; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -passes=sroa -S | FileCheck %s ; RUN: opt < %s -passes=sroa -S | FileCheck %s ; This test checks that SROA runs mem2reg on scalable vectors. define <vscale x 16 x i1> @alloca_nxv16i1(<vscale x 16 x i1> %pg) { ; CHECK-LABEL: @alloca_nxv16i1( ; CHECK-NEXT: ret <vscale x 16 x i1> [[PG:%.*]] ; %pg.addr = alloca <vscale x 16 x i1> store <vscale x 16 x i1> %pg, ptr %pg.addr %1 = load <vscale x 16 x i1>, ptr %pg.addr ret <vscale x 16 x i1> %1 } define <vscale x 16 x i8> @alloca_nxv16i8(<vscale x 16 x i8> %vec) { ; CHECK-LABEL: @alloca_nxv16i8( ; CHECK-NEXT: ret <vscale x 16 x i8> [[VEC:%.*]] ; %vec.addr = alloca <vscale x 16 x i8> store <vscale x 16 x i8> %vec, ptr %vec.addr %1 = load <vscale x 16 x i8>, ptr %vec.addr ret <vscale x 16 x i8> %1 } ; Test scalable alloca that can't be promoted. Mem2Reg only considers ; non-volatile loads and stores for promotion. define <vscale x 16 x i8> @unpromotable_alloca(<vscale x 16 x i8> %vec) { ; CHECK-LABEL: @unpromotable_alloca( ; CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 16 x i8>, align 16 ; CHECK-NEXT: store volatile <vscale x 16 x i8> [[VEC:%.*]], ptr [[VEC_ADDR]], align 16 ; CHECK-NEXT: [[TMP1:%.*]] = load volatile <vscale x 16 x i8>, ptr [[VEC_ADDR]], align 16 ; CHECK-NEXT: ret <vscale x 16 x i8> [[TMP1]] ; %vec.addr = alloca <vscale x 16 x i8> store volatile <vscale x 16 x i8> %vec, ptr %vec.addr %1 = load volatile <vscale x 16 x i8>, ptr %vec.addr ret <vscale x 16 x i8> %1 } ; Test we bail out when using an alloca of a fixed-length vector (VLS) that was ; bitcasted to a scalable vector. define <vscale x 4 x i32> @cast_alloca_to_svint32_t(<vscale x 4 x i32> %type.coerce) { ; CHECK-LABEL: @cast_alloca_to_svint32_t( ; CHECK-NEXT: [[TYPE:%.*]] = alloca <16 x i32>, align 64 ; CHECK-NEXT: [[TYPE_ADDR:%.*]] = alloca <16 x i32>, align 64 ; CHECK-NEXT: store <vscale x 4 x i32> [[TYPE_COERCE:%.*]], ptr [[TYPE]], align 16 ; CHECK-NEXT: [[TYPE1:%.*]] = load <16 x i32>, ptr [[TYPE]], align 64 ; CHECK-NEXT: store <16 x i32> [[TYPE1]], ptr [[TYPE_ADDR]], align 64 ; CHECK-NEXT: [[TMP2:%.*]] = load <16 x i32>, ptr [[TYPE_ADDR]], align 64 ; CHECK-NEXT: [[TMP4:%.*]] = load <vscale x 4 x i32>, ptr [[TYPE_ADDR]], align 16 ; CHECK-NEXT: ret <vscale x 4 x i32> [[TMP4]] ; %type = alloca <16 x i32> %type.addr = alloca <16 x i32> store <vscale x 4 x i32> %type.coerce, ptr %type %type1 = load <16 x i32>, ptr %type store <16 x i32> %type1, ptr %type.addr %1 = load <16 x i32>, ptr %type.addr %2 = load <vscale x 4 x i32>, ptr %type.addr ret <vscale x 4 x i32> %2 } ; When casting from VLA to VLS via memory check we bail out when producing a ; GEP where the element type is a scalable vector. define <vscale x 4 x i32> @cast_alloca_from_svint32_t() { ; CHECK-LABEL: @cast_alloca_from_svint32_t( ; CHECK-NEXT: [[RETVAL_COERCE:%.*]] = alloca <vscale x 4 x i32>, align 16 ; CHECK-NEXT: store <16 x i32> undef, ptr [[RETVAL_COERCE]], align 16 ; CHECK-NEXT: [[TMP2:%.*]] = load <vscale x 4 x i32>, ptr [[RETVAL_COERCE]], align 16 ; CHECK-NEXT: ret <vscale x 4 x i32> [[TMP2]] ; %retval = alloca <16 x i32> %retval.coerce = alloca <vscale x 4 x i32> call void @llvm.memcpy.p0.p0.i64(ptr align 16 %retval.coerce, ptr align 16 %retval, i64 64, i1 false) %1 = load <vscale x 4 x i32>, ptr %retval.coerce ret <vscale x 4 x i32> %1 } declare void @llvm.memcpy.p0.p0.i64(ptr nocapture, ptr nocapture, i64, i1) nounwind