; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt -S < %s -passes=instcombine | FileCheck %s target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64" target triple = "x86_64-apple-macosx10.7.0" ; Check transforms involving atomic operations define i32 @test1(i32* %p) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4 ; CHECK-NEXT: [[Z:%.*]] = shl i32 [[X]], 1 ; CHECK-NEXT: ret i32 [[Z]] ; %x = load atomic i32, i32* %p seq_cst, align 4 %y = load i32, i32* %p, align 4 %z = add i32 %x, %y ret i32 %z } define i32 @test2(i32* %p) { ; CHECK-LABEL: @test2( ; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[P:%.*]], align 4 ; CHECK-NEXT: [[Y:%.*]] = load volatile i32, i32* [[P]], align 4 ; CHECK-NEXT: [[Z:%.*]] = add i32 [[X]], [[Y]] ; CHECK-NEXT: ret i32 [[Z]] ; %x = load volatile i32, i32* %p, align 4 %y = load volatile i32, i32* %p, align 4 %z = add i32 %x, %y ret i32 %z } ; The exact semantics of mixing volatile and non-volatile on the same ; memory location are a bit unclear, but conservatively, we know we don't ; want to remove the volatile. define i32 @test3(i32* %p) { ; CHECK-LABEL: @test3( ; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[P:%.*]], align 4 ; CHECK-NEXT: [[Z:%.*]] = shl i32 [[X]], 1 ; CHECK-NEXT: ret i32 [[Z]] ; %x = load volatile i32, i32* %p, align 4 %y = load i32, i32* %p, align 4 %z = add i32 %x, %y ret i32 %z } ; Forwarding from a stronger ordered atomic is fine define i32 @test4(i32* %p) { ; CHECK-LABEL: @test4( ; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4 ; CHECK-NEXT: [[Z:%.*]] = shl i32 [[X]], 1 ; CHECK-NEXT: ret i32 [[Z]] ; %x = load atomic i32, i32* %p seq_cst, align 4 %y = load atomic i32, i32* %p unordered, align 4 %z = add i32 %x, %y ret i32 %z } ; Forwarding from a non-atomic is not. (The earlier load ; could in priciple be promoted to atomic and then forwarded, ; but we can't just drop the atomic from the load.) define i32 @test5(i32* %p) { ; CHECK-LABEL: @test5( ; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[P:%.*]] unordered, align 4 ; CHECK-NEXT: [[Z:%.*]] = shl i32 [[X]], 1 ; CHECK-NEXT: ret i32 [[Z]] ; %x = load atomic i32, i32* %p unordered, align 4 %y = load i32, i32* %p, align 4 %z = add i32 %x, %y ret i32 %z } ; Forwarding atomic to atomic is fine define i32 @test6(i32* %p) { ; CHECK-LABEL: @test6( ; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[P:%.*]] unordered, align 4 ; CHECK-NEXT: [[Z:%.*]] = shl i32 [[X]], 1 ; CHECK-NEXT: ret i32 [[Z]] ; %x = load atomic i32, i32* %p unordered, align 4 %y = load atomic i32, i32* %p unordered, align 4 %z = add i32 %x, %y ret i32 %z } ; FIXME: we currently don't do anything for monotonic define i32 @test7(i32* %p) { ; CHECK-LABEL: @test7( ; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4 ; CHECK-NEXT: [[Y:%.*]] = load atomic i32, i32* [[P]] monotonic, align 4 ; CHECK-NEXT: [[Z:%.*]] = add i32 [[X]], [[Y]] ; CHECK-NEXT: ret i32 [[Z]] ; %x = load atomic i32, i32* %p seq_cst, align 4 %y = load atomic i32, i32* %p monotonic, align 4 %z = add i32 %x, %y ret i32 %z } ; FIXME: We could forward in racy code define i32 @test8(i32* %p) { ; CHECK-LABEL: @test8( ; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4 ; CHECK-NEXT: [[Y:%.*]] = load atomic i32, i32* [[P]] acquire, align 4 ; CHECK-NEXT: [[Z:%.