Compiler projects using llvm
//===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler Emitter.
// It contains the implementation of a single recognizable instruction.
// Documentation for the disassembler emitter in general can be found in
//  X86DisassemblerEmitter.h.
//
//===----------------------------------------------------------------------===//

#include "X86RecognizableInstr.h"
#include "X86DisassemblerShared.h"
#include "X86DisassemblerTables.h"
#include "X86ModRMFilters.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TableGen/Record.h"
#include <string>

using namespace llvm;
using namespace X86Disassembler;

std::string X86Disassembler::getMnemonic(const CodeGenInstruction *I, unsigned Variant) {
    std::string AsmString = I->FlattenAsmStringVariants(I->AsmString, Variant);
    StringRef Mnemonic(AsmString);
    // Extract a mnemonic assuming it's separated by \t
    Mnemonic = Mnemonic.take_until([](char C) { return C == '\t'; });

    // Special case: CMOVCC, JCC, SETCC have "${cond}" in mnemonic.
    // Replace it with "CC" in-place.
    size_t CondPos = Mnemonic.find("${cond}");
    if (CondPos != StringRef::npos)
      Mnemonic = AsmString.replace(CondPos, StringRef::npos, "CC");
    return Mnemonic.upper();
}

bool X86Disassembler::isRegisterOperand(const Record *Rec) {
  return Rec->isSubClassOf("RegisterClass") ||
         Rec->isSubClassOf("RegisterOperand");
}

bool X86Disassembler::isMemoryOperand(const Record *Rec) {
  return Rec->isSubClassOf("Operand") &&
         Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
}

bool X86Disassembler::isImmediateOperand(const Record *Rec) {
  return Rec->isSubClassOf("Operand") &&
         Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
}

unsigned X86Disassembler::getRegOperandSize(const Record *RegRec) {
  if (RegRec->isSubClassOf("RegisterClass"))
    return RegRec->getValueAsInt("Alignment");
  if (RegRec->isSubClassOf("RegisterOperand"))
    return RegRec->getValueAsDef("RegClass")->getValueAsInt("Alignment");

  llvm_unreachable("Register operand's size not known!");
}

unsigned X86Disassembler::getMemOperandSize(const Record *MemRec) {
  if (MemRec->isSubClassOf("X86MemOperand"))
    return MemRec->getValueAsInt("Size");

  llvm_unreachable("Memory operand's size not known!");
}

/// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
///   Useful for switch statements and the like.
///
/// @param init - A reference to the BitsInit to be decoded.
/// @return     - The field, with the first bit in the BitsInit as the lowest
///               order bit.
static uint8_t byteFromBitsInit(BitsInit &init) {
  int width = init.getNumBits();

  assert(width <= 8 && "Field is too large for uint8_t!");

  int     index;
  uint8_t mask = 0x01;

  uint8_t ret = 0;

  for (index = 0; index < width; index++) {
    if (cast<BitInit>(init.getBit(index))->getValue())
      ret |= mask;

    mask <<= 1;
  }

  return ret;
}

/// byteFromRec - Extract a value at most 8 bits in with from a Record given the
///   name of the field.
///
/// @param rec  - The record from which to extract the value.
/// @param name - The name of the field in the record.
/// @return     - The field, as translated by byteFromBitsInit().
static uint8_t byteFromRec(const Record* rec, StringRef name) {
  BitsInit* bits = rec->getValueAsBitsInit(name);
  return byteFromBitsInit(*bits);
}

RecognizableInstrBase::RecognizableInstrBase(const CodeGenInstruction &insn) {
  const Record *Rec = insn.TheDef;
  assert(Rec->isSubClassOf("X86Inst") && "Not a X86 Instruction");
  OpPrefix = byteFromRec(Rec, "OpPrefixBits");
  OpMap = byteFromRec(Rec, "OpMapBits");
  Opcode = byteFromRec(Rec, "Opcode");
  Form = byteFromRec(Rec, "FormBits");
  Encoding = byteFromRec(Rec, "OpEncBits");
  OpSize = byteFromRec(Rec, "OpSizeBits");
  AdSize = byteFromRec(Rec, "AdSizeBits");
  HasREX_W = Rec->getValueAsBit("hasREX_W");
  HasVEX_4V = Rec->getValueAsBit("hasVEX_4V");
  HasVEX_W = Rec->getValueAsBit("HasVEX_W");
  IgnoresVEX_W = Rec->getValueAsBit("IgnoresVEX_W");
  IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L");
  HasEVEX_L2 = Rec->getValueAsBit("hasEVEX_L2");
  HasEVEX_K = Rec->getValueAsBit("hasEVEX_K");
  HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z");
  HasEVEX_B = Rec->getValueAsBit("hasEVEX_B");
  IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly");
  IsAsmParserOnly = Rec->getValueAsBit("isAsmParserOnly");
  ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
  CD8_Scale = byteFromRec(Rec, "CD8_Scale");
  HasVEX_L = Rec->getValueAsBit("hasVEX_L");

  EncodeRC = HasEVEX_B &&
             (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg);
}

bool RecognizableInstrBase::shouldBeEmitted() const {
  return Form != X86Local::Pseudo && (!IsCodeGenOnly || ForceDisassemble) &&
         !IsAsmParserOnly;
}

RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
                                     const CodeGenInstruction &insn,
                                     InstrUID uid)
    : RecognizableInstrBase(insn), Rec(insn.TheDef), Name(Rec->getName().str()),
      Is32Bit(false), Is64Bit(false), Operands(&insn.Operands.OperandList),
      UID(uid), Spec(&tables.specForUID(uid)) {
  // Check for 64-bit inst which does not require REX
  // FIXME: Is there some better way to check for In64BitMode?
  std::vector<Record *> Predicates = Rec->getValueAsListOfDefs("Predicates");
  for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
    if (Predicates[i]->getName().contains("Not64Bit") ||
        Predicates[i]->getName().contains("In32Bit")) {
      Is32Bit = true;
      break;
    }
    if (Predicates[i]->getName().contains("In64Bit")) {
      Is64Bit = true;
      break;
    }
  }
}

void RecognizableInstr::processInstr(DisassemblerTables &tables,
                                     const CodeGenInstruction &insn,
                                     InstrUID uid) {
  if (!insn.TheDef->isSubClassOf("X86Inst"))
    return;
  RecognizableInstr recogInstr(tables, insn, uid);

  if (!recogInstr.shouldBeEmitted())
    return;
  recogInstr.emitInstructionSpecifier();
  recogInstr.emitDecodePath(tables);
}

#define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
                    (HasEVEX_K && HasEVEX_B ? n##_K_B : \
                    (HasEVEX_KZ ? n##_KZ : \
                    (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))

