#include "ARMRegisterInfo.h"
#include "ARMUnwindOpAsm.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCFragment.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/MC/SectionKind.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/ARMEHABI.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <string>
using namespace llvm;
static std::string GetAEABIUnwindPersonalityName(unsigned Index) {
assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX &&
"Invalid personality index");
return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str();
}
namespace {
class ARMELFStreamer;
class ARMTargetAsmStreamer : public ARMTargetStreamer {
formatted_raw_ostream &OS;
MCInstPrinter &InstPrinter;
bool IsVerboseAsm;
void emitFnStart() override;
void emitFnEnd() override;
void emitCantUnwind() override;
void emitPersonality(const MCSymbol *Personality) override;
void emitPersonalityIndex(unsigned Index) override;
void emitHandlerData() override;
void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override;
void emitMovSP(unsigned Reg, int64_t Offset = 0) override;
void emitPad(int64_t Offset) override;
void emitRegSave(const SmallVectorImpl<unsigned> &RegList,
bool isVector) override;
void emitUnwindRaw(int64_t Offset,
const SmallVectorImpl<uint8_t> &Opcodes) override;
void switchVendor(StringRef Vendor) override;
void emitAttribute(unsigned Attribute, unsigned Value) override;
void emitTextAttribute(unsigned Attribute, StringRef String) override;
void emitIntTextAttribute(unsigned Attribute, unsigned IntValue,
StringRef StringValue) override;
void emitArch(ARM::ArchKind Arch) override;
void emitArchExtension(uint64_t ArchExt) override;
void emitObjectArch(ARM::ArchKind Arch) override;
void emitFPU(unsigned FPU) override;
void emitInst(uint32_t Inst, char Suffix = '\0') override;
void finishAttributeSection() override;
void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override;
void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override;
void emitARMWinCFIAllocStack(unsigned Size, bool Wide) override;
void emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) override;
void emitARMWinCFISaveSP(unsigned Reg) override;
void emitARMWinCFISaveFRegs(unsigned First, unsigned Last) override;
void emitARMWinCFISaveLR(unsigned Offset) override;
void emitARMWinCFIPrologEnd(bool Fragment) override;
void emitARMWinCFINop(bool Wide) override;
void emitARMWinCFIEpilogStart(unsigned Condition) override;
void emitARMWinCFIEpilogEnd() override;
void emitARMWinCFICustom(unsigned Opcode) override;
public:
ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS,
MCInstPrinter &InstPrinter, bool VerboseAsm);
};
ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S,
formatted_raw_ostream &OS,
MCInstPrinter &InstPrinter,
bool VerboseAsm)
: ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter),
IsVerboseAsm(VerboseAsm) {}
void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; }
void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; }
void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; }
void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) {
OS << "\t.personality " << Personality->getName() << '\n';
}
void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) {
OS << "\t.personalityindex " << Index << '\n';
}
void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; }
void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
int64_t Offset) {
OS << "\t.setfp\t";
InstPrinter.printRegName(OS, FpReg);
OS << ", ";
InstPrinter.printRegName(OS, SpReg);
if (Offset)
OS << ", #" << Offset;
OS << '\n';
}
void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
assert((Reg != ARM::SP && Reg != ARM::PC) &&
"the operand of .movsp cannot be either sp or pc");
OS << "\t.movsp\t";
InstPrinter.printRegName(OS, Reg);
if (Offset)
OS << ", #" << Offset;
OS << '\n';
}
void ARMTargetAsmStreamer::emitPad(int64_t Offset) {
OS << "\t.pad\t#" << Offset << '\n';
}
void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
bool isVector) {
assert(RegList.size() && "RegList should not be empty");
if (isVector)
OS << "\t.vsave\t{";
else
OS << "\t.save\t{";
InstPrinter.printRegName(OS, RegList[0]);
for (unsigned i = 1, e = RegList.size(); i != e; ++i) {
OS << ", ";
InstPrinter.printRegName(OS, RegList[i]);
}
OS << "}\n";
}
void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {}
