//===-- ARMInstrFormats.td - ARM Instruction Formats -------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // // ARM Instruction Format Definitions. // // Format specifies the encoding used by the instruction. This is part of the // ad-hoc solution used to emit machine instruction encodings by our machine // code emitter. class Format<bits<6> val> { bits<6> Value = val; } def Pseudo : Format<0>; def MulFrm : Format<1>; def BrFrm : Format<2>; def BrMiscFrm : Format<3>; def DPFrm : Format<4>; def DPSoRegRegFrm : Format<5>; def LdFrm : Format<6>; def StFrm : Format<7>; def LdMiscFrm : Format<8>; def StMiscFrm : Format<9>; def LdStMulFrm : Format<10>; def LdStExFrm : Format<11>; def ArithMiscFrm : Format<12>; def SatFrm : Format<13>; def ExtFrm : Format<14>; def VFPUnaryFrm : Format<15>; def VFPBinaryFrm : Format<16>; def VFPConv1Frm : Format<17>; def VFPConv2Frm : Format<18>; def VFPConv3Frm : Format<19>; def VFPConv4Frm : Format<20>; def VFPConv5Frm : Format<21>; def VFPLdStFrm : Format<22>; def VFPLdStMulFrm : Format<23>; def VFPMiscFrm : Format<24>; def ThumbFrm : Format<25>; def MiscFrm : Format<26>; def NGetLnFrm : Format<27>; def NSetLnFrm : Format<28>; def NDupFrm : Format<29>; def NLdStFrm : Format<30>; def N1RegModImmFrm: Format<31>; def N2RegFrm : Format<32>; def NVCVTFrm : Format<33>; def NVDupLnFrm : Format<34>; def N2RegVShLFrm : Format<35>; def N2RegVShRFrm : Format<36>; def N3RegFrm : Format<37>; def N3RegVShFrm : Format<38>; def NVExtFrm : Format<39>; def NVMulSLFrm : Format<40>; def NVTBLFrm : Format<41>; def DPSoRegImmFrm : Format<42>; def N3RegCplxFrm : Format<43>; // Misc flags. // The instruction has an Rn register operand. // UnaryDP - Indicates this is a unary data processing instruction, i.e. // it doesn't have a Rn operand. class UnaryDP { bit isUnaryDataProc = 1; } // Xform16Bit - Indicates this Thumb2 instruction may be transformed into // a 16-bit Thumb instruction if certain conditions are met. class Xform16Bit { bit canXformTo16Bit = 1; } //===----------------------------------------------------------------------===// // ARM Instruction flags. These need to match ARMBaseInstrInfo.h. // // FIXME: Once the JIT is MC-ized, these can go away. // Addressing mode. class AddrMode<bits<5> val> { bits<5> Value = val; } def AddrModeNone : AddrMode<0>; def AddrMode1 : AddrMode<1>; def AddrMode2 : AddrMode<2>; def AddrMode3 : AddrMode<3>; def AddrMode4 : AddrMode<4>; def AddrMode5 : AddrMode<5>; def AddrMode6 : AddrMode<6>; def AddrModeT1_1 : AddrMode<7>; def AddrModeT1_2 : AddrMode<8>; def AddrModeT1_4 : AddrMode<9>; def AddrModeT1_s : AddrMode<10>; def AddrModeT2_i12 : AddrMode<11>; def AddrModeT2_i8 : AddrMode<12>; def AddrModeT2_i8pos : AddrMode<13>; def AddrModeT2_i8neg : AddrMode<14>; def AddrModeT2_so : AddrMode<15>; def AddrModeT2_pc : AddrMode<16>; def AddrModeT2_i8s4 : AddrMode<17>; def AddrMode_i12 : AddrMode<18>; def AddrMode5FP16 : AddrMode<19>; def AddrModeT2_ldrex : AddrMode<20>; def AddrModeT2_i7s4 : AddrMode<21>; def AddrModeT2_i7s2 : AddrMode<22>; def AddrModeT2_i7 : AddrMode<23>; // Load / store index mode. class IndexMode<bits<2> val> { bits<2> Value = val; } def IndexModeNone : IndexMode<0>; def IndexModePre : IndexMode<1>; def IndexModePost : IndexMode<2>; def IndexModeUpd : IndexMode<3>; // Instruction execution domain. class Domain<bits<4> val> { bits<4> Value = val; } def GenericDomain : Domain<0>; def VFPDomain : Domain<1>; // Instructions in VFP domain only def NeonDomain : Domain<2>; // Instructions in Neon domain only def VFPNeonDomain : Domain<3>; // Instructions in both VFP & Neon domains def VFPNeonA8Domain : Domain<5>; // Instructions in VFP & Neon under A8 def MVEDomain : Domain<8>; // Instructions in MVE and ARMv8.1m //===----------------------------------------------------------------------===// // ARM special operands. // // ARM imod and iflag operands, used only by the CPS instruction. def imod_op : Operand<i32> { let PrintMethod = "printCPSIMod"; } def ProcIFlagsOperand : AsmOperandClass { let Name = "ProcIFlags"; let ParserMethod = "parseProcIFlagsOperand"; } def iflags_op : Operand<i32> { let