; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py ; RUN: opt "-passes=print<scalar-evolution>" -disable-output < %s 2>&1 | FileCheck %s ; ; This checks if the min and max expressions are properly recognized by ; ScalarEvolution even though they the ICmpInst and SelectInst have different ; types. ; ; #define max(a, b) (a > b ? a : b) ; #define min(a, b) (a < b ? a : b) ; ; void f(int *A, int N) { ; for (int i = 0; i < N; i++) { ; A[max(0, i - 3)] = A[min(N, i + 3)] * 2; ; } ; } ; target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" define void @f(i32* %A, i32 %N) { ; CHECK-LABEL: 'f' ; CHECK-NEXT: Classifying expressions for: @f ; CHECK-NEXT: %i.0 = phi i32 [ 0, %bb ], [ %tmp23, %bb2 ] ; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb1> U: [0,-2147483648) S: [0,-2147483648) Exits: (0 smax %N) LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %i.0.1 = sext i32 %i.0 to i64 ; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb1> U: [0,2147483648) S: [0,2147483648) Exits: (zext i32 (0 smax %N) to i64) LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %tmp3 = add nuw nsw i32 %i.0, 3 ; CHECK-NEXT: --> {3,+,1}<nuw><%bb1> U: [3,-2147483645) S: [3,-2147483645) Exits: (3 + (0 smax %N))<nuw> LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %tmp5 = sext i32 %tmp3 to i64 ; CHECK-NEXT: --> (sext i32 {3,+,1}<nuw><%bb1> to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: (sext i32 (3 + (0 smax %N))<nuw> to i64) LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %tmp6 = sext i32 %N to i64 ; CHECK-NEXT: --> (sext i32 %N to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: (sext i32 %N to i64) LoopDispositions: { %bb1: Invariant } ; CHECK-NEXT: %tmp9 = select i1 %tmp4, i64 %tmp5, i64 %tmp6 ; CHECK-NEXT: --> ((sext i32 {3,+,1}<nuw><%bb1> to i64) smin (sext i32 %N to i64)) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: ((sext i32 (3 + (0 smax %N))<nuw> to i64) smin (sext i32 %N to i64)) LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %tmp11 = getelementptr inbounds i32, i32* %A, i64 %tmp9 ; CHECK-NEXT: --> ((4 * ((sext i32 {3,+,1}<nuw><%bb1> to i64) smin (sext i32 %N to i64)))<nsw> + %A) U: full-set S: full-set Exits: ((4 * ((sext i32 (3 + (0 smax %N))<nuw> to i64) smin (sext i32 %N to i64)))<nsw> + %A) LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %tmp12 = load i32, i32* %tmp11, align 4 ; CHECK-NEXT: --> %tmp12 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb1: Variant } ; CHECK-NEXT: %tmp13 = shl nsw i32 %tmp12, 1 ; CHECK-NEXT: --> (2 * %tmp12) U: [0,-1) S: [-2147483648,2147483647) Exits: <<Unknown>> LoopDispositions: { %bb1: Variant } ; CHECK-NEXT: %tmp17 = add nsw i64 %i.0.1, -3 ; CHECK-NEXT: --> {-3,+,1}<nsw><%bb1> U: [-3,2147483645) S: [-3,2147483645) Exits: (-3 + (zext i32 (0 smax %N) to i64))<nsw> LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %tmp19 = select i1 %tmp14, i64 0, i64 %tmp17 ; CHECK-NEXT: --> (-3 + (3 smax {0,+,1}<nuw><nsw><%bb1>))<nsw> U: [0,2147483645) S: [0,2147483645) Exits: (-3 + (3 smax (zext i32 (0 smax %N) to i64)))<nsw> LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %tmp21 = getelementptr inbounds i32, i32* %A, i64 %tmp19 ; CHECK-NEXT: --> (-12 + (4 * (3 smax {0,+,1}<nuw><nsw><%bb1>))<nuw><nsw> + %A) U: full-set S: full-set Exits: (-12 + (4 * (3 smax (zext i32 (0 smax %N) to i64)))<nuw><nsw> + %A) LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %tmp23 = add nuw nsw i32 %i.0, 1 ; CHECK-NEXT: --> {1,+,1}<nuw><%bb1> U: [1,-2147483647) S: [1,-2147483647) Exits: (1 + (0 smax %N))<nuw> LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: Determining loop execution counts for: @f ; CHECK-NEXT: Loop %bb1: backedge-taken count is (0 smax %N) ; CHECK-NEXT: Loop %bb1: max backedge-taken count is 2147483647 ; CHECK-NEXT: Loop %bb1: Predicated backedge-taken count is (0 smax %N) ; CHECK-NEXT: Predicates: ; CHECK: Loop %bb1: Trip multiple is 1 ; bb: br label %bb1 bb1: ; preds = %bb2, %bb %i.0 = phi i32 [ 0, %bb ], [ %tmp23, %bb2 ] %i.0.1 = sext i32 %i.0 to i64 %tmp = icmp slt i32 %i.0, %N br i1 %tmp, label %bb2, label %bb24 bb2: ; preds = %bb1 %tmp3 = add nuw nsw i32 %i.0, 3 %tmp4 = icmp slt i32 %tmp3, %N %tmp5 = sext i32 %tmp3 to i64 %tmp6 = sext i32 %N to i64 %tmp9 = select i1 %tmp4, i64 %tmp5, i64 %tmp6 ; min(N, i+3) %tmp11 = getelementptr inbounds i32, i32* %A, i64 %tmp9 %tmp12 = load i32, i32* %tmp11, align 4 %tmp13 = shl nsw i32 %tmp12, 1 %tmp14 = icmp sge i32 3, %i.0 %tmp17 = add nsw i64 %i.0.1, -3 %tmp19 = select i1 %tmp14, i64 0, i64 %tmp17 ; max(0, i - 3) %tmp21 = getelementptr inbounds i32, i32* %A, i64 %tmp19 store i32 %tmp13, i32* %tmp21, align 4 %tmp23 = add nuw nsw i32 %i.0, 1 br label %bb1 bb24: ; preds = %bb1 ret void } define i8 @umax_basic_eq_off1(i8 %x, i8 %y) { ; CHECK-LABEL: 