void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) {
OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value);
if (IsVerboseAsm) {
StringRef Name = ELFAttrs::attrTypeAsString(
Attribute, ARMBuildAttrs::getARMAttributeTags());
if (!Name.empty())
OS << "\t@ " << Name;
}
OS << "\n";
}
void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute,
StringRef String) {
switch (Attribute) {
case ARMBuildAttrs::CPU_name:
OS << "\t.cpu\t" << String.lower();
break;
default:
OS << "\t.eabi_attribute\t" << Attribute << ", \"" << String << "\"";
if (IsVerboseAsm) {
StringRef Name = ELFAttrs::attrTypeAsString(
Attribute, ARMBuildAttrs::getARMAttributeTags());
if (!Name.empty())
OS << "\t@ " << Name;
}
break;
}
OS << "\n";
}
void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute,
unsigned IntValue,
StringRef StringValue) {
switch (Attribute) {
default: llvm_unreachable("unsupported multi-value attribute in asm mode");
case ARMBuildAttrs::compatibility:
OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue;
if (!StringValue.empty())
OS << ", \"" << StringValue << "\"";
if (IsVerboseAsm)
OS << "\t@ "
<< ELFAttrs::attrTypeAsString(Attribute,
ARMBuildAttrs::getARMAttributeTags());
break;
}
OS << "\n";
}
void ARMTargetAsmStreamer::emitArch(ARM::ArchKind Arch) {
OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n";
}
void ARMTargetAsmStreamer::emitArchExtension(uint64_t ArchExt) {
OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n";
}
void ARMTargetAsmStreamer::emitObjectArch(ARM::ArchKind Arch) {
OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n';
}
void ARMTargetAsmStreamer::emitFPU(unsigned FPU) {
OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n";
}
void ARMTargetAsmStreamer::finishAttributeSection() {}
void ARMTargetAsmStreamer::annotateTLSDescriptorSequence(
const MCSymbolRefExpr *S) {
OS << "\t.tlsdescseq\t" << S->getSymbol().getName() << "\n";
}
void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {
const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo();
OS << "\t.thumb_set\t";
Symbol->print(OS, MAI);
OS << ", ";
Value->print(OS, MAI);
OS << '\n';
}
void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) {
OS << "\t.inst";
if (Suffix)
OS << "." << Suffix;
OS << "\t0x" << Twine::utohexstr(Inst) << "\n";
}
void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset,
const SmallVectorImpl<uint8_t> &Opcodes) {
OS << "\t.unwind_raw " << Offset;
for (uint8_t Opcode : Opcodes)
OS << ", 0x" << Twine::utohexstr(Opcode);
OS << '\n';
}
void ARMTargetAsmStreamer::emitARMWinCFIAllocStack(unsigned Size, bool Wide) {
if (Wide)
OS << "\t.seh_stackalloc_w\t" << Size << "\n";
else
OS << "\t.seh_stackalloc\t" << Size << "\n";
}
static void printRegs(formatted_raw_ostream &OS, ListSeparator &LS, int First,
int Last) {
if (First != Last)
OS << LS << "r" << First << "-r" << Last;
else
OS << LS << "r" << First;
}
void ARMTargetAsmStreamer::emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) {
if (Wide)
OS << "\t.seh_save_regs_w\t";
else
OS << "\t.seh_save_regs\t";
ListSeparator LS;
int First = -1;
OS << "{";
for (int I = 0; I <= 12; I++) {
if (Mask & (1 << I)) {
if (First < 0)
First = I;
} else {
if (First >= 0) {
printRegs(OS, LS, First, I - 1);
First = -1;
}
}
}
if (First >= 0)
printRegs(OS, LS, First, 12);
if (Mask & (1 << 14))
OS << LS << "lr";
OS << "}\n";
}
void ARMTargetAsmStreamer::emitARMWinCFISaveSP(unsigned Reg) {
OS << "\t.seh_save_sp\tr" << Reg << "\n";
}
void ARMTargetAsmStreamer::emitARMWinCFISaveFRegs(unsigned First,
unsigned Last) {
if (First != Last)
OS << "\t.seh_save_fregs\t{d" << First << "-d" << Last << "}\n";
else
OS << "\t.seh_save_fregs\t{d" << First << "}\n";
}
void ARMTargetAsmStreamer::emitARMWinCFISaveLR(unsigned Offset) {
OS << "\t.seh_save_lr\t" << Offset << "\n";
}
void ARMTargetAsmStreamer::emitARMWinCFIPrologEnd(bool Fragment) {
if (Fragment)
OS << "\t.seh_endprologue_fragment\n";
else
OS << "\t.seh_endprologue\n";
}
void ARMTargetAsmStreamer::emitARMWinCFINop(bool Wide) {
if (Wide)
OS << "\t.seh_nop_w\n";
else
OS << "\t.seh_nop\n";
}
void ARMTargetAsmStreamer::emitARMWinCFIEpilogStart(unsigned Condition) {
if (Condition == ARMCC::AL)
OS << "\t.seh_startepilogue\n";
else
OS << "\t.seh_startepilogue_cond\t"
<< ARMCondCodeToString(static_cast<ARMCC::CondCodes>(Condition)) << "\n";
}