InstructionContext RecognizableInstr::insnContext() const {
  InstructionContext insnContext;

  if (Encoding == X86Local::EVEX) {
    if (HasVEX_L && HasEVEX_L2) {
      errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
      llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
    }
    // VEX_L & VEX_W
    if (!EncodeRC && HasVEX_L && HasVEX_W) {
      if (OpPrefix == X86Local::PD)
        insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
      else if (OpPrefix == X86Local::XS)
        insnContext = EVEX_KB(IC_EVEX_L_W_XS);
      else if (OpPrefix == X86Local::XD)
        insnContext = EVEX_KB(IC_EVEX_L_W_XD);
      else if (OpPrefix == X86Local::PS)
        insnContext = EVEX_KB(IC_EVEX_L_W);
      else {
        errs() << "Instruction does not use a prefix: " << Name << "\n";
        llvm_unreachable("Invalid prefix");
      }
    } else if (!EncodeRC && HasVEX_L) {
      // VEX_L
      if (OpPrefix == X86Local::PD)
        insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
      else if (OpPrefix == X86Local::XS)
        insnContext = EVEX_KB(IC_EVEX_L_XS);
      else if (OpPrefix == X86Local::XD)
        insnContext = EVEX_KB(IC_EVEX_L_XD);
      else if (OpPrefix == X86Local::PS)
        insnContext = EVEX_KB(IC_EVEX_L);
      else {
        errs() << "Instruction does not use a prefix: " << Name << "\n";
        llvm_unreachable("Invalid prefix");
      }
    } else if (!EncodeRC && HasEVEX_L2 && HasVEX_W) {
      // EVEX_L2 & VEX_W
      if (OpPrefix == X86Local::PD)
        insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
      else if (OpPrefix == X86Local::XS)
        insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
      else if (OpPrefix == X86Local::XD)
        insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
      else if (OpPrefix == X86Local::PS)
        insnContext = EVEX_KB(IC_EVEX_L2_W);
      else {
        errs() << "Instruction does not use a prefix: " << Name << "\n";
        llvm_unreachable("Invalid prefix");
      }
    } else if (!EncodeRC && HasEVEX_L2) {
      // EVEX_L2
      if (OpPrefix == X86Local::PD)
        insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
      else if (OpPrefix == X86Local::XD)
        insnContext = EVEX_KB(IC_EVEX_L2_XD);
      else if (OpPrefix == X86Local::XS)
        insnContext = EVEX_KB(IC_EVEX_L2_XS);
      else if (OpPrefix == X86Local::PS)
        insnContext = EVEX_KB(IC_EVEX_L2);
      else {
        errs() << "Instruction does not use a prefix: " << Name << "\n";
        llvm_unreachable("Invalid prefix");
      }
    }
    else if (HasVEX_W) {
      // VEX_W
      if (OpPrefix == X86Local::PD)
        insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
      else if (OpPrefix == X86Local::XS)
        insnContext = EVEX_KB(IC_EVEX_W_XS);
      else if (OpPrefix == X86Local::XD)
        insnContext = EVEX_KB(IC_EVEX_W_XD);
      else if (OpPrefix == X86Local::PS)
        insnContext = EVEX_KB(IC_EVEX_W);
      else {
        errs() << "Instruction does not use a prefix: " << Name << "\n";
        llvm_unreachable("Invalid prefix");
      }
    }
    // No L, no W
    else if (OpPrefix == X86Local::PD)
      insnContext = EVEX_KB(IC_EVEX_OPSIZE);
    else if (OpPrefix == X86Local::XD)
      insnContext = EVEX_KB(IC_EVEX_XD);
    else if (OpPrefix == X86Local::XS)
      insnContext = EVEX_KB(IC_EVEX_XS);
    else if (OpPrefix == X86Local::PS)
      insnContext = EVEX_KB(IC_EVEX);
    else {
      errs() << "Instruction does not use a prefix: " << Name << "\n";
      llvm_unreachable("Invalid prefix");
    }
    /// eof EVEX
  } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
    if (HasVEX_L && HasVEX_W) {
      if (OpPrefix == X86Local::PD)
        insnContext = IC_VEX_L_W_OPSIZE;
      else if (OpPrefix == X86Local::XS)
        insnContext = IC_VEX_L_W_XS;
      else if (OpPrefix == X86Local::XD)
        insnContext = IC_VEX_L_W_XD;
      else if (OpPrefix == X86Local::PS)
        insnContext = IC_VEX_L_W;
      else {
        errs() << "Instruction does not use a prefix: " << Name << "\n";
        llvm_unreachable("Invalid prefix");
      }
    } else if (OpPrefix == X86Local::PD && HasVEX_L)
      insnContext = IC_VEX_L_OPSIZE;
    else if (OpPrefix == X86Local::PD && HasVEX_W)
      insnContext = IC_VEX_W_OPSIZE;
    else if (OpPrefix == X86Local::PD)
      insnContext = IC_VEX_OPSIZE;
    else if (HasVEX_L && OpPrefix == X86Local::XS)
      insnContext = IC_VEX_L_XS;
    else if (HasVEX_L && OpPrefix == X86Local::XD)
      insnContext = IC_VEX_L_XD;
    else if (HasVEX_W && OpPrefix == X86Local::XS)
      insnContext = IC_VEX_W_XS;
    else if (HasVEX_W && OpPrefix == X86Local::XD)
      insnContext = IC_VEX_W_XD;
    else if (HasVEX_W && OpPrefix == X86Local::PS)
      insnContext = IC_VEX_W;
    else if (HasVEX_L && OpPrefix == X86Local::PS)
      insnContext = IC_VEX_L;
    else if (OpPrefix == X86Local::XD)
      insnContext = IC_VEX_XD;
    else if (OpPrefix == X86Local::XS)
      insnContext = IC_VEX_XS;
    else if (OpPrefix == X86Local::PS)
      insnContext = IC_VEX;
    else {
      errs() << "Instruction does not use a prefix: " << Name << "\n";
      llvm_unreachable("Invalid prefix");
    }
  } else if (Is64Bit || HasREX_W || AdSize == X86Local::AdSize64) {
    if (HasREX_W && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
      insnContext = IC_64BIT_REXW_OPSIZE;
    else if (HasREX_W && AdSize == X86Local::AdSize32)
      insnContext = IC_64BIT_REXW_ADSIZE;
    else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
      insnContext = IC_64BIT_XD_OPSIZE;
    else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
      insnContext = IC_64BIT_XS_OPSIZE;
    else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD)
      insnContext = IC_64BIT_OPSIZE_ADSIZE;
    else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
      insnContext = IC_64BIT_OPSIZE_ADSIZE;
    else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
      insnContext = IC_64BIT_OPSIZE;
    else if (AdSize == X86Local::AdSize32)
      insnContext = IC_64BIT_ADSIZE;
    else if (HasREX_W && OpPrefix == X86Local::XS)
      insnContext = IC_64BIT_REXW_XS;
    else if (HasREX_W && OpPrefix == X86Local::XD)
      insnContext = IC_64BIT_REXW_XD;
    else if (OpPrefix == X86Local::XD)
      insnContext = IC_64BIT_XD;
    else if (OpPrefix == X86Local::XS)
      insnContext = IC_64BIT_XS;
    else if (HasREX_W)
      insnContext = IC_64BIT_REXW;
    else
      insnContext = IC_64BIT;
  } else {
    if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
      insnContext = IC_XD_OPSIZE;
    else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
      insnContext = IC_XS_OPSIZE;
    else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD)
      insnContext = IC_XD_ADSIZE;
    else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS)
      insnContext = IC_XS_ADSIZE;
    else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD)
      insnContext = IC_OPSIZE_ADSIZE;
    else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
      insnContext = IC_OPSIZE_ADSIZE;
    else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
      insnContext = IC_OPSIZE;
    else if (AdSize == X86Local::AdSize16)
      insnContext = IC_ADSIZE;
    else if (OpPrefix == X86Local::XD)
      insnContext = IC_XD;
    else if (OpPrefix == X86Local::XS)
      insnContext = IC_XS;
    else
      insnContext = IC;
  }

