAddressTakenAndUsed(BasicBlock *BB) {
  if (!BB->hasAddressTaken()) return false;
      BlockAddress *BA = BlockAddress::get(BB);
  BA->removeDeadConstantUsers();
  return !BA->use_empty();
}
bool JumpThreadingPass::processBlock(BasicBlock *BB) {
      if (DTU->isBBPendingDeletion(BB) ||
      (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
    return false;
          if (maybeMergeBasicBlockIntoOnlyPred(BB))
    return true;
  if (tryToUnfoldSelectInCurrBB(BB))
    return true;
    if (HasGuards && processGuards(BB))
    return true;
    ConstantPreference Preference = WantInteger;
      Value *Condition;
  Instruction *Terminator = BB->getTerminator();
  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
        if (BI->isUnconditional()) return false;
    Condition = BI->getCondition();
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
    Condition = SI->getCondition();
  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
        if (IB->getNumSuccessors() == 0) return false;
    Condition = IB->getAddress()->stripPointerCasts();
    Preference = WantBlockAddress;
  } else {
    return false;   }
    bool ConstantFolded = false;
      if (Instruction *I = dyn_cast<Instruction>(Condition)) {
    Value *SimpleVal =
        ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
    if (SimpleVal) {
      I->replaceAllUsesWith(SimpleVal);
      if (isInstructionTriviallyDead(I, TLI))
        I->eraseFromParent();
      Condition = SimpleVal;
      ConstantFolded = true;
    }
  }
      auto *FI = dyn_cast<FreezeInst>(Condition);
  if (isa<UndefValue>(Condition) ||
      (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
    unsigned BestSucc = getBestDestForJumpOnUndef(BB);
    std::vector<DominatorTree::UpdateType> Updates;
        Instruction *BBTerm = BB->getTerminator();
    Updates.reserve(BBTerm->getNumSuccessors());
    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
      if (i == BestSucc) continue;
      BasicBlock *Succ = BBTerm->getSuccessor(i);
      Succ->removePredecessor(BB, true);
      Updates.push_back({DominatorTree::Delete, BB, Succ});
    }
    LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
                      << "' folding undef terminator: " << *BBTerm << '\n');
    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
    ++NumFolds;
    BBTerm->eraseFromParent();
    DTU->applyUpdatesPermissive(Updates);
    if (FI)
      FI->eraseFromParent();
    return true;
  }
        if (getKnownConstant(Condition, Preference)) {
    LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
                      << "' folding terminator: " << *BB->getTerminator()
                      << '\n');
    ++NumFolds;
    ConstantFoldTerminator(BB, true, nullptr, DTU);
    if (HasProfileData)
      BPI->eraseBlock(BB);
    return true;
  }
  Instruction *CondInst = dyn_cast<Instruction>(Condition);
    if (!CondInst) {
        if (processThreadableEdges(Condition, BB, Preference, Terminator))
      return true;
    return ConstantFolded;
  }
    Value *CondWithoutFreeze = CondInst;
  if (auto *FI = dyn_cast<FreezeInst>(CondInst))
    CondWithoutFreeze = FI->getOperand(0);
  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
                if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
      LazyValueInfo::Tristate Ret =
          LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
                              CondConst, BB->getTerminator(),
                              false);
      if (Ret != LazyValueInfo::Unknown) {
                                                                auto *CI = Ret == LazyValueInfo::True ?
          ConstantInt::getTrue(CondCmp->getType()) :
          ConstantInt::getFalse(CondCmp->getType());
        if (replaceFoldableUses(CondCmp, CI, BB))
          return true;
      }
                  if (tryToUnfoldSelect(CondCmp, BB))
        return true;
    }
  }
  if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
    if (tryToUnfoldSelect(SI, BB))
      return true;
          Value *SimplifyValue = CondWithoutFreeze;
  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
    if (isa<Constant>(CondCmp->getOperand(1)))
      SimplifyValue = CondCmp->getOperand(0);
      if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
    if (simplifyPartiallyRedundantLoad(LoadI))
      return true;
    if (PHINode *PN = dyn_cast<PHINode>(CondInst))
    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
      updatePredecessorProfileMetadata(PN, BB);
        if (processThreadableEdges(CondInst, BB, Preference, Terminator))
    return true;
      PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
  if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    return processBranchOnPHI(PN);
    if (CondInst->getOpcode() == Instruction::Xor &&
      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    return processBranchOnXOR(cast<BinaryOperator>(CondInst));
      if (processImpliedCondition(BB))
    return true;
  return false;
}
bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
  auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;
  Value *Cond = BI->getCondition();
            auto *FICond = dyn_cast<FreezeInst>(Cond);
  if (FICond && FICond->hasOneUse())
    Cond = FICond->getOperand(0);
  else
    FICond = nullptr;
  BasicBlock *CurrentBB = BB;
  BasicBlock *CurrentPred = BB->getSinglePredecessor();
  unsigned Iter = 0;
  auto &DL = BB->getModule()->getDataLayout();
  while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
    auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
    if (!PBI || !PBI->isConditional())
      return false;
    if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
      return false;
    bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
    Optional<bool> Implication =
        isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
            if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
      if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