void ARMTargetAsmStreamer::emitARMWinCFIEpilogEnd() {
OS << "\t.seh_endepilogue\n";
}
void ARMTargetAsmStreamer::emitARMWinCFICustom(unsigned Opcode) {
int I;
for (I = 3; I > 0; I--)
if (Opcode & (0xffu << (8 * I)))
break;
ListSeparator LS;
OS << "\t.seh_custom\t";
for (; I >= 0; I--)
OS << LS << ((Opcode >> (8 * I)) & 0xff);
OS << "\n";
}
class ARMTargetELFStreamer : public ARMTargetStreamer {
private:
StringRef CurrentVendor;
unsigned FPU = ARM::FK_INVALID;
ARM::ArchKind Arch = ARM::ArchKind::INVALID;
ARM::ArchKind EmittedArch = ARM::ArchKind::INVALID;
MCSection *AttributeSection = nullptr;
void emitArchDefaultAttributes();
void emitFPUDefaultAttributes();
ARMELFStreamer &getStreamer();
void emitFnStart() override;
void emitFnEnd() override;
void emitCantUnwind() override;
void emitPersonality(const MCSymbol *Personality) override;
void emitPersonalityIndex(unsigned Index) override;
void emitHandlerData() override;
void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override;
void emitMovSP(unsigned Reg, int64_t Offset = 0) override;
void emitPad(int64_t Offset) override;
void emitRegSave(const SmallVectorImpl<unsigned> &RegList,
bool isVector) override;
void emitUnwindRaw(int64_t Offset,
const SmallVectorImpl<uint8_t> &Opcodes) override;
void switchVendor(StringRef Vendor) override;
void emitAttribute(unsigned Attribute, unsigned Value) override;
void emitTextAttribute(unsigned Attribute, StringRef String) override;
void emitIntTextAttribute(unsigned Attribute, unsigned IntValue,
StringRef StringValue) override;
void emitArch(ARM::ArchKind Arch) override;
void emitObjectArch(ARM::ArchKind Arch) override;
void emitFPU(unsigned FPU) override;
void emitInst(uint32_t Inst, char Suffix = '\0') override;
void finishAttributeSection() override;
void emitLabel(MCSymbol *Symbol) override;
void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override;
void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override;
void reset() override;
public:
ARMTargetELFStreamer(MCStreamer &S)
: ARMTargetStreamer(S), CurrentVendor("aeabi") {}
};
class ARMELFStreamer : public MCELFStreamer {
public:
friend class ARMTargetELFStreamer;
ARMELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB,
std::unique_ptr<MCObjectWriter> OW,
std::unique_ptr<MCCodeEmitter> Emitter, bool IsThumb,
bool IsAndroid)
: MCELFStreamer(Context, std::move(TAB), std::move(OW),
std::move(Emitter)),
IsThumb(IsThumb), IsAndroid(IsAndroid) {
EHReset();
}
~ARMELFStreamer() override = default;
void finishImpl() override;
void emitFnStart();
void emitFnEnd();
void emitCantUnwind();
void emitPersonality(const MCSymbol *Per);
void emitPersonalityIndex(unsigned index);
void emitHandlerData();
void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0);
void emitMovSP(unsigned Reg, int64_t Offset = 0);
void emitPad(int64_t Offset);
void emitRegSave(const SmallVectorImpl<unsigned> &RegList, bool isVector);
void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes);
void emitFill(const MCExpr &NumBytes, uint64_t FillValue,
SMLoc Loc) override {
emitDataMappingSymbol();
MCObjectStreamer::emitFill(NumBytes, FillValue, Loc);
}
void changeSection(MCSection *Section, const MCExpr *Subsection) override {
LastMappingSymbols[getCurrentSection().first] = std::move(LastEMSInfo);
MCELFStreamer::changeSection(Section, Subsection);
auto LastMappingSymbol = LastMappingSymbols.find(Section);
if (LastMappingSymbol != LastMappingSymbols.end()) {
LastEMSInfo = std::move(LastMappingSymbol->second);
return;
}
LastEMSInfo.reset(new ElfMappingSymbolInfo(SMLoc(), nullptr, 0));
}
void emitInstruction(const MCInst &Inst,
const MCSubtargetInfo &STI) override {
if (IsThumb)
EmitThumbMappingSymbol();
else
EmitARMMappingSymbol();
MCELFStreamer::emitInstruction(Inst, STI);
}
void emitInst(uint32_t Inst, char Suffix) {
unsigned Size;
char Buffer[4];
const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian();
switch (Suffix) {
case '\0':
Size = 4;
assert(!IsThumb);
EmitARMMappingSymbol();
for (unsigned II = 0, IE = Size; II != IE; II++) {
const unsigned I = LittleEndian ? (Size - II - 1) : II;
Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT);
}
break;
case 'n':
case 'w':
Size = (Suffix == 'n' ? 2 : 4);
assert(IsThumb);
EmitThumbMappingSymbol();
for (unsigned II = 0, IE = Size; II != IE; II = II + 2) {
const unsigned I0 = LittleEndian ? II + 0 : II + 1;