*]] = add i32 [[X]], [[Y]] ; CHECK-NEXT: ret i32 [[Z]] ; %x = load atomic i32, i32* %p seq_cst, align 4 %y = load atomic i32, i32* %p acquire, align 4 %z = add i32 %x, %y ret i32 %z } ; An unordered access to null is still unreachable. There's no ; ordering imposed. define i32 @test9() { ; CHECK-LABEL: @test9( ; CHECK-NEXT: store i32 poison, i32* null, align 4294967296 ; CHECK-NEXT: ret i32 poison ; %x = load atomic i32, i32* null unordered, align 4 ret i32 %x } define i32 @test9_no_null_opt() #0 { ; CHECK-LABEL: @test9_no_null_opt( ; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* null unordered, align 4294967296 ; CHECK-NEXT: ret i32 [[X]] ; %x = load atomic i32, i32* null unordered, align 4 ret i32 %x } ; FIXME: Could also fold define i32 @test10() { ; CHECK-LABEL: @test10( ; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* null monotonic, align 4294967296 ; CHECK-NEXT: ret i32 [[X]] ; %x = load atomic i32, i32* null monotonic, align 4 ret i32 %x } define i32 @test10_no_null_opt() #0 { ; CHECK-LABEL: @test10_no_null_opt( ; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* null monotonic, align 4294967296 ; CHECK-NEXT: ret i32 [[X]] ; %x = load atomic i32, i32* null monotonic, align 4 ret i32 %x } ; Would this be legal to fold? Probably? define i32 @test11() { ; CHECK-LABEL: @test11( ; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* null seq_cst, align 4294967296 ; CHECK-NEXT: ret i32 [[X]] ; %x = load atomic i32, i32* null seq_cst, align 4 ret i32 %x } define i32 @test11_no_null_opt() #0 { ; CHECK-LABEL: @test11_no_null_opt( ; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* null seq_cst, align 4294967296 ; CHECK-NEXT: ret i32 [[X]] ; %x = load atomic i32, i32* null seq_cst, align 4 ret i32 %x } ; An unordered access to null is still unreachable. There's no ; ordering imposed. define i32 @test12() { ; CHECK-LABEL: @test12( ; CHECK-NEXT: store atomic i32 poison, i32* null unordered, align 4294967296 ; CHECK-NEXT: ret i32 0 ; store atomic i32 0, i32* null unordered, align 4 ret i32 0 } define i32 @test12_no_null_opt() #0 { ; CHECK-LABEL: @test12_no_null_opt( ; CHECK-NEXT: store atomic i32 0, i32* null unordered, align 4294967296 ; CHECK-NEXT: ret i32 0 ; store atomic i32 0, i32* null unordered, align 4 ret i32 0 } ; FIXME: Could also fold define i32 @test13() { ; CHECK-LABEL: @test13( ; CHECK-NEXT: store atomic i32 0, i32* null monotonic, align 4294967296 ; CHECK-NEXT: ret i32 0 ; store atomic i32 0, i32* null monotonic, align 4 ret i32 0 } define i32 @test13_no_null_opt() #0 { ; CHECK-LABEL: @test13_no_null_opt( ; CHECK-NEXT: store atomic i32 0, i32* null monotonic, align 4294967296 ; CHECK-NEXT: ret i32 0 ; store atomic i32 0, i32* null monotonic, align 4 ret i32 0 } ; Would this be legal to fold? Probably? define i32 @test14() { ; CHECK-LABEL: @test14( ; CHECK-NEXT: store atomic i32 0, i32* null seq_cst, align 4294967296 ; CHECK-NEXT: ret i32 0 ; store atomic i32 0, i32* null seq_cst, align 4 ret i32 0 } define i32 @test14_no_null_opt() #0 { ; CHECK-LABEL: @test14_no_null_opt( ; CHECK-NEXT: store atomic i32 0, i32* null seq_cst, align 4294967296 ; CHECK-NEXT: ret i32 0 ; store atomic i32 0, i32* null seq_cst, align 4 ret i32 0 } @a = external global i32 @b = external global i32 define i32 @test15(i1 %cnd) { ; CHECK-LABEL: @test15( ; CHECK-NEXT: [[A_VAL:%.