          FICond->getOperand(0))
        Implication = CondIsTrue;
    }
    if (Implication) {
      BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
      BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
      RemoveSucc->removePredecessor(BB);
      BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
      UncondBI->setDebugLoc(BI->getDebugLoc());
      ++NumFolds;
      BI->eraseFromParent();
      if (FICond)
        FICond->eraseFromParent();
      DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
      if (HasProfileData)
        BPI->eraseBlock(BB);
      return true;
    }
    CurrentBB = CurrentPred;
    CurrentPred = CurrentBB->getSinglePredecessor();
  }
  return false;
}
static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
  if (Instruction *OpInst = dyn_cast<Instruction>(Op))
    if (OpInst->getParent() == BB)
      return true;
  return false;
}
bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
    if (!LoadI->isUnordered()) return false;
      BasicBlock *LoadBB = LoadI->getParent();
  if (LoadBB->getSinglePredecessor())
    return false;
        if (LoadBB->isEHPad())
    return false;
  Value *LoadedPtr = LoadI->getOperand(0);
      if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
    return false;
      BasicBlock::iterator BBIt(LoadI);
  bool IsLoadCSE;
  if (Value *AvailableVal = FindAvailableLoadedValue(
          LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
        
    if (IsLoadCSE) {
      LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
      combineMetadataForCSE(NLoadI, LoadI, false);
    };
            if (AvailableVal == LoadI)
      AvailableVal = PoisonValue::get(LoadI->getType());
    if (AvailableVal->getType() != LoadI->getType())
      AvailableVal = CastInst::CreateBitOrPointerCast(
          AvailableVal, LoadI->getType(), "", LoadI);
    LoadI->replaceAllUsesWith(AvailableVal);
    LoadI->eraseFromParent();
    return true;
  }
        if (BBIt != LoadBB->begin())
    return false;
      AAMDNodes AATags = LoadI->getAAMetadata();
  SmallPtrSet<BasicBlock*, 8> PredsScanned;
  using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
  AvailablePredsTy AvailablePreds;
  BasicBlock *OneUnavailablePred = nullptr;
  SmallVector<LoadInst*, 8> CSELoads;
      for (BasicBlock *PredBB : predecessors(LoadBB)) {
        if (!PredsScanned.insert(PredBB).second)
      continue;
    BBIt = PredBB->end();
    unsigned NumScanedInst = 0;
    Value *PredAvailable = nullptr;
            assert(LoadI->isUnordered() &&
           "Attempting to CSE volatile or atomic loads");
            Type *AccessTy = LoadI->getType();
    const auto &DL = LoadI->getModule()->getDataLayout();
    MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
                       LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
                       AATags);
    PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
                                              PredBB, BBIt, DefMaxInstsToScan,
                                              AA, &IsLoadCSE, &NumScanedInst);
            BasicBlock *SinglePredBB = PredBB;
    while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
           NumScanedInst < DefMaxInstsToScan) {
      SinglePredBB = SinglePredBB->getSinglePredecessor();
      if (SinglePredBB) {
        BBIt = SinglePredBB->end();
        PredAvailable = findAvailablePtrLoadStore(
            Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
            (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
            &NumScanedInst);
      }
    }
    if (!PredAvailable) {
      OneUnavailablePred = PredBB;
      continue;
    }
    if (IsLoadCSE)
      CSELoads.push_back(cast<LoadInst>(PredAvailable));
            AvailablePreds.emplace_back(PredBB, PredAvailable);
  }
      if (AvailablePreds.empty()) return false;
            BasicBlock *UnavailablePred = nullptr;
                  if (PredsScanned.size() != AvailablePreds.size() &&
      !isSafeToSpeculativelyExecute(LoadI))
    for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
      if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
        return false;
        if (PredsScanned.size() == AvailablePreds.size()+1 &&
      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
    UnavailablePred = OneUnavailablePred;
  } else if (PredsScanned.size() != AvailablePreds.size()) {
            SmallVector<BasicBlock*, 8> PredsToSplit;
    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
    for (const auto &AvailablePred : AvailablePreds)
      AvailablePredSet.insert(AvailablePred.first);
        for (BasicBlock *P : predecessors(LoadBB)) {
            if (isa<IndirectBrInst>(P->getTerminator()))
        return false;
      if (!AvailablePredSet.count(P))
        PredsToSplit.push_back(P);
    }
        UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
  }
        if (UnavailablePred) {
    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
           "Can't handle critical edge here!");
    LoadInst *NewVal = new LoadInst(
        LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
        LoadI->getName() + ".pr", false, LoadI->getAlign(),
        LoadI->getOrdering(), LoadI->getSyncScopeID(),
        UnavailablePred->getTerminator());
    NewVal->setDebugLoc(LoadI->getDebugLoc());
    if (AATags)
      NewVal->setAAMetadata(AATags);
    AvailablePreds.emplace_back(UnavailablePred, NewVal);
  }
      array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
    pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
  PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
                                &LoadBB->front());
  PN->takeName(LoadI);
  PN->setDebugLoc(LoadI->getDebugLoc());
      for (pred_iterator PI = PB; PI != PE; ++PI) {
    BasicBlock *P = *PI;
    AvailablePredsTy::iterator I =
        llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
    assert(I != AvailablePreds.end() && I->first == P &&