  return insnContext;
}

void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
  // The scaling factor for AVX512 compressed displacement encoding is an
  // instruction attribute.  Adjust the ModRM encoding type to include the
  // scale for compressed displacement.
  if ((encoding != ENCODING_RM &&
       encoding != ENCODING_VSIB &&
       encoding != ENCODING_SIB) ||CD8_Scale == 0)
    return;
  encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
  assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) ||
          (encoding == ENCODING_SIB) ||
          (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) &&
         "Invalid CDisp scaling");
}

void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
                                      unsigned &physicalOperandIndex,
                                      unsigned numPhysicalOperands,
                                      const unsigned *operandMapping,
                                      OperandEncoding (*encodingFromString)
                                        (const std::string&,
                                         uint8_t OpSize)) {
  if (optional) {
    if (physicalOperandIndex >= numPhysicalOperands)
      return;
  } else {
    assert(physicalOperandIndex < numPhysicalOperands);
  }

  while (operandMapping[operandIndex] != operandIndex) {
    Spec->operands[operandIndex].encoding = ENCODING_DUP;
    Spec->operands[operandIndex].type =
      (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
    ++operandIndex;
  }

  StringRef typeName = (*Operands)[operandIndex].Rec->getName();

  OperandEncoding encoding = encodingFromString(std::string(typeName), OpSize);
  // Adjust the encoding type for an operand based on the instruction.
  adjustOperandEncoding(encoding);
  Spec->operands[operandIndex].encoding = encoding;
  Spec->operands[operandIndex].type =
      typeFromString(std::string(typeName), HasREX_W, OpSize);

  ++operandIndex;
  ++physicalOperandIndex;
}

void RecognizableInstr::emitInstructionSpecifier() {
  Spec->name       = Name;

  Spec->insnContext = insnContext();

  const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;

  unsigned numOperands = OperandList.size();
  unsigned numPhysicalOperands = 0;

  // operandMapping maps from operands in OperandList to their originals.
  // If operandMapping[i] != i, then the entry is a duplicate.
  unsigned operandMapping[X86_MAX_OPERANDS];
  assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");

  for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    if (!OperandList[operandIndex].Constraints.empty()) {
      const CGIOperandList::ConstraintInfo &Constraint =
        OperandList[operandIndex].Constraints[0];
      if (Constraint.isTied()) {
        operandMapping[operandIndex] = operandIndex;
        operandMapping[Constraint.getTiedOperand()] = operandIndex;
      } else {
        ++numPhysicalOperands;
        operandMapping[operandIndex] = operandIndex;
      }
    } else {
      ++numPhysicalOperands;
      operandMapping[operandIndex] = operandIndex;
    }
  }

#define HANDLE_OPERAND(class)               \
  handleOperand(false,                      \
                operandIndex,               \
                physicalOperandIndex,       \
                numPhysicalOperands,        \
                operandMapping,             \
                class##EncodingFromString);

#define HANDLE_OPTIONAL(class)              \
  handleOperand(true,                       \
                operandIndex,               \
                physicalOperandIndex,       \
                numPhysicalOperands,        \
                operandMapping,             \
                class##EncodingFromString);

  // operandIndex should always be < numOperands
  unsigned operandIndex = 0;
  // physicalOperandIndex should always be < numPhysicalOperands
  unsigned physicalOperandIndex = 0;

#ifndef NDEBUG
  // Given the set of prefix bits, how many additional operands does the
  // instruction have?
  unsigned additionalOperands = 0;
  if (HasVEX_4V)
    ++additionalOperands;
  if (HasEVEX_K)
    ++additionalOperands;
#endif

  switch (Form) {
  default: llvm_unreachable("Unhandled form");
  case X86Local::PrefixByte:
    return;
  case X86Local::RawFrmSrc:
    HANDLE_OPERAND(relocation);
    return;
  case X86Local::RawFrmDst:
    HANDLE_OPERAND(relocation);
    return;
  case X86Local::RawFrmDstSrc:
    HANDLE_OPERAND(relocation);
    HANDLE_OPERAND(relocation);
    return;
  case X86Local::RawFrm:
    // Operand 1 (optional) is an address or immediate.
    assert(numPhysicalOperands <= 1 &&
           "Unexpected number of operands for RawFrm");
    HANDLE_OPTIONAL(relocation)
    break;
  case X86Local::RawFrmMemOffs:
    // Operand 1 is an address.
    HANDLE_OPERAND(relocation);
    break;
  case X86Local::AddRegFrm:
    // Operand 1 is added to the opcode.
    // Operand 2 (optional) is an address.
    assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
           "Unexpected number of operands for AddRegFrm");
    HANDLE_OPERAND(opcodeModifier)
    HANDLE_OPTIONAL(relocation)
    break;
  case X86Local::AddCCFrm:
    // Operand 1 (optional) is an address or immediate.
    assert(numPhysicalOperands == 2 &&
           "Unexpected number of operands for AddCCFrm");
    HANDLE_OPERAND(relocation)
    HANDLE_OPERAND(opcodeModifier)
    break;
  case X86Local::MRMDestReg:
    // Operand 1 is a register operand in the R/M field.
    // - In AVX512 there may be a mask operand here -
    // Operand 2 is a register operand in the Reg/Opcode field.
    // - In AVX, there is a register operand in the VEX.vvvv field here -
    // Operand 3 (optional) is an immediate.
    assert(numPhysicalOperands >= 2 + additionalOperands &&
           numPhysicalOperands <= 3 + additionalOperands &&
           "Unexpected number of operands for MRMDestRegFrm");

    HANDLE_OPERAND(rmRegister)
    if (HasEVEX_K)
      HANDLE_OPERAND(writemaskRegister)

    if (HasVEX_4V)
      // FIXME: In AVX, the register below becomes the one encoded
      // in ModRMVEX and the one above the one in the VEX.VVVV field
      HANDLE_OPERAND(vvvvRegister)

    HANDLE_OPERAND(roRegister)
    HANDLE_OPTIONAL(immediate)
    break;
  case X86Local::MRMDestMem:
  case X86Local::MRMDestMemFSIB:
    // Operand 1 is a memory operand (possibly SIB-extended)
    // Operand 2 is a register operand in the Reg/Opcode field.
    // - In AVX, there is a register operand in the VEX.vvvv field here -
    // Operand 3 (optional) is an immediate.
    assert(numPhysicalOperands >= 2 + additionalOperands &&
           numPhysicalOperands <= 3 + additionalOperands &&
           "Unexpected number of operands for MRMDestMemFrm with VEX_4V");