const unsigned I1 = LittleEndian ? II + 1 : II + 0;
Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT);
Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT);
}
break;
default:
llvm_unreachable("Invalid Suffix");
}
MCELFStreamer::emitBytes(StringRef(Buffer, Size));
}
void emitBytes(StringRef Data) override {
emitDataMappingSymbol();
MCELFStreamer::emitBytes(Data);
}
void FlushPendingMappingSymbol() {
if (!LastEMSInfo->hasInfo())
return;
ElfMappingSymbolInfo *EMS = LastEMSInfo.get();
EmitMappingSymbol("$d", EMS->Loc, EMS->F, EMS->Offset);
EMS->resetInfo();
}
void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override {
if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value)) {
if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) {
getContext().reportError(Loc, "relocated expression must be 32-bit");
return;
}
getOrCreateDataFragment();
}
emitDataMappingSymbol();
MCELFStreamer::emitValueImpl(Value, Size, Loc);
}
void emitAssemblerFlag(MCAssemblerFlag Flag) override {
MCELFStreamer::emitAssemblerFlag(Flag);
switch (Flag) {
case MCAF_SyntaxUnified:
return; case MCAF_Code16:
IsThumb = true;
return; case MCAF_Code32:
IsThumb = false;
return; case MCAF_Code64:
return;
case MCAF_SubsectionsViaSymbols:
return;
}
}
bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) override {
bool Val = MCELFStreamer::emitSymbolAttribute(Symbol, Attribute);
if (!IsThumb)
return Val;
unsigned Type = cast<MCSymbolELF>(Symbol)->getType();
if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) &&
Symbol->isDefined())
getAssembler().setIsThumbFunc(Symbol);
return Val;
};
private:
enum ElfMappingSymbol {
EMS_None,
EMS_ARM,
EMS_Thumb,
EMS_Data
};
struct ElfMappingSymbolInfo {
explicit ElfMappingSymbolInfo(SMLoc Loc, MCFragment *F, uint64_t O)
: Loc(Loc), F(F), Offset(O), State(EMS_None) {}
void resetInfo() {
F = nullptr;
Offset = 0;
}
bool hasInfo() { return F != nullptr; }
SMLoc Loc;
MCFragment *F;
uint64_t Offset;
ElfMappingSymbol State;
};
void emitDataMappingSymbol() {
if (LastEMSInfo->State == EMS_Data)
return;
else if (LastEMSInfo->State == EMS_None) {
ElfMappingSymbolInfo *EMS = LastEMSInfo.get();
auto *DF = dyn_cast_or_null<MCDataFragment>(getCurrentFragment());
if (!DF)
return;
EMS->Loc = SMLoc();
EMS->F = getCurrentFragment();
EMS->Offset = DF->getContents().size();
LastEMSInfo->State = EMS_Data;
return;
}
EmitMappingSymbol("$d");
LastEMSInfo->State = EMS_Data;
}
void EmitThumbMappingSymbol() {
if (LastEMSInfo->State == EMS_Thumb)
return;
FlushPendingMappingSymbol();
EmitMappingSymbol("$t");
LastEMSInfo->State = EMS_Thumb;
}
void EmitARMMappingSymbol() {
if (LastEMSInfo->State == EMS_ARM)
return;
FlushPendingMappingSymbol();
EmitMappingSymbol("$a");
LastEMSInfo->State = EMS_ARM;
}
void EmitMappingSymbol(StringRef Name) {
auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol(
Name + "." + Twine(MappingSymbolCounter++)));
emitLabel(Symbol);
Symbol->setType(ELF::STT_NOTYPE);
Symbol->setBinding(ELF::STB_LOCAL);
}
void EmitMappingSymbol(StringRef Name, SMLoc Loc, MCFragment *F,
uint64_t Offset) {
auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol(
Name + "." + Twine(MappingSymbolCounter++)));
emitLabelAtPos(Symbol, Loc, F, Offset);
Symbol->setType(ELF::STT_NOTYPE);
Symbol->setBinding(ELF::STB_LOCAL);
}
void emitThumbFunc(MCSymbol *Func) override {
getAssembler().setIsThumbFunc(Func);
emitSymbolAttribute(Func, MCSA_ELF_TypeFunction);
}
void EHReset();
void reset() override;
void EmitPersonalityFixup(StringRef Name);
void FlushPendingOffset();
void FlushUnwindOpcodes(bool NoHandlerData);
void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags,
SectionKind Kind, const MCSymbol &Fn);
void SwitchToExTabSection(const MCSymbol &FnStart);
void SwitchToExIdxSection(const MCSymbol &FnStart);
void EmitFixup(const MCExpr *Expr, MCFixupKind Kind);
bool IsThumb;
bool IsAndroid;
int64_t MappingSymbolCounter = 0;
DenseMap<const MCSection *, std::unique_ptr<ElfMappingSymbolInfo>>
LastMappingSymbols;
std::unique_ptr<ElfMappingSymbolInfo> LastEMSInfo;
MCSymbol *ExTab;
MCSymbol *FnStart;
const MCSymbol *Personality;
unsigned PersonalityIndex;
unsigned FPReg; int64_t FPOffset; int64_t SPOffset; int64_t PendingOffset; bool UsedFP;
bool CantUnwind;
SmallVector<uint8_t, 64> Opcodes;
UnwindOpcodeAssembler UnwindOpAsm;
};
}
ARMELFStreamer &ARMTargetELFStreamer::getStreamer() {