           "Didn't find entry for predecessor!");
                    Value *&PredV = I->second;
    if (PredV->getType() != LoadI->getType())
      PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
                                               P->getTerminator());
    PN->addIncoming(PredV, I->first);
  }
  for (LoadInst *PredLoadI : CSELoads) {
    combineMetadataForCSE(PredLoadI, LoadI, true);
  }
  LoadI->replaceAllUsesWith(PN);
  LoadI->eraseFromParent();
  return true;
}
static BasicBlock *
findMostPopularDest(BasicBlock *BB,
                    const SmallVectorImpl<std::pair<BasicBlock *,
                                          BasicBlock *>> &PredToDestList) {
  assert(!PredToDestList.empty());
          MapVector<BasicBlock *, unsigned> DestPopularity;
          DestPopularity[nullptr] = 0;
  for (auto *SuccBB : successors(BB))
    DestPopularity[SuccBB] = 0;
  for (const auto &PredToDest : PredToDestList)
    if (PredToDest.second)
      DestPopularity[PredToDest.second]++;
    auto MostPopular = std::max_element(
      DestPopularity.begin(), DestPopularity.end(), llvm::less_second());
    return MostPopular->first;
}
Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
                                                       BasicBlock *PredPredBB,
                                                       Value *V) {
  BasicBlock *PredBB = BB->getSinglePredecessor();
  assert(PredBB && "Expected a single predecessor");
  if (Constant *Cst = dyn_cast<Constant>(V)) {
    return Cst;
  }
    Instruction *I = dyn_cast<Instruction>(V);
  if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
    return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
  }
    if (PHINode *PHI = dyn_cast<PHINode>(V)) {
    if (PHI->getParent() == PredBB)
      return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
    return nullptr;
  }
    if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
    if (CondCmp->getParent() == BB) {
      Constant *Op0 =
          evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
      Constant *Op1 =
          evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
      if (Op0 && Op1) {
        return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
      }
    }
    return nullptr;
  }
  return nullptr;
}
bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
                                               ConstantPreference Preference,
                                               Instruction *CxtI) {
      if (LoopHeaders.count(BB))
    return false;
  PredValueInfoTy PredValues;
  if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
                                       CxtI)) {
            return maybethreadThroughTwoBasicBlocks(BB, Cond);
  }
  assert(!PredValues.empty() &&
         "computeValueKnownInPredecessors returned true with no values");
  LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
             for (const auto &PredValue : PredValues) {
               dbgs() << "  BB '" << BB->getName()
                      << "': FOUND condition = " << *PredValue.first
                      << " for pred '" << PredValue.second->getName() << "'.\n";
  });
          SmallPtrSet<BasicBlock*, 16> SeenPreds;
  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
  BasicBlock *OnlyDest = nullptr;
  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
  Constant *OnlyVal = nullptr;
  Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
  for (const auto &PredValue : PredValues) {
    BasicBlock *Pred = PredValue.second;
    if (!SeenPreds.insert(Pred).second)
      continue;  
    Constant *Val = PredValue.first;
    BasicBlock *DestBB;
    if (isa<UndefValue>(Val))
      DestBB = nullptr;
    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
      assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
      assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
      DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
    } else {
      assert(isa<IndirectBrInst>(BB->getTerminator())
              && "Unexpected terminator");
      assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
    }
        if (PredToDestList.empty()) {
      OnlyDest = DestBB;
      OnlyVal = Val;
    } else {
      if (OnlyDest != DestBB)
        OnlyDest = MultipleDestSentinel;
                  if (Val != OnlyVal)
        OnlyVal = MultipleVal;
    }
            if (isa<IndirectBrInst>(Pred->getTerminator()))
      continue;
    PredToDestList.emplace_back(Pred, DestBB);
  }
    if (PredToDestList.empty())
    return false;
        if (OnlyDest && OnlyDest != MultipleDestSentinel) {
    if (BB->hasNPredecessors(PredToDestList.size())) {
      bool SeenFirstBranchToOnlyDest = false;
      std::vector <DominatorTree::UpdateType> Updates;
      Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
      for (BasicBlock *SuccBB : successors(BB)) {
        if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
          SeenFirstBranchToOnlyDest = true;         } else {
          SuccBB->removePredecessor(BB, true);           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
        }
      }
            Instruction *Term = BB->getTerminator();
      BranchInst::Create(OnlyDest, Term);
      ++NumFolds;
      Term->eraseFromParent();
      DTU->applyUpdatesPermissive(Updates);
      if (HasProfileData)
        BPI->eraseBlock(BB);
                  if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
        if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
          CondInst->eraseFromParent();
                                                                else if (OnlyVal && OnlyVal != MultipleVal)
          replaceFoldableUses(CondInst, OnlyVal, BB);
      }
      return true;
    }
  }
          BasicBlock *MostPopularDest = OnlyDest;
  if (MostPopularDest == MultipleDestSentinel) {
                erase_if(PredToDestList,
             [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