*]] = load atomic i32, i32* @a unordered, align 4 ; CHECK-NEXT: [[B_VAL:%.*]] = load atomic i32, i32* @b unordered, align 4 ; CHECK-NEXT: [[X:%.*]] = select i1 [[CND:%.*]], i32 [[A_VAL]], i32 [[B_VAL]] ; CHECK-NEXT: ret i32 [[X]] ; %addr = select i1 %cnd, i32* @a, i32* @b %x = load atomic i32, i32* %addr unordered, align 4 ret i32 %x } ; FIXME: This would be legal to transform define i32 @test16(i1 %cnd) { ; CHECK-LABEL: @test16( ; CHECK-NEXT: [[ADDR:%.*]] = select i1 [[CND:%.*]], i32* @a, i32* @b ; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[ADDR]] monotonic, align 4 ; CHECK-NEXT: ret i32 [[X]] ; %addr = select i1 %cnd, i32* @a, i32* @b %x = load atomic i32, i32* %addr monotonic, align 4 ret i32 %x } ; FIXME: This would be legal to transform define i32 @test17(i1 %cnd) { ; CHECK-LABEL: @test17( ; CHECK-NEXT: [[ADDR:%.*]] = select i1 [[CND:%.*]], i32* @a, i32* @b ; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[ADDR]] seq_cst, align 4 ; CHECK-NEXT: ret i32 [[X]] ; %addr = select i1 %cnd, i32* @a, i32* @b %x = load atomic i32, i32* %addr seq_cst, align 4 ret i32 %x } define i32 @test22(i1 %cnd) { ; CHECK-LABEL: @test22( ; CHECK-NEXT: br i1 [[CND:%.*]], label [[BLOCK1:%.*]], label [[BLOCK2:%.*]] ; CHECK: block1: ; CHECK-NEXT: br label [[MERGE:%.*]] ; CHECK: block2: ; CHECK-NEXT: br label [[MERGE]] ; CHECK: merge: ; CHECK-NEXT: [[STOREMERGE:%.*]] = phi i32 [ 2, [[BLOCK2]] ], [ 1, [[BLOCK1]] ] ; CHECK-NEXT: store atomic i32 [[STOREMERGE]], i32* @a unordered, align 4 ; CHECK-NEXT: ret i32 0 ; br i1 %cnd, label %block1, label %block2 block1: store atomic i32 1, i32* @a unordered, align 4 br label %merge block2: store atomic i32 2, i32* @a unordered, align 4 br label %merge merge: ret i32 0 } ; TODO: probably also legal here define i32 @test23(i1 %cnd) { ; CHECK-LABEL: @test23( ; CHECK-NEXT: br i1 [[CND:%.*]], label [[BLOCK1:%.*]], label [[BLOCK2:%.*]] ; CHECK: block1: ; CHECK-NEXT: store atomic i32 1, i32* @a monotonic, align 4 ; CHECK-NEXT: br label [[MERGE:%.*]] ; CHECK: block2: ; CHECK-NEXT: store atomic i32 2, i32* @a monotonic, align 4 ; CHECK-NEXT: br label [[MERGE]] ; CHECK: merge: ; CHECK-NEXT: ret i32 0 ; br i1 %cnd, label %block1, label %block2 block1: store atomic i32 1, i32* @a monotonic, align 4 br label %merge block2: store atomic i32 2, i32* @a monotonic, align 4 br label %merge merge: ret i32 0 } declare void @clobber() define i32 @test18(float* %p) { ; CHECK-LABEL: @test18( ; CHECK-NEXT: [[X:%.*]] = load atomic float, float* [[P:%.*]] unordered, align 4 ; CHECK-NEXT: call void @clobber() ; CHECK-NEXT: store atomic float [[X]], float* [[P]] unordered, align 4 ; CHECK-NEXT: ret i32 0 ; %x = load atomic float, float* %p unordered, align 4 call void @clobber() ;; keep the load around store atomic float %x, float* %p unordered, align 4 ret i32 0 } ; TODO: probably also legal in this case define i32 @test19(float* %p) { ; CHECK-LABEL: @test19( ; CHECK-NEXT: [[X:%.*]] = load atomic float, float* [[P:%.*]] seq_cst, align 4 ; CHECK-NEXT: call void @clobber() ; CHECK-NEXT: store atomic float [[X]], float* [[P]] seq_cst, align 4 ; CHECK-NEXT: ret i32 0 ; %x = load atomic float, float* %p seq_cst, align 4 call void @clobber() ;; keep the load around store atomic float %x, float* %p seq_cst, align 4 ret i32 0 } define i32 @test20(i32** %p, i8* %v) { ; CHECK-LABEL: @test20( ; CHECK-NEXT: [[TMP1:%.