    HANDLE_OPERAND(memory)

    if (HasEVEX_K)
      HANDLE_OPERAND(writemaskRegister)

    if (HasVEX_4V)
      // FIXME: In AVX, the register below becomes the one encoded
      // in ModRMVEX and the one above the one in the VEX.VVVV field
      HANDLE_OPERAND(vvvvRegister)

    HANDLE_OPERAND(roRegister)
    HANDLE_OPTIONAL(immediate)
    break;
  case X86Local::MRMSrcReg:
    // Operand 1 is a register operand in the Reg/Opcode field.
    // Operand 2 is a register operand in the R/M field.
    // - In AVX, there is a register operand in the VEX.vvvv field here -
    // Operand 3 (optional) is an immediate.
    // Operand 4 (optional) is an immediate.

    assert(numPhysicalOperands >= 2 + additionalOperands &&
           numPhysicalOperands <= 4 + additionalOperands &&
           "Unexpected number of operands for MRMSrcRegFrm");

    HANDLE_OPERAND(roRegister)

    if (HasEVEX_K)
      HANDLE_OPERAND(writemaskRegister)

    if (HasVEX_4V)
      // FIXME: In AVX, the register below becomes the one encoded
      // in ModRMVEX and the one above the one in the VEX.VVVV field
      HANDLE_OPERAND(vvvvRegister)

    HANDLE_OPERAND(rmRegister)
    HANDLE_OPTIONAL(immediate)
    HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
    break;
  case X86Local::MRMSrcReg4VOp3:
    assert(numPhysicalOperands == 3 &&
           "Unexpected number of operands for MRMSrcReg4VOp3Frm");
    HANDLE_OPERAND(roRegister)
    HANDLE_OPERAND(rmRegister)
    HANDLE_OPERAND(vvvvRegister)
    break;
  case X86Local::MRMSrcRegOp4:
    assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
           "Unexpected number of operands for MRMSrcRegOp4Frm");
    HANDLE_OPERAND(roRegister)
    HANDLE_OPERAND(vvvvRegister)
    HANDLE_OPERAND(immediate) // Register in imm[7:4]
    HANDLE_OPERAND(rmRegister)
    HANDLE_OPTIONAL(immediate)
    break;
  case X86Local::MRMSrcRegCC:
    assert(numPhysicalOperands == 3 &&
           "Unexpected number of operands for MRMSrcRegCC");
    HANDLE_OPERAND(roRegister)
    HANDLE_OPERAND(rmRegister)
    HANDLE_OPERAND(opcodeModifier)
    break;
  case X86Local::MRMSrcMem:
  case X86Local::MRMSrcMemFSIB:
    // Operand 1 is a register operand in the Reg/Opcode field.
    // Operand 2 is a memory operand (possibly SIB-extended)
    // - In AVX, there is a register operand in the VEX.vvvv field here -
    // Operand 3 (optional) is an immediate.

    assert(numPhysicalOperands >= 2 + additionalOperands &&
           numPhysicalOperands <= 4 + additionalOperands &&
           "Unexpected number of operands for MRMSrcMemFrm");

    HANDLE_OPERAND(roRegister)

    if (HasEVEX_K)
      HANDLE_OPERAND(writemaskRegister)

    if (HasVEX_4V)
      // FIXME: In AVX, the register below becomes the one encoded
      // in ModRMVEX and the one above the one in the VEX.VVVV field
      HANDLE_OPERAND(vvvvRegister)

    HANDLE_OPERAND(memory)
    HANDLE_OPTIONAL(immediate)
    HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
    break;
  case X86Local::MRMSrcMem4VOp3:
    assert(numPhysicalOperands == 3 &&
           "Unexpected number of operands for MRMSrcMem4VOp3Frm");
    HANDLE_OPERAND(roRegister)
    HANDLE_OPERAND(memory)
    HANDLE_OPERAND(vvvvRegister)
    break;
  case X86Local::MRMSrcMemOp4:
    assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
           "Unexpected number of operands for MRMSrcMemOp4Frm");
    HANDLE_OPERAND(roRegister)
    HANDLE_OPERAND(vvvvRegister)
    HANDLE_OPERAND(immediate) // Register in imm[7:4]
    HANDLE_OPERAND(memory)
    HANDLE_OPTIONAL(immediate)
    break;
  case X86Local::MRMSrcMemCC:
    assert(numPhysicalOperands == 3 &&
           "Unexpected number of operands for MRMSrcMemCC");
    HANDLE_OPERAND(roRegister)
    HANDLE_OPERAND(memory)
    HANDLE_OPERAND(opcodeModifier)
    break;
  case X86Local::MRMXrCC:
    assert(numPhysicalOperands == 2 &&
           "Unexpected number of operands for MRMXrCC");
    HANDLE_OPERAND(rmRegister)
    HANDLE_OPERAND(opcodeModifier)
    break;
  case X86Local::MRMr0:
    // Operand 1 is a register operand in the R/M field.
    HANDLE_OPERAND(roRegister)
    break;
  case X86Local::MRMXr:
  case X86Local::MRM0r:
  case X86Local::MRM1r:
  case X86Local::MRM2r:
  case X86Local::MRM3r:
  case X86Local::MRM4r:
  case X86Local::MRM5r:
  case X86Local::MRM6r:
  case X86Local::MRM7r:
    // Operand 1 is a register operand in the R/M field.
    // Operand 2 (optional) is an immediate or relocation.
    // Operand 3 (optional) is an immediate.
    assert(numPhysicalOperands >= 0 + additionalOperands &&
           numPhysicalOperands <= 3 + additionalOperands &&
           "Unexpected number of operands for MRMnr");

    if (HasVEX_4V)
      HANDLE_OPERAND(vvvvRegister)

    if (HasEVEX_K)
      HANDLE_OPERAND(writemaskRegister)
    HANDLE_OPTIONAL(rmRegister)
    HANDLE_OPTIONAL(relocation)
    HANDLE_OPTIONAL(immediate)
    break;
  case X86Local::MRMXmCC:
    assert(numPhysicalOperands == 2 &&
           "Unexpected number of operands for MRMXm");
    HANDLE_OPERAND(memory)
    HANDLE_OPERAND(opcodeModifier)
    break;
  case X86Local::MRMXm:
  case X86Local::MRM0m:
  case X86Local::MRM1m:
  case X86Local::MRM2m:
  case X86Local::MRM3m:
  case X86Local::MRM4m:
  case X86Local::MRM5m:
  case X86Local::MRM6m:
  case X86Local::MRM7m:
    // Operand 1 is a memory operand (possibly SIB-extended)
    // Operand 2 (optional) is an immediate or relocation.
    assert(numPhysicalOperands >= 1 + additionalOperands &&
           numPhysicalOperands <= 2 + additionalOperands &&
           "Unexpected number of operands for MRMnm");