               return LoopHeaders.contains(PredToDest.second);
             });
    if (PredToDestList.empty())
      return false;
    MostPopularDest = findMostPopularDest(BB, PredToDestList);
  }
      SmallVector<BasicBlock*, 16> PredsToFactor;
  for (const auto &PredToDest : PredToDestList)
    if (PredToDest.second == MostPopularDest) {
      BasicBlock *Pred = PredToDest.first;
                        for (BasicBlock *Succ : successors(Pred))
        if (Succ == BB)
          PredsToFactor.push_back(Pred);
    }
      if (!MostPopularDest)
    MostPopularDest = BB->getTerminator()->
                            getSuccessor(getBestDestForJumpOnUndef(BB));
    return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
}
bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
  BasicBlock *BB = PN->getParent();
      SmallVector<BasicBlock*, 1> PredBBs;
  PredBBs.resize(1);
                for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    BasicBlock *PredBB = PN->getIncomingBlock(i);
    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
      if (PredBr->isUnconditional()) {
        PredBBs[0] = PredBB;
                if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
          return true;
      }
  }
  return false;
}
bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
  BasicBlock *BB = BO->getParent();
      if (isa<ConstantInt>(BO->getOperand(0)) ||
      isa<ConstantInt>(BO->getOperand(1)))
    return false;
      if (!isa<PHINode>(BB->front()))
    return false;
    if (BB->isEHPad())
    return false;
                                  
  PredValueInfoTy XorOpValues;
  bool isLHS = true;
  if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
                                       WantInteger, BO)) {
    assert(XorOpValues.empty());
    if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
                                         WantInteger, BO))
      return false;
    isLHS = false;
  }
  assert(!XorOpValues.empty() &&
         "computeValueKnownInPredecessors returned true with no values");
      unsigned NumTrue = 0, NumFalse = 0;
  for (const auto &XorOpValue : XorOpValues) {
    if (isa<UndefValue>(XorOpValue.first))
            continue;
    if (cast<ConstantInt>(XorOpValue.first)->isZero())
      ++NumFalse;
    else
      ++NumTrue;
  }
    ConstantInt *SplitVal = nullptr;
  if (NumTrue > NumFalse)
    SplitVal = ConstantInt::getTrue(BB->getContext());
  else if (NumTrue != 0 || NumFalse != 0)
    SplitVal = ConstantInt::getFalse(BB->getContext());
      SmallVector<BasicBlock*, 8> BlocksToFoldInto;
  for (const auto &XorOpValue : XorOpValues) {
    if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
      continue;
    BlocksToFoldInto.push_back(XorOpValue.second);
  }
      if (BlocksToFoldInto.size() ==
      cast<PHINode>(BB->front()).getNumIncomingValues()) {
    if (!SplitVal) {
            BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
      BO->eraseFromParent();
    } else if (SplitVal->isZero()) {
            BO->replaceAllUsesWith(BO->getOperand(isLHS));
      BO->eraseFromParent();
    } else {
            BO->setOperand(!isLHS, SplitVal);
    }
    return true;
  }
      if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
        return isa<IndirectBrInst>(Pred->getTerminator());
      }))
    return false;
    return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
}
static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
                                            BasicBlock *OldPred,
                                            BasicBlock *NewPred,
                                     DenseMap<Instruction*, Value*> &ValueMap) {
  for (PHINode &PN : PHIBB->phis()) {
            Value *IV = PN.getIncomingValueForBlock(OldPred);
        if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
      if (I != ValueMap.end())
        IV = I->second;
    }
    PN.addIncoming(IV, NewPred);
  }
}
bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
  BasicBlock *SinglePred = BB->getSinglePredecessor();
  if (!SinglePred)
    return false;
  const Instruction *TI = SinglePred->getTerminator();
  if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
      SinglePred == BB || hasAddressTakenAndUsed(BB))
    return false;
    if (LoopHeaders.erase(SinglePred))
    LoopHeaders.insert(BB);
  LVI->eraseBlock(SinglePred);
  MergeBasicBlockIntoOnlyPred(BB, DTU);
                                                
      if (!isGuaranteedToTransferExecutionToSuccessor(BB))
    LVI->eraseBlock(BB);
  return true;
}
void JumpThreadingPass::updateSSA(
    BasicBlock *BB, BasicBlock *NewBB,
    DenseMap<Instruction *, Value *> &ValueMapping) {
          SSAUpdater SSAUpdate;
  SmallVector<Use *, 16> UsesToRename;
  for (Instruction &I : *BB) {
            for (Use &U : I.uses()) {
      Instruction *User = cast<Instruction>(U.getUser());
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
        if (UserPN->getIncomingBlock(U) == BB)
          continue;
      } else if (User->getParent() == BB)
        continue;
      UsesToRename.push_back(&U);
    }
        if (UsesToRename.empty())
      continue;
    LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
                SSAUpdate.Initialize(I.getType(), I.getName());
    SSAUpdate.AddAvailableValue(BB, &I);
    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
    while (!UsesToRename.empty())
      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
    LLVM_DEBUG(dbgs() << "\n");
  }
}
DenseMap<Instruction *, Value *>
JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
                                     BasicBlock::iterator BE, BasicBlock *NewBB,
                                     BasicBlock *PredBB) {
        DenseMap<Instruction *, Value *> ValueMapping;
        for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
    PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
    NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
    ValueMapping[PN] = NewPN;