return static_cast<ARMELFStreamer &>(Streamer);
}
void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); }
void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); }
void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); }
void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) {
getStreamer().emitPersonality(Personality);
}
void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) {
getStreamer().emitPersonalityIndex(Index);
}
void ARMTargetELFStreamer::emitHandlerData() {
getStreamer().emitHandlerData();
}
void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
int64_t Offset) {
getStreamer().emitSetFP(FpReg, SpReg, Offset);
}
void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
getStreamer().emitMovSP(Reg, Offset);
}
void ARMTargetELFStreamer::emitPad(int64_t Offset) {
getStreamer().emitPad(Offset);
}
void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
bool isVector) {
getStreamer().emitRegSave(RegList, isVector);
}
void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset,
const SmallVectorImpl<uint8_t> &Opcodes) {
getStreamer().emitUnwindRaw(Offset, Opcodes);
}
void ARMTargetELFStreamer::switchVendor(StringRef Vendor) {
assert(!Vendor.empty() && "Vendor cannot be empty.");
if (CurrentVendor == Vendor)
return;
if (!CurrentVendor.empty())
finishAttributeSection();
assert(getStreamer().Contents.empty() &&
".ARM.attributes should be flushed before changing vendor");
CurrentVendor = Vendor;
}
void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) {
getStreamer().setAttributeItem(Attribute, Value,
true);
}
void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute,
StringRef Value) {
getStreamer().setAttributeItem(Attribute, Value,
true);
}
void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute,
unsigned IntValue,
StringRef StringValue) {
getStreamer().setAttributeItems(Attribute, IntValue, StringValue,
true);
}
void ARMTargetELFStreamer::emitArch(ARM::ArchKind Value) {
Arch = Value;
}
void ARMTargetELFStreamer::emitObjectArch(ARM::ArchKind Value) {
EmittedArch = Value;
}
void ARMTargetELFStreamer::emitArchDefaultAttributes() {
using namespace ARMBuildAttrs;
ARMELFStreamer &S = getStreamer();
S.setAttributeItem(CPU_name, ARM::getCPUAttr(Arch), false);
if (EmittedArch == ARM::ArchKind::INVALID)
S.setAttributeItem(CPU_arch, ARM::getArchAttr(Arch), false);
else
S.setAttributeItem(CPU_arch, ARM::getArchAttr(EmittedArch), false);
switch (Arch) {
case ARM::ArchKind::ARMV2:
case ARM::ArchKind::ARMV2A:
case ARM::ArchKind::ARMV3:
case ARM::ArchKind::ARMV3M:
case ARM::ArchKind::ARMV4:
S.setAttributeItem(ARM_ISA_use, Allowed, false);
break;
case ARM::ArchKind::ARMV4T:
case ARM::ArchKind::ARMV5T:
case ARM::ArchKind::XSCALE:
case ARM::ArchKind::ARMV5TE:
case ARM::ArchKind::ARMV6:
S.setAttributeItem(ARM_ISA_use, Allowed, false);
S.setAttributeItem(THUMB_ISA_use, Allowed, false);
break;
case ARM::ArchKind::ARMV6T2:
S.setAttributeItem(ARM_ISA_use, Allowed, false);
S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
break;
case ARM::ArchKind::ARMV6K:
case ARM::ArchKind::ARMV6KZ:
S.setAttributeItem(ARM_ISA_use, Allowed, false);
S.setAttributeItem(THUMB_ISA_use, Allowed, false);
S.setAttributeItem(Virtualization_use, AllowTZ, false);
break;
case ARM::ArchKind::ARMV6M:
S.setAttributeItem(THUMB_ISA_use, Allowed, false);
break;
case ARM::ArchKind::ARMV7A:
S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false);
S.setAttributeItem(ARM_ISA_use, Allowed, false);
S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
break;
case ARM::ArchKind::ARMV7R:
S.setAttributeItem(CPU_arch_profile, RealTimeProfile, false);
S.setAttributeItem(ARM_ISA_use, Allowed, false);
S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
break;
case ARM::ArchKind::ARMV7EM:
case ARM::ArchKind::ARMV7M:
S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false);
S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
break;
case ARM::ArchKind::ARMV8A:
case ARM::ArchKind::ARMV8_1A:
case ARM::ArchKind::ARMV8_2A:
case ARM::ArchKind::ARMV8_3A:
case ARM::ArchKind::ARMV8_4A:
case ARM::ArchKind::ARMV8_5A:
case ARM::ArchKind::ARMV8_6A:
case ARM::ArchKind::ARMV9A:
case ARM::ArchKind::ARMV9_1A:
case ARM::ArchKind::ARMV9_2A:
case ARM::ArchKind::ARMV9_3A:
S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false);
S.setAttributeItem(ARM_ISA_use, Allowed, false);