'umax_basic_eq_off1' ; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_off1 ; CHECK-NEXT: %lhs = add i8 %y, 1 ; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set ; CHECK-NEXT: %rhs = add i8 %x, %y ; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set ; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs ; CHECK-NEXT: --> ((1 umax %x) + %y) U: full-set S: full-set ; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_off1 ; %x.is.zero = icmp eq i8 %x, 0 %lhs = add i8 %y, 1 %rhs = add i8 %x, %y %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs ret i8 %r } define i8 @umax_basic_ne_off1(i8 %x, i8 %y) { ; CHECK-LABEL: 'umax_basic_ne_off1' ; CHECK-NEXT: Classifying expressions for: @umax_basic_ne_off1 ; CHECK-NEXT: %lhs = add i8 %y, 1 ; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set ; CHECK-NEXT: %rhs = add i8 %x, %y ; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set ; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs ; CHECK-NEXT: --> ((1 umax %x) + %y) U: full-set S: full-set ; CHECK-NEXT: Determining loop execution counts for: @umax_basic_ne_off1 ; %x.is.zero = icmp ne i8 %x, 0 %lhs = add i8 %y, 1 %rhs = add i8 %x, %y %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs ret i8 %r } define i8 @umax_basic_eq_off0(i8 %x, i8 %y) { ; CHECK-LABEL: 'umax_basic_eq_off0' ; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_off0 ; CHECK-NEXT: %lhs = add i8 %y, 0 ; CHECK-NEXT: --> %y U: full-set S: full-set ; CHECK-NEXT: %rhs = add i8 %x, %y ; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set ; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs ; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set ; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_off0 ; %x.is.zero = icmp eq i8 %x, 0 %lhs = add i8 %y, 0 %rhs = add i8 %x, %y %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs ret i8 %r } define i8 @umax_basic_eq_off2(i8 %x, i8 %y) { ; CHECK-LABEL: 'umax_basic_eq_off2' ; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_off2 ; CHECK-NEXT: %lhs = add i8 %y, 2 ; CHECK-NEXT: --> (2 + %y) U: full-set S: full-set ; CHECK-NEXT: %rhs = add i8 %x, %y ; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set ; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs ; CHECK-NEXT: --> %r U: full-set S: full-set ; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_off2 ; %x.is.zero = icmp eq i8 %x, 0 %lhs = add i8 %y, 2 %rhs = add i8 %x, %y %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs ret i8 %r } define i8 @umax_basic_eq_var_off(i8 %x, i8 %y, i8 %c) { ; CHECK-LABEL: 'umax_basic_eq_var_off' ; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_var_off ; CHECK-NEXT: %lhs = add i8 %y, %c ; CHECK-NEXT: --> (%y + %c) U: full-set S: full-set ; CHECK-NEXT: %rhs = add i8 %x, %y ; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set ; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs ; CHECK-NEXT: --> %r U: full-set S: full-set ; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_var_off ; %x.is.zero = icmp eq i8 %x, 0 %lhs = add i8 %y, %c %rhs = add i8 %x, %y %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs ret i8 %r } define i8 @umax_basic_eq_narrow(i4 %x.narrow, i8 %y) { ; CHECK-LABEL: 'umax_basic_eq_narrow' ; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_narrow ; CHECK-NEXT: %x = zext i4 %x.narrow to i8 ; CHECK-NEXT: --> (zext i4 %x.narrow to i8) U: [0,16) S: [0,16) ; CHECK-NEXT: %lhs = add i8 %y, 1 ; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set ; CHECK-NEXT: %rhs = add i8 %x, %y ; CHECK-NEXT: --> ((zext i4 %x.narrow to i8) + %y) U: full-set S: full-set ; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs ; CHECK-NEXT: --> ((1 umax (zext i4 %x.narrow to i8)) + %y) U: full-set S: full-set ; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_narrow ; %x = zext i4 %x.narrow to i8 %x.is.zero = icmp eq i4 %x.narrow, 0 %lhs = add i8 %y, 1 %rhs = add i8 %x, %y %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs ret i8 %r } define i8 @umax_basic_ne_narrow(i4 %x.narrow, i8 %y) { ; CHECK-LABEL: 'umax_basic_ne_narrow' ; CHECK-NEXT: Classifying expressions for: @umax_basic_ne_narrow ; CHECK-NEXT: %x = zext i4 %x.narrow to i8 ; CHECK-NEXT: --> (zext i4 %x.narrow to i8) U: [0,16) S: [0,16) ; CHECK-NEXT: %lhs = add i8 %y, 1 ; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set ; CHECK-NEXT: %rhs = add i8 %x, %y ; CHECK-NEXT: --> ((zext i4 %x.narrow to i8) + %y) U: full-set S: full-set ; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs ; CHECK-NEXT: --> ((1 umax (zext i4 %x.narrow to i8)) + %y) U: full-set S: full-set ; CHECK-NEXT: Determining loop execution counts for: @umax_basic_ne_narrow ; %x = zext i4 %x.narrow to i8 %x.is.zero = icmp ne i4 %x.narrow, 0 %lhs = add i8 %y, 1 %rhs = add i8 %x, %y %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs ret i8 %r }