; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -slp-threshold=-6 -slp-vectorizer -instcombine -mattr=+sse2 -S | FileCheck %s --check-prefixes=CHECK,SSE ; RUN: opt < %s -slp-threshold=-6 -slp-vectorizer -instcombine -mattr=+avx -S | FileCheck %s --check-prefixes=CHECK,AVX ; RUN: opt < %s -slp-threshold=-6 -slp-vectorizer -instcombine -mattr=+avx2 -S | FileCheck %s --check-prefixes=CHECK,AVX target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" target triple = "x86_64-unknown-linux-gnu" ; These tests ensure that we do not regress due to PR31243. Note that we set ; the SLP threshold to force vectorization even when not profitable. ; When computing minimum sizes, if we can prove the sign bit is zero, we can ; zero-extend the roots back to their original sizes. ; define i8 @PR31243_zext(i8 %v0, i8 %v1, i8 %v2, i8 %v3, i8* %ptr) { ; CHECK-LABEL: @PR31243_zext( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP0:%.*]] = insertelement <2 x i8> poison, i8 [[V0:%.*]], i64 0 ; CHECK-NEXT: [[TMP1:%.*]] = insertelement <2 x i8> [[TMP0]], i8 [[V1:%.*]], i64 1 ; CHECK-NEXT: [[TMP2:%.*]] = or <2 x i8> [[TMP1]], <i8 1, i8 1> ; CHECK-NEXT: [[TMP3:%.*]] = extractelement <2 x i8> [[TMP2]], i64 0 ; CHECK-NEXT: [[TMP4:%.*]] = zext i8 [[TMP3]] to i64 ; CHECK-NEXT: [[TMP_4:%.*]] = getelementptr inbounds i8, i8* [[PTR:%.*]], i64 [[TMP4]] ; CHECK-NEXT: [[TMP5:%.*]] = extractelement <2 x i8> [[TMP2]], i64 1 ; CHECK-NEXT: [[TMP6:%.*]] = zext i8 [[TMP5]] to i64 ; CHECK-NEXT: [[TMP_5:%.*]] = getelementptr inbounds i8, i8* [[PTR]], i64 [[TMP6]] ; CHECK-NEXT: [[TMP_6:%.*]] = load i8, i8* [[TMP_4]], align 1 ; CHECK-NEXT: [[TMP_7:%.*]] = load i8, i8* [[TMP_5]], align 1 ; CHECK-NEXT: [[TMP_8:%.*]] = add i8 [[TMP_6]], [[TMP_7]] ; CHECK-NEXT: ret i8 [[TMP_8]] ; entry: %tmp_0 = zext i8 %v0 to i32 %tmp_1 = zext i8 %v1 to i32 %tmp_2 = or i32 %tmp_0, 1 %tmp_3 = or i32 %tmp_1, 1 %tmp_4 = getelementptr inbounds i8, i8* %ptr, i32 %tmp_2 %tmp_5 = getelementptr inbounds i8, i8* %ptr, i32 %tmp_3 %tmp_6 = load i8, i8* %tmp_4 %tmp_7 = load i8, i8* %tmp_5 %tmp_8 = add i8 %tmp_6, %tmp_7 ret i8 %tmp_8 } ; When computing minimum sizes, if we cannot prove the sign bit is zero, we ; have to include one extra bit for signedness since we will sign-extend the ; roots. ; ; FIXME: This test is suboptimal since the compuation can be performed in i8. ; In general, we need to add an extra bit to the maximum bit width only ; if we can't prove that the upper bit of the original type is equal to ; the upper bit of the proposed smaller type. If these two bits are the ; same (either zero or one) we know that sign-extending from the smaller ; type will result in the same value. Since we don't yet perform this ; optimization, we make the proposed smaller type (i8) larger (i16) to ; ensure correctness. ; define i8 @PR31243_sext(i8 %v0, i8 %v1, i8 %v2, i8 %v3, i8* %ptr) { ; SSE-LABEL: @PR31243_sext( ; SSE-NEXT: entry: ; SSE-NEXT: [[TMP0:%.*]] = or i8 [[V0:%.*]], 1 ; SSE-NEXT: [[TMP1:%.*]] = or i8 [[V1:%.*]], 1 ; SSE-NEXT: [[TMP2:%.*]] = sext i8 [[TMP0]] to i64 ; SSE-NEXT: [[TMP4:%.*]] = getelementptr inbounds i8, i8* [[PTR:%.*]], i64 [[TMP2]] ; SSE-NEXT: [[TMP3:%.*]] = sext i8 [[TMP1]] to i64 ; SSE-NEXT: [[TMP5:%.*]] = getelementptr inbounds i8, i8* [[PTR]], i64 [[TMP3]] ; SSE-NEXT: [[TMP6:%.*]] = load i8, i8* [[TMP4]], align 1 ; SSE-NEXT: [[TMP7:%.*]] = load i8, i8* [[TMP5]], align 1 ; SSE-NEXT: [[TMP8:%.*]] = add i8 [[TMP6]], [[TMP7]] ; SSE-NEXT: ret i8 [[TMP8]] ; ; AVX-LABEL: @PR31243_sext( ; AVX-NEXT: entry: ; AVX-NEXT: [[TMP0:%.*]] = insertelement <2 x i8> poison, i8 [[V0:%.*]], i64 0 ; AVX-NEXT: [[TMP1:%.*]] = insertelement <2 x i8> [[TMP0]], i8 [[V1:%.*]], i64 1 ; AVX-NEXT: [[TMP2:%.*]] = or <2 x i8> [[TMP1]], <i8 1, i8 1> ; AVX-NEXT: [[TMP3:%.*]] = sext <2 x i8> [[TMP2]] to <2 x i16> ; AVX-NEXT: [[TMP4:%.*]] = extractelement <2 x i16> [[TMP3]], i64 0 ; AVX-NEXT: [[TMP5:%.*]] = sext i16 [[TMP4]] to i64 ; AVX-NEXT: [[TMP4:%.*]] = getelementptr inbounds i8, i8* [[PTR:%.*]], i64 [[TMP5]] ; AVX-NEXT: [[TMP6:%.*]] = extractelement <2 x i16> [[TMP3]], i64 1 ; AVX-NEXT: [[TMP7:%.*]] = sext i16 [[TMP6]] to i64 ; AVX-NEXT: [[TMP5:%.*]] = getelementptr inbounds i8, i8* [[PTR]], i64 [[TMP7]] ; AVX-NEXT: [[TMP6:%.*]] = load i8, i8* [[TMP4]], align 1 ; AVX-NEXT: [[TMP7:%.*]] = load i8, i8* [[TMP5]], align 1 ; AVX-NEXT: [[TMP8:%.*]] = add i8 [[TMP6]], [[TMP7]] ; AVX-NEXT: ret i8 [[TMP8]] ; entry: %tmp0 = sext i8 %v0 to i32 %tmp1 = sext i8 %v1 to i32 %tmp2 = or i32 %tmp0, 1 %tmp3 = or i32 %tmp1, 1 %tmp4 = getelementptr inbounds i8, i8* %ptr, i32 %tmp2 %tmp5 = getelementptr inbounds i8, i8* %ptr, i32 %tmp3 %tmp6 = load i8, i8* %tmp4 %tmp7 = load i8, i8* %tmp5 %tmp8 = add i8 %tmp6, %tmp7 ret i8 %tmp8 }