S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
S.setAttributeItem(MPextension_use, Allowed, false);
S.setAttributeItem(Virtualization_use, AllowTZVirtualization, false);
break;
case ARM::ArchKind::ARMV8MBaseline:
case ARM::ArchKind::ARMV8MMainline:
S.setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false);
S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false);
break;
case ARM::ArchKind::IWMMXT:
S.setAttributeItem(ARM_ISA_use, Allowed, false);
S.setAttributeItem(THUMB_ISA_use, Allowed, false);
S.setAttributeItem(WMMX_arch, AllowWMMXv1, false);
break;
case ARM::ArchKind::IWMMXT2:
S.setAttributeItem(ARM_ISA_use, Allowed, false);
S.setAttributeItem(THUMB_ISA_use, Allowed, false);
S.setAttributeItem(WMMX_arch, AllowWMMXv2, false);
break;
default:
report_fatal_error("Unknown Arch: " + Twine(ARM::getArchName(Arch)));
break;
}
}
void ARMTargetELFStreamer::emitFPU(unsigned Value) {
FPU = Value;
}
void ARMTargetELFStreamer::emitFPUDefaultAttributes() {
ARMELFStreamer &S = getStreamer();
switch (FPU) {
case ARM::FK_VFP:
case ARM::FK_VFPV2:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv2,
false);
break;
case ARM::FK_VFPV3:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A,
false);
break;
case ARM::FK_VFPV3_FP16:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A,
false);
S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP,
false);
break;
case ARM::FK_VFPV3_D16:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B,
false);
break;
case ARM::FK_VFPV3_D16_FP16:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B,
false);
S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP,
false);
break;
case ARM::FK_VFPV3XD:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B,
false);
break;
case ARM::FK_VFPV3XD_FP16:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B,
false);
S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP,
false);
break;
case ARM::FK_VFPV4:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A,
false);
break;
case ARM::FK_FPV4_SP_D16:
case ARM::FK_VFPV4_D16:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4B,
false);
break;
case ARM::FK_FP_ARMV8:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A,
false);
break;
case ARM::FK_FPV5_SP_D16:
case ARM::FK_FPV5_D16:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8B,
false);
break;
case ARM::FK_NEON:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A,
false);
S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
ARMBuildAttrs::AllowNeon,
false);
break;
case ARM::FK_NEON_FP16:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A,
false);
S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
ARMBuildAttrs::AllowNeon,
false);
S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP,
false);
break;
case ARM::FK_NEON_VFPV4:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A,
false);
S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
ARMBuildAttrs::AllowNeon2,
false);
break;
case ARM::FK_NEON_FP_ARMV8:
case ARM::FK_CRYPTO_NEON_FP_ARMV8:
S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A,
false);
break;
case ARM::FK_SOFTVFP:
case ARM::FK_NONE:
break;
default:
report_fatal_error("Unknown FPU: " + Twine(FPU));
break;
}
}
void ARMTargetELFStreamer::finishAttributeSection() {
ARMELFStreamer &S = getStreamer();
if (FPU != ARM::FK_INVALID)
emitFPUDefaultAttributes();
if (Arch != ARM::ArchKind::INVALID)
emitArchDefaultAttributes();
if (S.Contents.empty())
return;
auto LessTag = [](const MCELFStreamer::AttributeItem &LHS,
const MCELFStreamer::AttributeItem &RHS) -> bool {
return (RHS.Tag != ARMBuildAttrs::conformance) &&
((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag));
};
llvm::sort(S.Contents, LessTag);
S.emitAttributesSection(CurrentVendor, ".ARM.attributes",
ELF::SHT_ARM_ATTRIBUTES, AttributeSection);
FPU = ARM::FK_INVALID;
}
void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) {
ARMELFStreamer &Streamer = getStreamer();
if (!Streamer.IsThumb)
return;
Streamer.getAssembler().registerSymbol(*Symbol);
unsigned Type = cast<MCSymbolELF>(Symbol)->getType();
if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)
Streamer.emitThumbFunc(Symbol);
}
void ARMTargetELFStreamer::annotateTLSDescriptorSequence(
const MCSymbolRefExpr *S) {
getStreamer().EmitFixup(S, FK_Data_4);
}
void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {
if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) {
const MCSymbol &Sym = SRE->getSymbol();
if (!Sym.isDefined()) {
getStreamer().emitAssignment(Symbol, Value);
return;
}
}
getStreamer().emitThumbFunc(Symbol);
getStreamer().emitAssignment(Symbol, Value);
}
void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) {
getStreamer().emitInst(Inst, Suffix);
}
void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; }
void ARMELFStreamer::finishImpl() {
MCTargetStreamer &TS = *getTargetStreamer();
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
ATS.finishAttributeSection();
MCELFStreamer::finishImpl();
}
void ARMELFStreamer::reset() {
MCTargetStreamer &TS = *getTargetStreamer();
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
ATS.reset();
MappingSymbolCounter = 0;
MCELFStreamer::reset();
LastMappingSymbols.clear();
LastEMSInfo.reset();
getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
}
inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix,
unsigned Type,
unsigned Flags,
SectionKind Kind,
const MCSymbol &Fn) {
const MCSectionELF &FnSection =
static_cast<const MCSectionELF &>(Fn.getSection());
StringRef FnSecName(FnSection.getName());
SmallString<128> EHSecName(Prefix);
if (FnSecName != ".text") {
EHSecName += FnSecName;
}
const MCSymbolELF *Group = FnSection.getGroup();
if (Group)
Flags |= ELF::SHF_GROUP;
MCSectionELF *EHSection = getContext().getELFSection(
EHSecName, Type, Flags, 0, Group, true,
FnSection.getUniqueID(),
static_cast<const MCSymbolELF *>(FnSection.getBeginSymbol()));
assert(EHSection && "Failed to get the required EH section");
switchSection(EHSection);
emitValueToAlignment(4, 0, 1, 0);
}
inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) {
SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC,
SectionKind::getData(), FnStart);
}
inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) {
SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX,
ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER,
SectionKind::getData(), FnStart);
}
void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) {
MCDataFragment *Frag = getOrCreateDataFragment();
Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr,
Kind));
}
void ARMELFStreamer::EHReset() {
ExTab = nullptr;
FnStart = nullptr;
Personality = nullptr;
PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX;
FPReg = ARM::SP;
FPOffset = 0;
SPOffset = 0;
PendingOffset = 0;
UsedFP = false;
CantUnwind = false;
Opcodes.clear();
UnwindOpAsm.Reset();
}
void ARMELFStreamer::emitFnStart() {
assert(FnStart == nullptr);
FnStart = getContext().createTempSymbol();
emitLabel(FnStart);
}
void ARMELFStreamer::emitFnEnd() {
assert(FnStart && ".fnstart must precedes .fnend");
if (!ExTab && !CantUnwind)
FlushUnwindOpcodes(true);
SwitchToExIdxSection(*FnStart);
if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX && !IsAndroid)
EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex));
const MCSymbolRefExpr *FnStartRef =
MCSymbolRefExpr::create(FnStart,
MCSymbolRefExpr::VK_ARM_PREL31,
getContext());
emitValue(FnStartRef, 4);
if (CantUnwind) {
emitInt32(ARM::EHABI::EXIDX_CANTUNWIND);
} else if (ExTab) {
const MCSymbolRefExpr *ExTabEntryRef =
MCSymbolRefExpr::create(ExTab,
MCSymbolRefExpr::VK_ARM_PREL31,
getContext());
emitValue(ExTabEntryRef, 4);
} else {
assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 &&
"Compact model must use __aeabi_unwind_cpp_pr0 as personality");
assert(Opcodes.size() == 4u &&
"Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4");
uint64_t Intval = Opcodes[0] |
Opcodes[1] << 8 |
Opcodes[2] << 16 |
Opcodes[3] << 24;
emitIntValue(Intval, Opcodes.size());
}
switchSection(&FnStart->getSection());
EHReset();
}
void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; }
void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) {
const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name);
const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create(
PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext());
visitUsedExpr(*PersonalityRef);
MCDataFragment *DF = getOrCreateDataFragment();
DF->getFixups().push_back(MCFixup::create(DF->getContents().size(),
PersonalityRef,
MCFixup::getKindForSize(4, false)));
}
void ARMELFStreamer::FlushPendingOffset() {
if (PendingOffset != 0) {
UnwindOpAsm.EmitSPOffset(-PendingOffset);
PendingOffset = 0;
}