*]] = bitcast i32** [[P:%.*]] to i8** ; CHECK-NEXT: store atomic i8* [[V:%.*]], i8** [[TMP1]] unordered, align 4 ; CHECK-NEXT: ret i32 0 ; %cast = bitcast i8* %v to i32* store atomic i32* %cast, i32** %p unordered, align 4 ret i32 0 } define i32 @test21(i32** %p, i8* %v) { ; CHECK-LABEL: @test21( ; CHECK-NEXT: [[CAST:%.*]] = bitcast i8* [[V:%.*]] to i32* ; CHECK-NEXT: store atomic i32* [[CAST]], i32** [[P:%.*]] monotonic, align 4 ; CHECK-NEXT: ret i32 0 ; %cast = bitcast i8* %v to i32* store atomic i32* %cast, i32** %p monotonic, align 4 ret i32 0 } define void @pr27490a(i8** %p1, i8** %p2) { ; CHECK-LABEL: @pr27490a( ; CHECK-NEXT: [[L:%.*]] = load i8*, i8** [[P1:%.*]], align 8 ; CHECK-NEXT: store volatile i8* [[L]], i8** [[P2:%.*]], align 8 ; CHECK-NEXT: ret void ; %l = load i8*, i8** %p1 store volatile i8* %l, i8** %p2 ret void } define void @pr27490b(i8** %p1, i8** %p2) { ; CHECK-LABEL: @pr27490b( ; CHECK-NEXT: [[L:%.*]] = load i8*, i8** [[P1:%.*]], align 8 ; CHECK-NEXT: store atomic i8* [[L]], i8** [[P2:%.*]] seq_cst, align 8 ; CHECK-NEXT: ret void ; %l = load i8*, i8** %p1 store atomic i8* %l, i8** %p2 seq_cst, align 8 ret void } ;; At the moment, we can't form atomic vectors by folding since these are ;; not representable in the IR. This was pr29121. The right long term ;; solution is to extend the IR to handle this case. define <2 x float> @no_atomic_vector_load(i64* %p) { ; CHECK-LABEL: @no_atomic_vector_load( ; CHECK-NEXT: [[LOAD:%.*]] = load atomic i64, i64* [[P:%.*]] unordered, align 8 ; CHECK-NEXT: [[DOTCAST:%.*]] = bitcast i64 [[LOAD]] to <2 x float> ; CHECK-NEXT: ret <2 x float> [[DOTCAST]] ; %load = load atomic i64, i64* %p unordered, align 8 %.cast = bitcast i64 %load to <2 x float> ret <2 x float> %.cast } define void @no_atomic_vector_store(<2 x float> %p, i8* %p2) { ; CHECK-LABEL: @no_atomic_vector_store( ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x float> [[P:%.*]] to i64 ; CHECK-NEXT: [[TMP2:%.*]] = bitcast i8* [[P2:%.*]] to i64* ; CHECK-NEXT: store atomic i64 [[TMP1]], i64* [[TMP2]] unordered, align 8 ; CHECK-NEXT: ret void ; %1 = bitcast <2 x float> %p to i64 %2 = bitcast i8* %p2 to i64* store atomic i64 %1, i64* %2 unordered, align 8 ret void } @c = constant i32 42 @g = global i32 42 define i32 @atomic_load_from_constant_global() { ; CHECK-LABEL: @atomic_load_from_constant_global( ; CHECK-NEXT: ret i32 42 ; %v = load atomic i32, i32* @c seq_cst, align 4 ret i32 %v } define i8 @atomic_load_from_constant_global_bitcast() { ; CHECK-LABEL: @atomic_load_from_constant_global_bitcast( ; CHECK-NEXT: ret i8 42 ; %v = load atomic i8, i8* bitcast (i32* @c to i8*) seq_cst, align 1 ret i8 %v } define void @atomic_load_from_non_constant_global() { ; CHECK-LABEL: @atomic_load_from_non_constant_global( ; CHECK-NEXT: [[TMP1:%.*]] = load atomic i32, i32* @g seq_cst, align 4 ; CHECK-NEXT: ret void ; load atomic i32, i32* @g seq_cst, align 4 ret void } define void @volatile_load_from_constant_global() { ; CHECK-LABEL: @volatile_load_from_constant_global( ; CHECK-NEXT: [[TMP1:%.*]] = load volatile i32, i32* @c, align 4 ; CHECK-NEXT: ret void ; load volatile i32, i32* @c, align 4 ret void } attributes #0 = { null_pointer_is_valid }