; RUN: llc -O3 -mtriple=thumb-eabi -mcpu=cortex-a9 %s -o - | FileCheck %s -check-prefix=A9 ; @simple is the most basic chain of address induction variables. Chaining ; saves at least one register and avoids complex addressing and setup ; code. ; ; A9: @simple ; no expensive address computation in the preheader ; A9: lsl ; A9-NOT: lsl ; A9: %loop ; no complex address modes ; A9-NOT: lsl define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind { entry: br label %loop loop: %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ] %s = phi i32 [ 0, %entry ], [ %s4, %loop ] %v = load i32, i32* %iv %iv1 = getelementptr inbounds i32, i32* %iv, i32 %x %v1 = load i32, i32* %iv1 %iv2 = getelementptr inbounds i32, i32* %iv1, i32 %x %v2 = load i32, i32* %iv2 %iv3 = getelementptr inbounds i32, i32* %iv2, i32 %x %v3 = load i32, i32* %iv3 %s1 = add i32 %s, %v %s2 = add i32 %s1, %v1 %s3 = add i32 %s2, %v2 %s4 = add i32 %s3, %v3 %iv4 = getelementptr inbounds i32, i32* %iv3, i32 %x %cmp = icmp eq i32* %iv4, %b br i1 %cmp, label %exit, label %loop exit: ret i32 %s4 } ; @user is not currently chained because the IV is live across memory ops. ; ; A9: @user ; stride multiples computed in the preheader ; A9: lsl ; A9: lsl ; A9: %loop ; complex address modes ; A9: lsl ; A9: lsl define i32 @user(i32* %a, i32* %b, i32 %x) nounwind { entry: br label %loop loop: %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ] %s = phi i32 [ 0, %entry ], [ %s4, %loop ] %v = load i32, i32* %iv %iv1 = getelementptr inbounds i32, i32* %iv, i32 %x %v1 = load i32, i32* %iv1 %iv2 = getelementptr inbounds i32, i32* %iv1, i32 %x %v2 = load i32, i32* %iv2 %iv3 = getelementptr inbounds i32, i32* %iv2, i32 %x %v3 = load i32, i32* %iv3 %s1 = add i32 %s, %v %s2 = add i32 %s1, %v1 %s3 = add i32 %s2, %v2 %s4 = add i32 %s3, %v3 %iv4 = getelementptr inbounds i32, i32* %iv3, i32 %x store i32 %s4, i32* %iv %cmp = icmp eq i32* %iv4, %b br i1 %cmp, label %exit, label %loop exit: ret i32 %s4 } ; @extrastride is a slightly more interesting case of a single ; complete chain with multiple strides. The test case IR is what LSR ; used to do, and exactly what we don't want to do. LSR's new IV ; chaining feature should now undo the damage. ; ; A9: extrastride: ; no spills ; A9-NOT: str ; only one stride multiple in the preheader ; A9: lsl ; A9-NOT: {{str r|lsl}} ; A9: %for.body{{$}} ; no complex address modes or reloads ; A9-NOT: {{ldr .*[sp]|lsl}} define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind { entry: %cmp8 = icmp eq i32 %z, 0 br i1 %cmp8, label %for.end, label %for.body.lr.ph for.body.lr.ph: ; preds = %entry %add.ptr.sum = shl i32 %main_stride, 1 ; s*2 %add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3 %add.ptr2.sum = add i32 %x, %main_stride ; s + x %add.ptr4.sum = shl i32 %main_stride, 2 ; s*4 %add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x br label %for.body for.body: ; preds = %for.body.lr.ph, %for.body %main.addr.011 = phi i8* [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ] %i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ] %res.addr.09 = phi i32* [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ] %0 = bitcast i8* %main.addr.011 to i32* %1 = load i32, i32* %0, align 4 %add.ptr = getelementptr inbounds i8, i8* %main.addr.011, i32 %main_stride %2 = bitcast i8* %add.ptr to i32* %3 = load i32, i32* %2, align 4 %add.ptr1 = getelementptr inbounds i8, i8* %main.addr.011, i32 %add.ptr.sum %4 = bitcast i8* %add.ptr1 to i32* %5 = load i32, i32* %4, align 4 %add.ptr2 = getelementptr inbounds i8, i8* %main.addr.011, i32 %add.ptr1.sum %6 = bitcast i8* %add.ptr2 to i32* %7 = load i32, i32* %6, align 4 %add.ptr3 = getelementptr inbounds i8, i8* %main.addr.011, i32 %add.ptr4.sum %8 = bitcast i8* %add.ptr3 to i32* %9 = load i32, i32* %8, align 4 %add = add i32 %3, %1 %add4 = add i32 %add, %5 %add5 = add i32 %add4, %7 %add6 = add i32 %add5, %9 store i32 %add6, i32* %res.addr.09, align 4 %add.ptr6 = getelementptr inbounds i8, i8* %main.addr.011, i32 %add.ptr3.sum %add.ptr7 = getelementptr inbounds i32, i32* %res.addr.09, i32 %y %inc = add i32 %i.010, 1 %cmp = icmp eq i32 %inc, %z br i1 %cmp, label %for.end, label %for.body for.end: ; preds = %for.body, %entry ret void } ; @foldedidx is an unrolled variant of this loop: ; for (unsigned long i = 0; i < len; i += s) { ; c[i] = a[i] + b[i]; ; } ; where 's' can be folded into the addressing mode. ; Consequently, we should *not* form any chains. ; ; A9: foldedidx: ; A9: ldrb{{(.w)?}} {{r[0-9]|lr}}, [{{r[0-9]|lr}}, #3] define void @foldedidx(i8* nocapture %a, i8* nocapture %b, i8* nocapture %c) nounwind ssp { entry: br label %for.body for.body: ; preds = %for.body, %entry %i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ] %arrayidx = getelementptr inbounds i8, i8* %a, i32 %i.07 %0 = load i8, i8* %arrayidx, align 1 %conv5 = zext i8 %0 to i32 %arrayidx1 = getelementptr inbounds i8, i8* %b, i32 %i.07 %1 = load i8, i8* %arrayidx1, align 1 %conv26 = zext i8 %1 to i32 %add = add nsw i32 %conv26, %conv5 %conv3 = trunc i32 %add to i8 %arrayidx4 = getelementptr inbounds i8, i8* %c, i32 %i.07 store i8 %conv3, i8* %arrayidx4, align 1 %inc1 = or i32 %i.07, 1 %arrayidx.1 = getelementptr inbounds i8, i8* %a, i32 %inc1 %2 = load i8, i8* %arrayidx.1, align 1 %conv5.1 = zext i8 %2 to i32 %arrayidx1.1 = getelementptr inbounds i8, i8* %b, i32 %inc1 %3 = load i8, i8* %arrayidx1.1, align 1 %conv26.1 = zext i8 %3 to i32 %add.1 = add nsw i32 %conv26.1, %conv5.1 %conv3.1 = trunc i32 %add.1 to i8 %arrayidx4.1 = getelementptr inbounds i8, i8* %c, i32 %inc1 store i8 %conv3.1, i8* %arrayidx4.1, align 1 %inc.12 = or i32 %i.07, 2 %arrayidx.2 = getelementptr inbounds i8, i8* %a, i32 %inc.12 %4 = load i8, i8* %arrayidx.2, align 1 %conv5.2 = zext i8 %4 to i32 %arrayidx1.2 = getelementptr inbounds i8, i8* %b, i32 %inc.12 %5 = load i8, i8* %arrayidx1.2, align 1 %conv26.2 = zext i8 %5 to i32 %add.2 = add nsw i32 %conv26.2, %conv5.2 %conv3.2 = trunc i32 %add.2 to i8 %arrayidx4.2 = getelementptr inbounds i8, i8* %c, i32 %inc.12 store i8 %conv3.2, i8* %arrayidx4.2, align 1 %inc.23 = or i32 %i.07, 3 %arrayidx.3 = getelementptr inbounds i8, i8* %a, i32 %inc.23 %6 = load i8, i8* %arrayidx.3, align 1 %conv5.3 = zext i8 %6 to i32 %arrayidx1.3 = getelementptr inbounds i8, i8* %b, i32 %inc.23 %7 = load i8, i8* %arrayidx1.3, align 1 %conv26.3 = zext i8 %7 to i32 %add.3 = add nsw i32 %conv26.3, %conv5.3 %conv3.3 = trunc i32 %add.3 to i8 %arrayidx4.3 = getelementptr inbounds i8, i8* %c, i32 %inc.23 store i8 %conv3.3, i8* %arrayidx4.3, align 1 %inc.3 = add nsw i32 %i.07, 4 %exitcond.3 = icmp eq i32 %inc.3, 400 br i1 %exitcond.3, label %for.end, label %for.body for.end: ; preds = %for.body ret void } ; @testNeon is an important example of the nead for ivchains. ; ; Loads and stores should use post-increment addressing, no add's or add.w's. ; Most importantly, there should be no spills or reloads! ; ; A9: testNeon: ; A9: %.lr.ph ; A9-NOT: lsl.w ; A9-NOT: {{ldr|str|adds|add r}} ; A9-NOT: add.w r ; A9: bne define hidden void @testNeon(i8* %ref_data, i32 %ref_stride, i32 %limit, <16 x i8>* nocapture %data) nounwind optsize { %1 = icmp sgt i32 %limit, 0 br i1 %1, label %.lr.ph, label %45 .lr.ph: ; preds = %0 %2 = shl nsw i32 %ref_stride, 1 %3 = mul nsw i32 %ref_stride, 3 %4 = shl nsw i32 %ref_stride, 2 %5 = mul nsw i32 %ref_stride, 