; RUN: opt -S -loop-reduce < %s | FileCheck %s ; Complex addressing mode are costly. ; Make loop-reduce prefer unscaled accesses. ; On X86, reg1 + 1*reg2 has the same cost as reg1 + 8*reg2. ; Therefore, LSR currently prefers to fold as much computation as possible ; in the addressing mode. ; <rdar://problem/16730541> target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" target triple = "x86_64-apple-macosx" define void @mulDouble(ptr nocapture %a, ptr nocapture %b, ptr nocapture %c) { ; CHECK: @mulDouble entry: br label %for.body for.body: ; preds = %for.body, %entry ; CHECK: [[IV:%[^ ]+]] = phi i64 [ [[IVNEXT:%[^,]+]], %for.body ], [ 0, %entry ] ; Only one induction variable should have been generated. ; CHECK-NOT: phi %indvars.iv = phi i64 [ 1, %entry ], [ %indvars.iv.next, %for.body ] %tmp = add nsw i64 %indvars.iv, -1 %arrayidx = getelementptr inbounds double, ptr %b, i64 %tmp %tmp1 = load double, ptr %arrayidx, align 8 ; The induction variable should carry the scaling factor: 1. ; CHECK: [[IVNEXT]] = add nuw nsw i64 [[IV]], 1 %indvars.iv.next = add i64 %indvars.iv, 1 %arrayidx2 = getelementptr inbounds double, ptr %c, i64 %indvars.iv.next %tmp2 = load double, ptr %arrayidx2, align 8 %mul = fmul double %tmp1, %tmp2 %arrayidx4 = getelementptr inbounds double, ptr %a, i64 %indvars.iv store double %mul, ptr %arrayidx4, align 8 %lftr.wideiv = trunc i64 %indvars.iv.next to i32 ; Comparison should be 19 * 1 = 19. ; CHECK: icmp eq i32 {{%[^,]+}}, 19 %exitcond = icmp eq i32 %lftr.wideiv, 20 br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body ret void }