  }
        SmallVector<MDNode *> NoAliasScopes;
  DenseMap<MDNode *, MDNode *> ClonedScopes;
  LLVMContext &Context = PredBB->getContext();
  identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
  cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
        for (; BI != BE; ++BI) {
    Instruction *New = BI->clone();
    New->setName(BI->getName());
    NewBB->getInstList().push_back(New);
    ValueMapping[&*BI] = New;
    adaptNoAliasScopes(New, ClonedScopes, Context);
        for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
        DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
        if (I != ValueMapping.end())
          New->setOperand(i, I->second);
      }
  }
  return ValueMapping;
}
bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
                                                         Value *Cond) {
                              
    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
  if (!CondBr)
    return false;
    BasicBlock *PredBB = BB->getSinglePredecessor();
  if (!PredBB)
    return false;
        BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
  if (!PredBBBranch || PredBBBranch->isUnconditional())
    return false;
      if (PredBB->getSinglePredecessor())
    return false;
                    if (llvm::is_contained(successors(PredBB), PredBB))
    return false;
    if (LoopHeaders.count(PredBB))
    return false;
    if (PredBB->isEHPad())
    return false;
        unsigned ZeroCount = 0;
  unsigned OneCount = 0;
  BasicBlock *ZeroPred = nullptr;
  BasicBlock *OnePred = nullptr;
  for (BasicBlock *P : predecessors(PredBB)) {
        if (isa<IndirectBrInst>(P->getTerminator()))
      continue;
    if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
            evaluateOnPredecessorEdge(BB, P, Cond))) {
      if (CI->isZero()) {
        ZeroCount++;
        ZeroPred = P;
      } else if (CI->isOne()) {
        OneCount++;
        OnePred = P;
      }
    }
  }
    BasicBlock *PredPredBB;
  if (ZeroCount == 1) {
    PredPredBB = ZeroPred;
  } else if (OneCount == 1) {
    PredPredBB = OnePred;
  } else {
    return false;
  }
  BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
    if (SuccBB == BB) {
    LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
                      << "' - would thread to self!\n");
    return false;
  }
      if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
    LLVM_DEBUG({
      bool BBIsHeader = LoopHeaders.count(BB);
      bool SuccIsHeader = LoopHeaders.count(SuccBB);
      dbgs() << "  Not threading across "
             << (BBIsHeader ? "loop header BB '" : "block BB '")
             << BB->getName() << "' to dest "
             << (SuccIsHeader ? "loop header BB '" : "block BB '")
             << SuccBB->getName()
             << "' - it might create an irreducible loop!\n";
    });
    return false;
  }
    unsigned BBCost = getJumpThreadDuplicationCost(
      TTI, BB, BB->getTerminator(), BBDupThreshold);
  unsigned PredBBCost = getJumpThreadDuplicationCost(
      TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
        if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
      BBCost + PredBBCost > BBDupThreshold) {
    LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
                      << "' - Cost is too high: " << PredBBCost
                      << " for PredBB, " << BBCost << "for BB\n");
    return false;
  }
    threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
  return true;
}
void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
                                                    BasicBlock *PredBB,
                                                    BasicBlock *BB,
                                                    BasicBlock *SuccBB) {
  LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
                    << BB->getName() << "'\n");
  BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
  BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
  BasicBlock *NewBB =
      BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
                         PredBB->getParent(), PredBB);
  NewBB->moveAfter(PredBB);
    if (HasProfileData) {
    auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
                     BPI->getEdgeProbability(PredPredBB, PredBB);
    BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
  }
        DenseMap<Instruction *, Value *> ValueMapping =
      cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
    if (HasProfileData)
    BPI->copyEdgeProbabilities(PredBB, NewBB);
        Instruction *PredPredTerm = PredPredBB->getTerminator();
  for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
    if (PredPredTerm->getSuccessor(i) == PredBB) {
      PredBB->removePredecessor(PredPredBB, true);
      PredPredTerm->setSuccessor(i, NewBB);
    }
  addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
                                  ValueMapping);
  addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
                                  ValueMapping);
  DTU->applyUpdatesPermissive(
      {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
       {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
       {DominatorTree::Insert, PredPredBB, NewBB},
       {DominatorTree::Delete, PredPredBB, PredBB}});
  updateSSA(PredBB, NewBB, ValueMapping);
      SimplifyInstructionsInBlock(NewBB, TLI);
  SimplifyInstructionsInBlock(PredBB, TLI);
  SmallVector<BasicBlock *, 1> PredsToFactor;
  PredsToFactor.push_back(NewBB);
  threadEdge(BB, PredsToFactor, SuccBB);
}
bool JumpThreadingPass::tryThreadEdge(
    BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
    BasicBlock *SuccBB) {
    if (SuccBB == BB) {
    LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
                      << "' - would thread to self!\n");
    return false;
  }
      if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
    LLVM_DEBUG({
      bool BBIsHeader = LoopHeaders.count(BB);