    if (HasVEX_4V)
      HANDLE_OPERAND(vvvvRegister)
    if (HasEVEX_K)
      HANDLE_OPERAND(writemaskRegister)
    HANDLE_OPERAND(memory)
    HANDLE_OPTIONAL(relocation)
    break;
  case X86Local::RawFrmImm8:
    // operand 1 is a 16-bit immediate
    // operand 2 is an 8-bit immediate
    assert(numPhysicalOperands == 2 &&
           "Unexpected number of operands for X86Local::RawFrmImm8");
    HANDLE_OPERAND(immediate)
    HANDLE_OPERAND(immediate)
    break;
  case X86Local::RawFrmImm16:
    // operand 1 is a 16-bit immediate
    // operand 2 is a 16-bit immediate
    HANDLE_OPERAND(immediate)
    HANDLE_OPERAND(immediate)
    break;
  case X86Local::MRM0X:
  case X86Local::MRM1X:
  case X86Local::MRM2X:
  case X86Local::MRM3X:
  case X86Local::MRM4X:
  case X86Local::MRM5X:
  case X86Local::MRM6X:
  case X86Local::MRM7X:
#define MAP(from, to) case X86Local::MRM_##from:
  X86_INSTR_MRM_MAPPING
#undef MAP
    HANDLE_OPTIONAL(relocation)
    break;
  }

#undef HANDLE_OPERAND
#undef HANDLE_OPTIONAL
}

void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
  // Special cases where the LLVM tables are not complete

#define MAP(from, to)                     \
  case X86Local::MRM_##from:

  llvm::Optional<OpcodeType> opcodeType;
  switch (OpMap) {
  default: llvm_unreachable("Invalid map!");
  case X86Local::OB:        opcodeType = ONEBYTE;       break;
  case X86Local::TB:        opcodeType = TWOBYTE;       break;
  case X86Local::T8:        opcodeType = THREEBYTE_38;  break;
  case X86Local::TA:        opcodeType = THREEBYTE_3A;  break;
  case X86Local::XOP8:      opcodeType = XOP8_MAP;      break;
  case X86Local::XOP9:      opcodeType = XOP9_MAP;      break;
  case X86Local::XOPA:      opcodeType = XOPA_MAP;      break;
  case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break;
  case X86Local::T_MAP5:    opcodeType = MAP5;          break;
  case X86Local::T_MAP6:    opcodeType = MAP6;          break;
  }

  std::unique_ptr<ModRMFilter> filter;
  switch (Form) {
  default: llvm_unreachable("Invalid form!");
  case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!");
  case X86Local::RawFrm:
  case X86Local::AddRegFrm:
  case X86Local::RawFrmMemOffs:
  case X86Local::RawFrmSrc:
  case X86Local::RawFrmDst:
  case X86Local::RawFrmDstSrc:
  case X86Local::RawFrmImm8:
  case X86Local::RawFrmImm16:
  case X86Local::AddCCFrm:
  case X86Local::PrefixByte:
    filter = std::make_unique<DumbFilter>();
    break;
  case X86Local::MRMDestReg:
  case X86Local::MRMSrcReg:
  case X86Local::MRMSrcReg4VOp3:
  case X86Local::MRMSrcRegOp4:
  case X86Local::MRMSrcRegCC:
  case X86Local::MRMXrCC:
  case X86Local::MRMXr:
    filter = std::make_unique<ModFilter>(true);
    break;
  case X86Local::MRMDestMem:
  case X86Local::MRMDestMemFSIB:
  case X86Local::MRMSrcMem:
  case X86Local::MRMSrcMemFSIB:
  case X86Local::MRMSrcMem4VOp3:
  case X86Local::MRMSrcMemOp4:
  case X86Local::MRMSrcMemCC:
  case X86Local::MRMXmCC:
  case X86Local::MRMXm:
    filter = std::make_unique<ModFilter>(false);
    break;
  case X86Local::MRM0r: case X86Local::MRM1r:
  case X86Local::MRM2r: case X86Local::MRM3r:
  case X86Local::MRM4r: case X86Local::MRM5r:
  case X86Local::MRM6r: case X86Local::MRM7r:
    filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r);
    break;
  case X86Local::MRM0X: case X86Local::MRM1X:
  case X86Local::MRM2X: case X86Local::MRM3X:
  case X86Local::MRM4X: case X86Local::MRM5X:
  case X86Local::MRM6X: case X86Local::MRM7X:
    filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0X);
    break;
  case X86Local::MRMr0:
    filter = std::make_unique<ExtendedRMFilter>(true, Form - X86Local::MRMr0);
    break;
  case X86Local::MRM0m: case X86Local::MRM1m:
  case X86Local::MRM2m: case X86Local::MRM3m:
  case X86Local::MRM4m: case X86Local::MRM5m:
  case X86Local::MRM6m: case X86Local::MRM7m:
    filter = std::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m);
    break;
  X86_INSTR_MRM_MAPPING
    filter = std::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0);
    break;
  } // switch (Form)

  uint8_t opcodeToSet = Opcode;

  unsigned AddressSize = 0;
  switch (AdSize) {
  case X86Local::AdSize16: AddressSize = 16; break;
  case X86Local::AdSize32: AddressSize = 32; break;
  case X86Local::AdSize64: AddressSize = 64; break;
  }

  assert(opcodeType && "Opcode type not set");
  assert(filter && "Filter not set");

  if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC ||
      Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC ||
      Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm) {
    uint8_t Count = Form == X86Local::AddRegFrm ? 8 : 16;
    assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned");

    uint8_t currentOpcode;

    for (currentOpcode = opcodeToSet;
         currentOpcode < (uint8_t)(opcodeToSet + Count); ++currentOpcode)
      tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter,
                            UID, Is32Bit, OpPrefix == 0,
                            IgnoresVEX_L || EncodeRC,
                            IgnoresVEX_W, AddressSize);
  } else {
    tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID,
                          Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC,
                          IgnoresVEX_W, AddressSize);
  }