5 %6 = mul nsw i32 %ref_stride, 6 %7 = mul nsw i32 %ref_stride, 7 %8 = shl nsw i32 %ref_stride, 3 %9 = sub i32 0, %8 %10 = mul i32 %limit, -64 br label %11 ; <label>:11 ; preds = %11, %.lr.ph %.05 = phi i8* [ %ref_data, %.lr.ph ], [ %42, %11 ] %counter.04 = phi i32 [ 0, %.lr.ph ], [ %44, %11 ] %result.03 = phi <16 x i8> [ zeroinitializer, %.lr.ph ], [ %41, %11 ] %.012 = phi <16 x i8>* [ %data, %.lr.ph ], [ %43, %11 ] %12 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64.p0i8(i8* %.05, i32 1) nounwind %13 = getelementptr inbounds i8, i8* %.05, i32 %ref_stride %14 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64.p0i8(i8* %13, i32 1) nounwind %15 = shufflevector <1 x i64> %12, <1 x i64> %14, <2 x i32> <i32 0, i32 1> %16 = bitcast <2 x i64> %15 to <16 x i8> %17 = getelementptr inbounds <16 x i8>, <16 x i8>* %.012, i32 1 store <16 x i8> %16, <16 x i8>* %.012, align 4 %18 = getelementptr inbounds i8, i8* %.05, i32 %2 %19 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64.p0i8(i8* %18, i32 1) nounwind %20 = getelementptr inbounds i8, i8* %.05, i32 %3 %21 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64.p0i8(i8* %20, i32 1) nounwind %22 = shufflevector <1 x i64> %19, <1 x i64> %21, <2 x i32> <i32 0, i32 1> %23 = bitcast <2 x i64> %22 to <16 x i8> %24 = getelementptr inbounds <16 x i8>, <16 x i8>* %.012, i32 2 store <16 x i8> %23, <16 x i8>* %17, align 4 %25 = getelementptr inbounds i8, i8* %.05, i32 %4 %26 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64.p0i8(i8* %25, i32 1) nounwind %27 = getelementptr inbounds i8, i8* %.05, i32 %5 %28 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64.p0i8(i8* %27, i32 1) nounwind %29 = shufflevector <1 x i64> %26, <1 x i64> %28, <2 x i32> <i32 0, i32 1> %30 = bitcast <2 x i64> %29 to <16 x i8> %31 = getelementptr inbounds <16 x i8>, <16 x i8>* %.012, i32 3 store <16 x i8> %30, <16 x i8>* %24, align 4 %32 = getelementptr inbounds i8, i8* %.05, i32 %6 %33 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64.p0i8(i8* %32, i32 1) nounwind %34 = getelementptr inbounds i8, i8* %.05, i32 %7 %35 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64.p0i8(i8* %34, i32 1) nounwind %36 = shufflevector <1 x i64> %33, <1 x i64> %35, <2 x i32> <i32 0, i32 1> %37 = bitcast <2 x i64> %36 to <16 x i8> store <16 x i8> %37, <16 x i8>* %31, align 4 %38 = add <16 x i8> %16, %23 %39 = add <16 x i8> %38, %30 %40 = add <16 x i8> %39, %37 %41 = add <16 x i8> %result.03, %40 %42 = getelementptr i8, i8* %.05, i32 %9 %43 = getelementptr inbounds <16 x i8>, <16 x i8>* %.012, i32 -64 %44 = add nsw i32 %counter.04, 1 %exitcond = icmp eq i32 %44, %limit br i1 %exitcond, label %._crit_edge, label %11 ._crit_edge: ; preds = %11 %scevgep = getelementptr <16 x i8>, <16 x i8>* %data, i32 %10 br label %45 ; <label>:45 ; preds = %._crit_edge, %0 %result.0.lcssa = phi <16 x i8> [ %41, %._crit_edge ], [ zeroinitializer, %0 ] %.01.lcssa = phi <16 x i8>* [ %scevgep, %._crit_edge ], [ %data, %0 ] store <16 x i8> %result.0.lcssa, <16 x i8>* %.01.lcssa, align 4 ret void } declare <1 x i64> @llvm.arm.neon.vld1.v1i64.p0i8(i8*, i32) nounwind readonly ; Handle chains in which the same offset is used for both loads and ; stores to the same array. ; rdar://11410078. ; ; A9: @testReuse ; A9: %for.body ; A9: vld1.8 {d{{[0-9]+}}}, [[BASE:[r[0-9]+]]], [[INC:r[0-9]]] ; A9: vld1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]] ; A9: vld1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]] ; A9: vld1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]] ; A9: vld1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]] ; A9: vld1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]] ; A9: vld1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]] ; A9: vst1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]] ; A9: vst1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]] ; A9: vst1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]] ; A9: vst1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]] ; A9: vst1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]] ; A9: vst1.8 {d{{[0-9]+}}}, [[BASE]] ; A9: bne define void @testReuse(i8* %src, i32 %stride) nounwind ssp { entry: %mul = shl nsw i32 %stride, 2 %idx.neg = sub i32 0, %mul %mul1 = mul nsw i32 %stride, 3 %idx.neg2 = sub i32 0, %mul1 %mul5 = shl nsw i32 %stride, 1 %idx.neg6 = sub i32 0, %mul5 %idx.neg10 = sub i32 0, %stride br label %for.body for.body: ; preds = %for.body, %entry %i.0110 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %src.addr = phi i8* [ %src, %entry ], [ %add.ptr45, %for.body ] %add.ptr = getelementptr inbounds i8, i8* %src.addr, i32 %idx.neg %vld1 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8.p0i8(i8* %add.ptr, i32 1) %add.ptr3 = getelementptr inbounds i8, i8* %src.addr, i32 %idx.neg2 %vld2 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8.p0i8(i8* %add.ptr3, i32 1) %add.ptr7 = getelementptr inbounds i8, i8* %src.addr, i32 %idx.neg6 %vld3 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8.p0i8(i8* %add.ptr7, i32 1) %add.ptr11 = getelementptr inbounds i8, i8* %src.addr, i32 %idx.neg10 %vld4 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8.p0i8(i8* %add.ptr11, i32 1) %vld5 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8.p0i8(i8* %src.addr, i32 1) %add.ptr17 = getelementptr inbounds i8, i8* %src.addr, i32 %stride %vld6 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8.p0i8(i8* %add.ptr17, i32 1) %add.ptr20 = getelementptr inbounds i8, i8* %src.addr, i32 %mul5 %vld7 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8.p0i8(i8* %add.ptr20, i32 1) %add.ptr23 = getelementptr inbounds i8, i8* %src.addr, i32 %mul1 %vld8 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8.p0i8(i8* %add.ptr23, i32 1) %vadd1 = tail call <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8> %vld1, <8 x i8> %vld2) nounwind %vadd2 = tail call <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8> %vld2, <8 x i8> %vld3) nounwind %vadd3 = tail call <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8> %vld3, <8 x i8> %vld4) nounwind %vadd4 = tail call <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8> %vld4, <8 x i8> %vld5) nounwind %vadd5 = tail call <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8> %vld5, <8 x i8> %vld6) nounwind %vadd6 = tail call <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8> %vld6, <8 x i8> %vld7) nounwind tail call void @llvm.arm.neon.vst1.p0i8.v8i8(i8* %add.ptr3, <8 x i8> %vadd1, i32 1) tail call void @llvm.arm.neon.vst1.p0i8.v8i8(i8* %add.ptr7, <8 x i8> %vadd2, i32 1) tail call void @llvm.arm.neon.vst1.p0i8.v8i8(i8* %add.ptr11, <8 x i8> %vadd3, i32 1) tail call void @llvm.arm.neon.vst1.p0i8.v8i8(i8* %src.addr, <8 x i8> %vadd4, i32 1) tail call void @llvm.arm.neon.vst1.p0i8.v8i8(i8* %add.ptr17, <8 x i8> %vadd5, i32 1) tail call void @llvm.arm.neon.vst1.p0i8.v8i8(i8* %add.ptr20, <8 x i8> %vadd6, i32 1) %inc = add nsw i32 %i.0110, 1 %add.ptr45 = getelementptr inbounds i8, i8* %src.addr, i32 8 %exitcond = icmp eq i32 %inc, 4 br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body ret void } declare <8 x i8> @llvm.arm.neon.vld1.v8i8.p0i8(i8*, i32) nounwind readonly declare void @llvm.arm.neon.vst1.p0i8.v8i8(i8*, <8 x i8>, i32) nounwind declare <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8>, <8 x i8>) nounwind readnone