      bool SuccIsHeader = LoopHeaders.count(SuccBB);
      dbgs() << "  Not threading across "
          << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
          << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
          << SuccBB->getName() << "' - it might create an irreducible loop!\n";
    });
    return false;
  }
  unsigned JumpThreadCost = getJumpThreadDuplicationCost(
      TTI, BB, BB->getTerminator(), BBDupThreshold);
  if (JumpThreadCost > BBDupThreshold) {
    LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
                      << "' - Cost is too high: " << JumpThreadCost << "\n");
    return false;
  }
  threadEdge(BB, PredBBs, SuccBB);
  return true;
}
void JumpThreadingPass::threadEdge(BasicBlock *BB,
                                   const SmallVectorImpl<BasicBlock *> &PredBBs,
                                   BasicBlock *SuccBB) {
  assert(SuccBB != BB && "Don't create an infinite loop");
  assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
         "Don't thread across loop headers");
    BasicBlock *PredBB;
  if (PredBBs.size() == 1)
    PredBB = PredBBs[0];
  else {
    LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
                      << " common predecessors.\n");
    PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
  }
    LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
                    << "' to '" << SuccBB->getName()
                    << ", across block:\n    " << *BB << "\n");
  LVI->threadEdge(PredBB, BB, SuccBB);
  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
                                         BB->getName()+".thread",
                                         BB->getParent(), BB);
  NewBB->moveAfter(PredBB);
    if (HasProfileData) {
    auto NewBBFreq =
        BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
    BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
  }
    DenseMap<Instruction *, Value *> ValueMapping =
      cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
      BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
      addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
        Instruction *PredTerm = PredBB->getTerminator();
  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
    if (PredTerm->getSuccessor(i) == BB) {
      BB->removePredecessor(PredBB, true);
      PredTerm->setSuccessor(i, NewBB);
    }
    DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
                               {DominatorTree::Insert, PredBB, NewBB},
                               {DominatorTree::Delete, PredBB, BB}});
  updateSSA(BB, NewBB, ValueMapping);
        SimplifyInstructionsInBlock(NewBB, TLI);
    updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
    ++NumThreads;
}
BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
                                               ArrayRef<BasicBlock *> Preds,
                                               const char *Suffix) {
  SmallVector<BasicBlock *, 2> NewBBs;
      DenseMap<BasicBlock *, BlockFrequency> FreqMap;
  if (HasProfileData)
    for (auto Pred : Preds)
      FreqMap.insert(std::make_pair(
          Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
      if (BB->isLandingPad()) {
    std::string NewName = std::string(Suffix) + ".split-lp";
    SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
  } else {
    NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
  }
  std::vector<DominatorTree::UpdateType> Updates;
  Updates.reserve((2 * Preds.size()) + NewBBs.size());
  for (auto NewBB : NewBBs) {
    BlockFrequency NewBBFreq(0);
    Updates.push_back({DominatorTree::Insert, NewBB, BB});
    for (auto Pred : predecessors(NewBB)) {
      Updates.push_back({DominatorTree::Delete, Pred, BB});
      Updates.push_back({DominatorTree::Insert, Pred, NewBB});
      if (HasProfileData)         NewBBFreq += FreqMap.lookup(Pred);
    }
    if (HasProfileData)       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
  }
  DTU->applyUpdatesPermissive(Updates);
  return NewBBs[0];
}
bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
  const Instruction *TI = BB->getTerminator();
  assert(TI->getNumSuccessors() > 1 && "not a split");
  MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
  if (!WeightsNode)
    return false;
  MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
  if (MDName->getString() != "branch_weights")
    return false;
      return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
}
void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
                                                     BasicBlock *BB,
                                                     BasicBlock *NewBB,
                                                     BasicBlock *SuccBB) {
  if (!HasProfileData)
    return;
  assert(BFI && BPI && "BFI & BPI should have been created here");
      auto BBOrigFreq = BFI->getBlockFreq(BB);
  auto NewBBFreq = BFI->getBlockFreq(NewBB);
  auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
  auto BBNewFreq = BBOrigFreq - NewBBFreq;
  BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
      SmallVector<uint64_t, 4> BBSuccFreq;
  for (BasicBlock *Succ : successors(BB)) {
    auto SuccFreq = (Succ == SuccBB)
                        ? BB2SuccBBFreq - NewBBFreq
                        : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
    BBSuccFreq.push_back(SuccFreq.getFrequency());
  }
  uint64_t MaxBBSuccFreq =
      *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
  SmallVector<BranchProbability, 4> BBSuccProbs;
  if (MaxBBSuccFreq == 0)
    BBSuccProbs.assign(BBSuccFreq.size(),
                       {1, static_cast<unsigned>(BBSuccFreq.size())});
  else {
    for (uint64_t Freq : BBSuccFreq)
      BBSuccProbs.push_back(
          BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
        BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
                                              BBSuccProbs.end());
  }
    BPI->setEdgeProbability(BB, BBSuccProbs);