#undef MAP
}

#define TYPE(str, type) if (s == str) return type;
OperandType RecognizableInstr::typeFromString(const std::string &s,
                                              bool hasREX_W,
                                              uint8_t OpSize) {
  if(hasREX_W) {
    // For instructions with a REX_W prefix, a declared 32-bit register encoding
    // is special.
    TYPE("GR32",              TYPE_R32)
  }
  if(OpSize == X86Local::OpSize16) {
    // For OpSize16 instructions, a declared 16-bit register or
    // immediate encoding is special.
    TYPE("GR16",              TYPE_Rv)
  } else if(OpSize == X86Local::OpSize32) {
    // For OpSize32 instructions, a declared 32-bit register or
    // immediate encoding is special.
    TYPE("GR32",              TYPE_Rv)
  }
  TYPE("i16mem",              TYPE_M)
  TYPE("i16imm",              TYPE_IMM)
  TYPE("i16i8imm",            TYPE_IMM)
  TYPE("GR16",                TYPE_R16)
  TYPE("GR16orGR32orGR64",    TYPE_R16)
  TYPE("i32mem",              TYPE_M)
  TYPE("i32imm",              TYPE_IMM)
  TYPE("i32i8imm",            TYPE_IMM)
  TYPE("GR32",                TYPE_R32)
  TYPE("GR32orGR64",          TYPE_R32)
  TYPE("i64mem",              TYPE_M)
  TYPE("i64i32imm",           TYPE_IMM)
  TYPE("i64i8imm",            TYPE_IMM)
  TYPE("GR64",                TYPE_R64)
  TYPE("i8mem",               TYPE_M)
  TYPE("i8imm",               TYPE_IMM)
  TYPE("u4imm",               TYPE_UIMM8)
  TYPE("u8imm",               TYPE_UIMM8)
  TYPE("i16u8imm",            TYPE_UIMM8)
  TYPE("i32u8imm",            TYPE_UIMM8)
  TYPE("i64u8imm",            TYPE_UIMM8)
  TYPE("GR8",                 TYPE_R8)
  TYPE("VR128",               TYPE_XMM)
  TYPE("VR128X",              TYPE_XMM)
  TYPE("f128mem",             TYPE_M)
  TYPE("f256mem",             TYPE_M)
  TYPE("f512mem",             TYPE_M)
  TYPE("FR128",               TYPE_XMM)
  TYPE("FR64",                TYPE_XMM)
  TYPE("FR64X",               TYPE_XMM)
  TYPE("f64mem",              TYPE_M)
  TYPE("sdmem",               TYPE_M)
  TYPE("FR16X",               TYPE_XMM)
  TYPE("FR32",                TYPE_XMM)
  TYPE("FR32X",               TYPE_XMM)
  TYPE("f32mem",              TYPE_M)
  TYPE("f16mem",              TYPE_M)
  TYPE("ssmem",               TYPE_M)
  TYPE("shmem",               TYPE_M)
  TYPE("RST",                 TYPE_ST)
  TYPE("RSTi",                TYPE_ST)
  TYPE("i128mem",             TYPE_M)
  TYPE("i256mem",             TYPE_M)
  TYPE("i512mem",             TYPE_M)
  TYPE("i64i32imm_brtarget",  TYPE_REL)
  TYPE("i16imm_brtarget",     TYPE_REL)
  TYPE("i32imm_brtarget",     TYPE_REL)
  TYPE("ccode",               TYPE_IMM)
  TYPE("AVX512RC",            TYPE_IMM)
  TYPE("brtarget32",          TYPE_REL)
  TYPE("brtarget16",          TYPE_REL)
  TYPE("brtarget8",           TYPE_REL)
  TYPE("f80mem",              TYPE_M)
  TYPE("lea64_32mem",         TYPE_M)
  TYPE("lea64mem",            TYPE_M)
  TYPE("VR64",                TYPE_MM64)
  TYPE("i64imm",              TYPE_IMM)
  TYPE("anymem",              TYPE_M)
  TYPE("opaquemem",           TYPE_M)
  TYPE("sibmem",              TYPE_MSIB)
  TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
  TYPE("DEBUG_REG",           TYPE_DEBUGREG)
  TYPE("CONTROL_REG",         TYPE_CONTROLREG)
  TYPE("srcidx8",             TYPE_SRCIDX)
  TYPE("srcidx16",            TYPE_SRCIDX)
  TYPE("srcidx32",            TYPE_SRCIDX)
  TYPE("srcidx64",            TYPE_SRCIDX)
  TYPE("dstidx8",             TYPE_DSTIDX)
  TYPE("dstidx16",            TYPE_DSTIDX)
  TYPE("dstidx32",            TYPE_DSTIDX)
  TYPE("dstidx64",            TYPE_DSTIDX)
  TYPE("offset16_8",          TYPE_MOFFS)
  TYPE("offset16_16",         TYPE_MOFFS)
  TYPE("offset16_32",         TYPE_MOFFS)
  TYPE("offset32_8",          TYPE_MOFFS)
  TYPE("offset32_16",         TYPE_MOFFS)
  TYPE("offset32_32",         TYPE_MOFFS)
  TYPE("offset32_64",         TYPE_MOFFS)
  TYPE("offset64_8",          TYPE_MOFFS)
  TYPE("offset64_16",         TYPE_MOFFS)
  TYPE("offset64_32",         TYPE_MOFFS)
  TYPE("offset64_64",         TYPE_MOFFS)
  TYPE("VR256",               TYPE_YMM)
  TYPE("VR256X",              TYPE_YMM)
  TYPE("VR512",               TYPE_ZMM)
  TYPE("VK1",                 TYPE_VK)
  TYPE("VK1WM",               TYPE_VK)
  TYPE("VK2",                 TYPE_VK)
  TYPE("VK2WM",               TYPE_VK)
  TYPE("VK4",                 TYPE_VK)
  TYPE("VK4WM",               TYPE_VK)
  TYPE("VK8",                 TYPE_VK)
  TYPE("VK8WM",               TYPE_VK)
  TYPE("VK16",                TYPE_VK)
  TYPE("VK16WM",              TYPE_VK)
  TYPE("VK32",                TYPE_VK)
  TYPE("VK32WM",              TYPE_VK)
  TYPE("VK64",                TYPE_VK)
  TYPE("VK64WM",              TYPE_VK)
  TYPE("VK1Pair",             TYPE_VK_PAIR)
  TYPE("VK2Pair",             TYPE_VK_PAIR)
  TYPE("VK4Pair",             TYPE_VK_PAIR)
  TYPE("VK8Pair",             TYPE_VK_PAIR)
  TYPE("VK16Pair",            TYPE_VK_PAIR)
  TYPE("vx64mem",             TYPE_MVSIBX)
  TYPE("vx128mem",            TYPE_MVSIBX)
  TYPE("vx256mem",            TYPE_MVSIBX)
  TYPE("vy128mem",            TYPE_MVSIBY)
  TYPE("vy256mem",            TYPE_MVSIBY)
  TYPE("vx64xmem",            TYPE_MVSIBX)
  TYPE("vx128xmem",           TYPE_MVSIBX)
  TYPE("vx256xmem",           TYPE_MVSIBX)
  TYPE("vy128xmem",           TYPE_MVSIBY)
  TYPE("vy256xmem",           TYPE_MVSIBY)
  TYPE("vy512xmem",           TYPE_MVSIBY)
  TYPE("vz256mem",            TYPE_MVSIBZ)
  TYPE("vz512mem",            TYPE_MVSIBZ)
  TYPE("BNDR",                TYPE_BNDR)
  TYPE("TILE",                TYPE_TMM)
  errs() << "Unhandled type string " << s << "\n";
  llvm_unreachable("Unhandled type string");
}
#undef TYPE