}
void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) {
if (UsedFP) {
const MCRegisterInfo *MRI = getContext().getRegisterInfo();
int64_t LastRegSaveSPOffset = SPOffset - PendingOffset;
UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset);
UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg));
} else {
FlushPendingOffset();
}
UnwindOpAsm.Finalize(PersonalityIndex, Opcodes);
if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0)
return;
SwitchToExTabSection(*FnStart);
assert(!ExTab);
ExTab = getContext().createTempSymbol();
emitLabel(ExTab);
if (Personality) {
const MCSymbolRefExpr *PersonalityRef =
MCSymbolRefExpr::create(Personality,
MCSymbolRefExpr::VK_ARM_PREL31,
getContext());
emitValue(PersonalityRef, 4);
}
assert((Opcodes.size() % 4) == 0 &&
"Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4");
for (unsigned I = 0; I != Opcodes.size(); I += 4) {
uint64_t Intval = Opcodes[I] |
Opcodes[I + 1] << 8 |
Opcodes[I + 2] << 16 |
Opcodes[I + 3] << 24;
emitInt32(Intval);
}
if (NoHandlerData && !Personality)
emitInt32(0);
}
void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); }
void ARMELFStreamer::emitPersonality(const MCSymbol *Per) {
Personality = Per;
UnwindOpAsm.setPersonality(Per);
}
void ARMELFStreamer::emitPersonalityIndex(unsigned Index) {
assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index");
PersonalityIndex = Index;
}
void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg,
int64_t Offset) {
assert((NewSPReg == ARM::SP || NewSPReg == FPReg) &&
"the operand of .setfp directive should be either $sp or $fp");
UsedFP = true;
FPReg = NewFPReg;
if (NewSPReg == ARM::SP)
FPOffset = SPOffset + Offset;
else
FPOffset += Offset;
}
void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
assert((Reg != ARM::SP && Reg != ARM::PC) &&
"the operand of .movsp cannot be either sp or pc");
assert(FPReg == ARM::SP && "current FP must be SP");
FlushPendingOffset();
FPReg = Reg;
FPOffset = SPOffset + Offset;
const MCRegisterInfo *MRI = getContext().getRegisterInfo();
UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg));
}
void ARMELFStreamer::emitPad(int64_t Offset) {
SPOffset -= Offset;
PendingOffset -= Offset;
}
static std::pair<unsigned, unsigned>
collectHWRegs(const MCRegisterInfo &MRI, unsigned Idx,
const SmallVectorImpl<unsigned> &RegList, bool IsVector,
uint32_t &Mask_) {
uint32_t Mask = 0;
unsigned Count = 0;
while (Idx > 0) {
unsigned Reg = RegList[Idx - 1];
if (Reg == ARM::RA_AUTH_CODE)
break;
Reg = MRI.getEncodingValue(Reg);
assert(Reg < (IsVector ? 32U : 16U) && "Register out of range");
unsigned Bit = (1u << Reg);
if ((Mask & Bit) == 0) {
Mask |= Bit;
++Count;
}
--Idx;
}
Mask_ = Mask;
return {Idx, Count};
}
void ARMELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
bool IsVector) {
uint32_t Mask;
unsigned Idx, Count;
const MCRegisterInfo &MRI = *getContext().getRegisterInfo();
Idx = RegList.size();
while (Idx > 0) {
std::tie(Idx, Count) = collectHWRegs(MRI, Idx, RegList, IsVector, Mask);
if (Count) {
SPOffset -= Count * (IsVector ? 8 : 4);
FlushPendingOffset();
if (IsVector)
UnwindOpAsm.EmitVFPRegSave(Mask);
else
UnwindOpAsm.EmitRegSave(Mask);
} else if (Idx > 0 && RegList[Idx - 1] == ARM::RA_AUTH_CODE) {
--Idx;
SPOffset -= 4;
FlushPendingOffset();
UnwindOpAsm.EmitRegSave(0);
}
}
}
void ARMELFStreamer::emitUnwindRaw(int64_t Offset,
const SmallVectorImpl<uint8_t> &Opcodes) {
FlushPendingOffset();
SPOffset = SPOffset - Offset;
UnwindOpAsm.EmitRaw(Opcodes);
}
namespace llvm {
MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S,
formatted_raw_ostream &OS,
MCInstPrinter *InstPrint,
bool isVerboseAsm) {
return new ARMTargetAsmStreamer(S, OS, *InstPrint, isVerboseAsm);
}
MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) {
return new ARMTargetStreamer(S);
}
MCTargetStreamer *createARMObjectTargetELFStreamer(MCStreamer &S) {
return new ARMTargetELFStreamer(S);
}
MCELFStreamer *createARMELFStreamer(MCContext &Context,
std::unique_ptr<MCAsmBackend> TAB,
std::unique_ptr<MCObjectWriter> OW,
std::unique_ptr<MCCodeEmitter> Emitter,
bool RelaxAll, bool IsThumb,
bool IsAndroid) {
ARMELFStreamer *S =
new ARMELFStreamer(Context, std::move(TAB), std::move(OW),
std::move(Emitter), IsThumb, IsAndroid);
S->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
if (RelaxAll)
S->getAssembler().setRelaxAll(true);
return S;
}
}