                                                                      if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
    SmallVector<uint32_t, 4> Weights;
    for (auto Prob : BBSuccProbs)
      Weights.push_back(Prob.getNumerator());
    auto TI = BB->getTerminator();
    TI->setMetadata(
        LLVMContext::MD_prof,
        MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
  }
}
bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
    BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
  assert(!PredBBs.empty() && "Can't handle an empty set");
        if (LoopHeaders.count(BB)) {
    LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
                      << "' into predecessor block '" << PredBBs[0]->getName()
                      << "' - it might create an irreducible loop!\n");
    return false;
  }
  unsigned DuplicationCost = getJumpThreadDuplicationCost(
      TTI, BB, BB->getTerminator(), BBDupThreshold);
  if (DuplicationCost > BBDupThreshold) {
    LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
                      << "' - Cost is too high: " << DuplicationCost << "\n");
    return false;
  }
    std::vector<DominatorTree::UpdateType> Updates;
  BasicBlock *PredBB;
  if (PredBBs.size() == 1)
    PredBB = PredBBs[0];
  else {
    LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
                      << " common predecessors.\n");
    PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
  }
  Updates.push_back({DominatorTree::Delete, PredBB, BB});
      LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
                    << "' into end of '" << PredBB->getName()
                    << "' to eliminate branch on phi.  Cost: "
                    << DuplicationCost << " block is:" << *BB << "\n");
      BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
  if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
    BasicBlock *OldPredBB = PredBB;
    PredBB = SplitEdge(OldPredBB, BB);
    Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
    Updates.push_back({DominatorTree::Insert, PredBB, BB});
    Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
  }
      DenseMap<Instruction*, Value*> ValueMapping;
  BasicBlock::iterator BI = BB->begin();
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
      for (; BI != BB->end(); ++BI) {
    Instruction *New = BI->clone();
        for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
        if (I != ValueMapping.end())
          New->setOperand(i, I->second);
      }
                if (Value *IV = simplifyInstruction(
            New,
            {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
      ValueMapping[&*BI] = IV;
      if (!New->mayHaveSideEffects()) {
        New->deleteValue();
        New = nullptr;
      }
    } else {
      ValueMapping[&*BI] = New;
    }
    if (New) {
            New->setName(BI->getName());
      PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
            for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
        if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
          Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
    }
  }
      BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
  addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
                                  ValueMapping);
  addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
                                  ValueMapping);
  updateSSA(BB, PredBB, ValueMapping);
      BB->removePredecessor(PredBB, true);
    OldPredBranch->eraseFromParent();
  if (HasProfileData)
    BPI->copyEdgeProbabilities(BB, PredBB);
  DTU->applyUpdatesPermissive(Updates);
  ++NumDupes;
  return true;
}
void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
                                          SelectInst *SI, PHINode *SIUse,
                                          unsigned Idx) {
                    BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
                                         BB->getParent(), BB);
    PredTerm->removeFromParent();
  NewBB->getInstList().insert(NewBB->end(), PredTerm);
    auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
  BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
  SIUse->setIncomingValue(Idx, SI->getFalseValue());
  SIUse->addIncoming(SI->getTrueValue(), NewBB);
    SI->eraseFromParent();
  DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
                               {DominatorTree::Insert, Pred, NewBB}});
    for (BasicBlock::iterator BI = BB->begin();
       PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
    if (Phi != SIUse)
      Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
}
bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
  PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
  if (!CondPHI || CondPHI->getParent() != BB)
    return false;
  for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
    BasicBlock *Pred = CondPHI->getIncomingBlock(I);
    SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
                if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
      continue;
    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
    if (!PredTerm || !PredTerm->isUnconditional())
      continue;
    unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
    return true;
  }
  return false;
}
bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
  if (!CondBr || !CondBr->isConditional() || !CondLHS ||
      CondLHS->getParent() != BB)
    return false;
  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
    BasicBlock *Pred = CondLHS->getIncomingBlock(I);
    SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
            if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
      continue;
    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
    if (!PredTerm || !PredTerm->isUnconditional())
      continue;
                LazyValueInfo::Tristate LHSFolds =
        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