#define ENCODING(str, encoding) if (s == str) return encoding;
OperandEncoding
RecognizableInstr::immediateEncodingFromString(const std::string &s,
                                               uint8_t OpSize) {
  if(OpSize != X86Local::OpSize16) {
    // For instructions without an OpSize prefix, a declared 16-bit register or
    // immediate encoding is special.
    ENCODING("i16imm",        ENCODING_IW)
  }
  ENCODING("i32i8imm",        ENCODING_IB)
  ENCODING("AVX512RC",        ENCODING_IRC)
  ENCODING("i16imm",          ENCODING_Iv)
  ENCODING("i16i8imm",        ENCODING_IB)
  ENCODING("i32imm",          ENCODING_Iv)
  ENCODING("i64i32imm",       ENCODING_ID)
  ENCODING("i64i8imm",        ENCODING_IB)
  ENCODING("i8imm",           ENCODING_IB)
  ENCODING("u4imm",           ENCODING_IB)
  ENCODING("u8imm",           ENCODING_IB)
  ENCODING("i16u8imm",        ENCODING_IB)
  ENCODING("i32u8imm",        ENCODING_IB)
  ENCODING("i64u8imm",        ENCODING_IB)
  // This is not a typo.  Instructions like BLENDVPD put
  // register IDs in 8-bit immediates nowadays.
  ENCODING("FR32",            ENCODING_IB)
  ENCODING("FR64",            ENCODING_IB)
  ENCODING("FR128",           ENCODING_IB)
  ENCODING("VR128",           ENCODING_IB)
  ENCODING("VR256",           ENCODING_IB)
  ENCODING("FR16X",           ENCODING_IB)
  ENCODING("FR32X",           ENCODING_IB)
  ENCODING("FR64X",           ENCODING_IB)
  ENCODING("VR128X",          ENCODING_IB)
  ENCODING("VR256X",          ENCODING_IB)
  ENCODING("VR512",           ENCODING_IB)
  ENCODING("TILE",            ENCODING_IB)
  errs() << "Unhandled immediate encoding " << s << "\n";
  llvm_unreachable("Unhandled immediate encoding");
}

OperandEncoding
RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
                                                uint8_t OpSize) {
  ENCODING("RST",             ENCODING_FP)
  ENCODING("RSTi",            ENCODING_FP)
  ENCODING("GR16",            ENCODING_RM)
  ENCODING("GR16orGR32orGR64",ENCODING_RM)
  ENCODING("GR32",            ENCODING_RM)
  ENCODING("GR32orGR64",      ENCODING_RM)
  ENCODING("GR64",            ENCODING_RM)
  ENCODING("GR8",             ENCODING_RM)
  ENCODING("VR128",           ENCODING_RM)
  ENCODING("VR128X",          ENCODING_RM)
  ENCODING("FR128",           ENCODING_RM)
  ENCODING("FR64",            ENCODING_RM)
  ENCODING("FR32",            ENCODING_RM)
  ENCODING("FR64X",           ENCODING_RM)
  ENCODING("FR32X",           ENCODING_RM)
  ENCODING("FR16X",           ENCODING_RM)
  ENCODING("VR64",            ENCODING_RM)
  ENCODING("VR256",           ENCODING_RM)
  ENCODING("VR256X",          ENCODING_RM)
  ENCODING("VR512",           ENCODING_RM)
  ENCODING("VK1",             ENCODING_RM)
  ENCODING("VK2",             ENCODING_RM)
  ENCODING("VK4",             ENCODING_RM)
  ENCODING("VK8",             ENCODING_RM)
  ENCODING("VK16",            ENCODING_RM)
  ENCODING("VK32",            ENCODING_RM)
  ENCODING("VK64",            ENCODING_RM)
  ENCODING("BNDR",            ENCODING_RM)
  ENCODING("TILE",            ENCODING_RM)
  errs() << "Unhandled R/M register encoding " << s << "\n";
  llvm_unreachable("Unhandled R/M register encoding");
}

OperandEncoding
RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
                                                uint8_t OpSize) {
  ENCODING("GR16",            ENCODING_REG)
  ENCODING("GR16orGR32orGR64",ENCODING_REG)
  ENCODING("GR32",            ENCODING_REG)
  ENCODING("GR32orGR64",      ENCODING_REG)
  ENCODING("GR64",            ENCODING_REG)
  ENCODING("GR8",             ENCODING_REG)
  ENCODING("VR128",           ENCODING_REG)
  ENCODING("FR128",           ENCODING_REG)
  ENCODING("FR64",            ENCODING_REG)
  ENCODING("FR32",            ENCODING_REG)
  ENCODING("VR64",            ENCODING_REG)
  ENCODING("SEGMENT_REG",     ENCODING_REG)
  ENCODING("DEBUG_REG",       ENCODING_REG)
  ENCODING("CONTROL_REG",     ENCODING_REG)
  ENCODING("VR256",           ENCODING_REG)
  ENCODING("VR256X",          ENCODING_REG)
  ENCODING("VR128X",          ENCODING_REG)
  ENCODING("FR64X",           ENCODING_REG)
  ENCODING("FR32X",           ENCODING_REG)
  ENCODING("FR16X",           ENCODING_REG)
  ENCODING("VR512",           ENCODING_REG)
  ENCODING("VK1",             ENCODING_REG)
  ENCODING("VK2",             ENCODING_REG)
  ENCODING("VK4",             ENCODING_REG)
  ENCODING("VK8",             ENCODING_REG)
  ENCODING("VK16",            ENCODING_REG)
  ENCODING("VK32",            ENCODING_REG)
  ENCODING("VK64",            ENCODING_REG)
  ENCODING("VK1Pair",         ENCODING_REG)
  ENCODING("VK2Pair",         ENCODING_REG)
  ENCODING("VK4Pair",         ENCODING_REG)
  ENCODING("VK8Pair",         ENCODING_REG)
  ENCODING("VK16Pair",        ENCODING_REG)
  ENCODING("VK1WM",           ENCODING_REG)
  ENCODING("VK2WM",           ENCODING_REG)
  ENCODING("VK4WM",           ENCODING_REG)
  ENCODING("VK8WM",           ENCODING_REG)
  ENCODING("VK16WM",          ENCODING_REG)
  ENCODING("VK32WM",          ENCODING_REG)
  ENCODING("VK64WM",          ENCODING_REG)
  ENCODING("BNDR",            ENCODING_REG)
  ENCODING("TILE",            ENCODING_REG)
  errs() << "Unhandled reg/opcode register encoding " << s << "\n";
  llvm_unreachable("Unhandled reg/opcode register encoding");
}

OperandEncoding
RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
                                                  uint8_t OpSize) {
  ENCODING("GR32",            ENCODING_VVVV)
  ENCODING("GR64",            ENCODING_VVVV)
  ENCODING("FR32",            ENCODING_VVVV)
  ENCODING("FR128",           ENCODING_VVVV)
  ENCODING("FR64",            ENCODING_VVVV)
  ENCODING("VR128",           ENCODING_VVVV)
  ENCODING("VR256",           ENCODING_VVVV)
  ENCODING("FR16X",           ENCODING_VVVV)
  ENCODING("FR32X",           ENCODING_VVVV)
  ENCODING("FR64X",           ENCODING_VVVV)
  ENCODING("VR128X",          ENCODING_VVVV)
  ENCODING("VR256X",          ENCODING_VVVV)
  ENCODING("VR512",           ENCODING_VVVV)
  ENCODING("VK1",             ENCODING_VVVV)
  ENCODING("VK2",             ENCODING_VVVV)
  ENCODING("VK4",             ENCODING_VVVV)
  ENCODING("VK8",             ENCODING_VVVV)
  ENCODING("VK16",            ENCODING_VVVV)
  ENCODING("VK32",            ENCODING_VVVV)
  ENCODING("VK64",            ENCODING_VVVV)
  ENCODING("TILE",            ENCODING_VVVV)
  errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
  llvm_unreachable("Unhandled VEX.vvvv register encoding");
}

OperandEncoding
RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
                                                       uint8_t OpSize) {
  ENCODING("VK1WM",           ENCODING_WRITEMASK)
  ENCODING("VK2WM",           ENCODING_WRITEMASK)
  ENCODING("VK4WM",           ENCODING_WRITEMASK)
  ENCODING("VK8WM",           ENCODING_WRITEMASK)
  ENCODING("VK16WM",          ENCODING_WRITEMASK)
  ENCODING("VK32WM",          ENCODING_WRITEMASK)
  ENCODING("VK64WM",          ENCODING_WRITEMASK)
  errs() << "Unhandled mask register encoding " << s << "\n";
  llvm_unreachable("Unhandled mask register encoding");
}

OperandEncoding
RecognizableInstr::memoryEncodingFromString(const std::string &s,
                                            uint8_t OpSize) {
  ENCODING("i16mem",          ENCODING_RM)
  ENCODING("i32mem",          ENCODING_RM)
  ENCODING("i64mem",          ENCODING_RM)
  ENCODING("i8mem",           ENCODING_RM)
  ENCODING("shmem",           ENCODING_RM)
  ENCODING("ssmem",           ENCODING_RM)
  ENCODING("sdmem",           ENCODING_RM)
  ENCODING("f128mem",         ENCODING_RM)
  ENCODING("f256mem",         ENCODING_RM)
  ENCODING("f512mem",         ENCODING_RM)
  ENCODING("f64mem",          ENCODING_RM)
  ENCODING("f32mem",          ENCODING_RM)
  ENCODING("f16mem",          ENCODING_RM)
  ENCODING("i128mem",         ENCODING_RM)
  ENCODING("i256mem",         ENCODING_RM)
  ENCODING("i512mem",         ENCODING_RM)
  ENCODING("f80mem",          ENCODING_RM)
  ENCODING("lea64_32mem",     ENCODING_RM)
  ENCODING("lea64mem",        ENCODING_RM)
  ENCODING("anymem",          ENCODING_RM)
  ENCODING("opaquemem",       ENCODING_RM)
  ENCODING("sibmem",          ENCODING_SIB)
  ENCODING("vx64mem",         ENCODING_VSIB)
  ENCODING("vx128mem",        ENCODING_VSIB)
  ENCODING("vx256mem",        ENCODING_VSIB)
  ENCODING("vy128mem",        ENCODING_VSIB)
  ENCODING("vy256mem",        ENCODING_VSIB)
  ENCODING("vx64xmem",        ENCODING_VSIB)
  ENCODING("vx128xmem",       ENCODING_VSIB)
  ENCODING("vx256xmem",       ENCODING_VSIB)
  ENCODING("vy128xmem",       ENCODING_VSIB)
  ENCODING("vy256xmem",       ENCODING_VSIB)
  ENCODING("vy512xmem",       ENCODING_VSIB)
  ENCODING("vz256mem",        ENCODING_VSIB)
  ENCODING("vz512mem",        ENCODING_VSIB)
  errs() << "Unhandled memory encoding " << s << "\n";
  llvm_unreachable("Unhandled memory encoding");
}

OperandEncoding
RecognizableInstr::relocationEncodingFromString(const std::string &s,
                                                uint8_t OpSize) {
  if(OpSize != X86Local::OpSize16) {
    // For instructions without an OpSize prefix, a declared 16-bit register or
    // immediate encoding is special.
    ENCODING("i16imm",           ENCODING_IW)
  }
  ENCODING("i16imm",             ENCODING_Iv)
  ENCODING("i16i8imm",           ENCODING_IB)
  ENCODING("i32imm",             ENCODING_Iv)
  ENCODING("i32i8imm",           ENCODING_IB)
  ENCODING("i64i32imm",          ENCODING_ID)
  ENCODING("i64i8imm",           ENCODING_IB)
  ENCODING("i8imm",              ENCODING_IB)
  ENCODING("u8imm",              ENCODING_IB)
  ENCODING("i16u8imm",           ENCODING_IB)
  ENCODING("i32u8imm",           ENCODING_IB)
  ENCODING("i64u8imm",           ENCODING_IB)
  ENCODING("i64i32imm_brtarget", ENCODING_ID)
  ENCODING("i16imm_brtarget",    ENCODING_IW)
  ENCODING("i32imm_brtarget",    ENCODING_ID)
  ENCODING("brtarget32",         ENCODING_ID)
  ENCODING("brtarget16",         ENCODING_IW)
  ENCODING("brtarget8",          ENCODING_IB)
  ENCODING("i64imm",             ENCODING_IO)
  ENCODING("offset16_8",         ENCODING_Ia)
  ENCODING("offset16_16",        ENCODING_Ia)
  ENCODING("offset16_32",        ENCODING_Ia)
  ENCODING("offset32_8",         ENCODING_Ia)
  ENCODING("offset32_16",        ENCODING_Ia)
  ENCODING("offset32_32",        ENCODING_Ia)
  ENCODING("offset32_64",        ENCODING_Ia)
  ENCODING("offset64_8",         ENCODING_Ia)
  ENCODING("offset64_16",        ENCODING_Ia)
  ENCODING("offset64_32",        ENCODING_Ia)
  ENCODING("offset64_64",        ENCODING_Ia)
  ENCODING("srcidx8",            ENCODING_SI)
  ENCODING("srcidx16",           ENCODING_SI)
  ENCODING("srcidx32",           ENCODING_SI)
  ENCODING("srcidx64",           ENCODING_SI)
  ENCODING("dstidx8",            ENCODING_DI)
  ENCODING("dstidx16",           ENCODING_DI)
  ENCODING("dstidx32",           ENCODING_DI)
  ENCODING("dstidx64",           ENCODING_DI)
  errs() << "Unhandled relocation encoding " << s << "\n";
  llvm_unreachable("Unhandled relocation encoding");
}

OperandEncoding
RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
                                                    uint8_t OpSize) {
  ENCODING("GR32",            ENCODING_Rv)
  ENCODING("GR64",            ENCODING_RO)
  ENCODING("GR16",            ENCODING_Rv)
  ENCODING("GR8",             ENCODING_RB)
  ENCODING("ccode",           ENCODING_CC)
  errs() << "Unhandled opcode modifier encoding " << s << "\n";
  llvm_unreachable("Unhandled opcode modifier encoding");
}
#undef ENCODING