                                CondRHS, Pred, BB, CondCmp);
    LazyValueInfo::Tristate RHSFolds =
        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
                                CondRHS, Pred, BB, CondCmp);
    if ((LHSFolds != LazyValueInfo::Unknown ||
         RHSFolds != LazyValueInfo::Unknown) &&
        LHSFolds != RHSFolds) {
      unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
      return true;
    }
  }
  return false;
}
bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
      if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
    return false;
      if (LoopHeaders.count(BB))
    return false;
  for (BasicBlock::iterator BI = BB->begin();
       PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
        if (llvm::all_of(PN->incoming_values(),
                     [](Value *V) { return !isa<ConstantInt>(V); }))
      continue;
    auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
      using namespace PatternMatch;
            if (SI->getParent() != BB)
        return false;
      Value *Cond = SI->getCondition();
      bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
      return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
    };
    SelectInst *SI = nullptr;
    for (Use &U : PN->uses()) {
      if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
                        if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
            isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
          if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
            if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
              SI = SelectI;
              break;
            }
      } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
                if (isUnfoldCandidate(SelectI, U.get())) {
          SI = SelectI;
          break;
        }
      }
    }
    if (!SI)
      continue;
        Value *Cond = SI->getCondition();
    if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
      Cond = new FreezeInst(Cond, "cond.fr", SI);
    Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
    BasicBlock *SplitBB = SI->getParent();
    BasicBlock *NewBB = Term->getParent();
    PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
    NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
    NewPN->addIncoming(SI->getFalseValue(), BB);
    SI->replaceAllUsesWith(NewPN);
    SI->eraseFromParent();
        std::vector<DominatorTree::UpdateType> Updates;
    Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
    Updates.push_back({DominatorTree::Insert, BB, SplitBB});
    Updates.push_back({DominatorTree::Insert, BB, NewBB});
    Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
        for (auto *Succ : successors(SplitBB)) {
      Updates.push_back({DominatorTree::Delete, BB, Succ});
      Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
    }
    DTU->applyUpdatesPermissive(Updates);
    return true;
  }
  return false;
}
bool JumpThreadingPass::processGuards(BasicBlock *BB) {
  using namespace PatternMatch;
    BasicBlock *Pred1, *Pred2;
  auto PI = pred_begin(BB), PE = pred_end(BB);
  if (PI == PE)
    return false;
  Pred1 = *PI++;
  if (PI == PE)
    return false;
  Pred2 = *PI++;
  if (PI != PE)
    return false;
  if (Pred1 == Pred2)
    return false;
      auto *Parent = Pred1->getSinglePredecessor();
  if (!Parent || Parent != Pred2->getSinglePredecessor())
    return false;
  if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
    for (auto &I : *BB)
      if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
        return true;
  return false;
}
bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
                                    BranchInst *BI) {
  assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
  assert(BI->isConditional() && "Unconditional branch has 2 successors?");
  Value *GuardCond = Guard->getArgOperand(0);
  Value *BranchCond = BI->getCondition();
  BasicBlock *TrueDest = BI->getSuccessor(0);
  BasicBlock *FalseDest = BI->getSuccessor(1);
  auto &DL = BB->getModule()->getDataLayout();
  bool TrueDestIsSafe = false;
  bool FalseDestIsSafe = false;
    auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
  if (Impl && *Impl)
    TrueDestIsSafe = true;
  else {
        Impl = isImpliedCondition(BranchCond, GuardCond, DL,  false);
    if (Impl && *Impl)
      FalseDestIsSafe = true;
  }
  if (!TrueDestIsSafe && !FalseDestIsSafe)
    return false;
  BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
  BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
  ValueToValueMapTy UnguardedMapping, GuardedMapping;
  Instruction *AfterGuard = Guard->getNextNode();
  unsigned Cost =
      getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
  if (Cost > BBDupThreshold)
    return false;
      BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
      BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
  assert(GuardedBlock && "Could not create the guarded block?");
        BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
      BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
  assert(UnguardedBlock && "Could not create the unguarded block?");
  LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
                    << GuardedBlock->getName() << "\n");
        SmallVector<Instruction *, 4> ToRemove;
  for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
    if (!isa<PHINode>(&*BI))
      ToRemove.push_back(&*BI);
  Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
  assert(InsertionPoint && "Empty block?");
    for (auto *Inst : reverse(ToRemove)) {
    if (!Inst->use_empty()) {
      PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
      NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
      NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
      NewPN->insertBefore(InsertionPoint);
      Inst->replaceAllUsesWith(NewPN);
    }
    Inst->eraseFromParent();
  }
  return true;
}