PrintMethod = "printCPSIFlag"; let ParserMatchClass = ProcIFlagsOperand; } // ARM Predicate operand. Default to 14 = always (AL). Second part is CC // register whose default is 0 (no register). def CondCodeOperand : AsmOperandClass { let Name = "CondCode"; } def pred : PredicateOperand<OtherVT, (ops i32imm, i32imm), (ops (i32 14), (i32 zero_reg))> { let PrintMethod = "printPredicateOperand"; let ParserMatchClass = CondCodeOperand; let DecoderMethod = "DecodePredicateOperand"; } // Selectable predicate operand for CMOV instructions. We can't use a normal // predicate because the default values interfere with instruction selection. In // all other respects it is identical though: pseudo-instruction expansion // relies on the MachineOperands being compatible. def cmovpred : Operand<i32>, PredicateOp, ComplexPattern<i32, 2, "SelectCMOVPred"> { let MIOperandInfo = (ops i32imm, i32imm); let PrintMethod = "printPredicateOperand"; } // Conditional code result for instructions whose 's' bit is set, e.g. subs. def CCOutOperand : AsmOperandClass { let Name = "CCOut"; } def cc_out : OptionalDefOperand<OtherVT, (ops CCR), (ops (i32 zero_reg))> { let EncoderMethod = "getCCOutOpValue"; let PrintMethod = "printSBitModifierOperand"; let ParserMatchClass = CCOutOperand; let DecoderMethod = "DecodeCCOutOperand"; } // Same as cc_out except it defaults to setting CPSR. def s_cc_out : OptionalDefOperand<OtherVT, (ops CCR), (ops (i32 CPSR))> { let EncoderMethod = "getCCOutOpValue"; let PrintMethod = "printSBitModifierOperand"; let ParserMatchClass = CCOutOperand; let DecoderMethod = "DecodeCCOutOperand"; } // Transform to generate the inverse of a condition code during ISel def inv_cond_XFORM : SDNodeXForm<imm, [{ ARMCC::CondCodes CC = static_cast<ARMCC::CondCodes>(N->getZExtValue()); return CurDAG->getTargetConstant(ARMCC::getOppositeCondition(CC), SDLoc(N), MVT::i32); }]>; // VPT predicate def VPTPredNOperand : AsmOperandClass { let Name = "VPTPredN"; let PredicateMethod = "isVPTPred"; } def VPTPredROperand : AsmOperandClass { let Name = "VPTPredR"; let PredicateMethod = "isVPTPred"; } // Operand classes for the cluster of MC operands describing a // VPT-predicated MVE instruction. // // There are two of these classes. Both of them have the same first // two options: // // $cond (an integer) indicates the instruction's predication status: // * ARMVCC::None means it's unpredicated // * ARMVCC::Then means it's in a VPT block and appears with the T suffix // * ARMVCC::Else means it's in a VPT block and appears with the E suffix. // During code generation, unpredicated and predicated instructions // are indicated by setting this parameter to 'None' or to 'Then'; the // third value 'Else' is only used for assembly and disassembly. // // $cond_reg (type VCCR) gives the input predicate register. This is // always either zero_reg or VPR, but needs to be modelled as an // explicit operand so that it can be register-allocated and spilled // when these operands are used in code generation). // // For 'vpred_r', there's an extra operand $inactive, which specifies // the vector register which will supply any lanes of the output // register that the predication mask prevents from being written by // this instruction. It's always tied to the actual output register // (i.e. must be allocated into the same physical reg), but again, // code generation will need to model it as a separate input value. // // 'vpred_n' doesn't have that extra operand: it only has $cond and // $cond_reg. This variant is used for any instruction that can't, or // doesn't want to, tie $inactive to the output register. Sometimes // that's because another input parameter is already tied to it (e.g. // instructions that both read and write their Qd register even when // unpredicated, either because they only partially overwrite it like // a narrowing integer conversion, or simply because the instruction // encoding doesn't have enough register fields to make the output // independent of all inputs). It can also be because the instruction // is defined to set disabled output lanes to zero rather than leaving // them unchanged (vector loads), or because it doesn't output a // vector register at all (stores, compares). In any of these // situations it's unnecessary to have an extra operand tied to the // output, and inconvenient to leave it there unused. // Base class for both kinds of vpred. class vpred_ops<dag extra_op, dag extra_mi> : OperandWithDefaultOps<OtherVT, !con((ops (i32 0), (i32 zero_reg), (i32 zero_reg)), extra_op)> { let PrintMethod = "printVPTPredicateOperand"; let OperandNamespace = "ARM"; let MIOperandInfo = !con((ops i32imm:$cond, VCCR:$cond_reg, GPRlr:$tp_reg), extra_mi); // For convenience, we provide a string value that can be appended // to the constraints string. It's empty for vpred_n, and for // vpred_r it ties the $inactive operand to the output q-register // (which by convention will be called $Qd). string vpred_constraint; } def vpred_r : vpred_ops<(ops (v4i32 undef_tied_input)), (ops MQPR:$inactive)> { let ParserMatchClass = VPTPredROperand; let OperandType = "OPERAND_VPRED_R"; let DecoderMethod = "DecodeVpredROperand"; let vpred_constraint = ",$Qd = $vp.inactive"; } def vpred_n : vpred_ops<(ops), (ops)> { let ParserMatchClass = VPTPredNOperand; let OperandType = "OPERAND_VPRED_N"; let vpred_constraint = ""; } // ARM special operands for disassembly only. // def SetEndAsmOperand : ImmAsmOperand<0,1> { let Name = "SetEndImm"; let ParserMethod = "parseSetEndImm"; } def setend_op : Operand<i32> { let PrintMethod = "printSetendOperand"; let ParserMatchClass = SetEndAsmOperand; } def MSRMaskOperand : AsmOperandClass { let Name = "MSRMask"; let ParserMethod = "parseMSRMaskOperand"; } def msr_mask : Operand<i32> { let PrintMethod = "printMSRMaskOperand"; let DecoderMethod = "DecodeMSRMask"; let ParserMatchClass = MSRMaskOperand; } def BankedRegOperand : AsmOperandClass { let Name = "BankedReg"; let ParserMethod = "parseBankedRegOperand"; } def banked_reg : Operand<i32> { let PrintMethod = "printBankedRegOperand"; let DecoderMethod = "DecodeBankedReg"; let ParserMatchClass = BankedRegOperand; } // Shift Right Immediate - A shift right immediate is encoded differently from // other shift immediates. The imm6 field is encoded like so: // // Offset Encoding // 8 imm6<5:3> = '001', 8 - <imm> is encoded in imm6<2:0> // 16 imm6<5:4> = '01', 16 - <imm> is encoded in imm6<3:0> // 32 imm6<5> = '1', 32 - <imm> is encoded in imm6<4:0> // 64 64 - <imm> is encoded in imm6<5:0> def shr_imm8_asm_operand : ImmAsmOperand<1,8> { let Name = "ShrImm8"; } def shr_imm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm <= 8; }]> { let EncoderMethod = "getShiftRight8Imm"; let DecoderMethod = "DecodeShiftRight8Imm"; let ParserMatchClass = shr_imm8_asm_operand; } def shr_imm16_asm_operand : ImmAsmOperand<1,16> { let Name = "ShrImm16"; } def shr_imm16 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm <= 16; }]> { let EncoderMethod = "getShiftRight16Imm"; let DecoderMethod = "DecodeShiftRight16Imm"; let ParserMatchClass = shr_imm16_asm_operand; } def shr_imm32_asm_operand : ImmAsmOperand<1,32> { let Name = "ShrImm32"; } def shr_imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm <= 32; }]> { let EncoderMethod = "getShiftRight32Imm"; let DecoderMethod = "DecodeShiftRight32Imm"; let ParserMatchClass = shr_imm32_asm_operand; } def shr_imm64_asm_operand : ImmAsmOperand<1,64> { let Name = "ShrImm64"; } def shr_imm64 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm <= 64; }]> { let EncoderMethod = "getShiftRight64Imm"; let DecoderMethod = "DecodeShiftRight64Imm"; let ParserMatchClass = shr_imm64_asm_operand; } // ARM Assembler operand for ldr Rd, =expression which generates an offset // to a constant pool entry or a MOV depending on the value of expression def const_pool_asm_operand : AsmOperandClass { let Name = "ConstPoolAsmImm"; } def const_pool_asm_imm : Operand<i32> { let ParserMatchClass = const_pool_asm_operand; } //===----------------------------------------------------------------------===// // ARM Assembler alias templates. // // Note: When EmitPriority == 1, the alias will be used for printing class ARMInstAlias<string Asm, dag Result, bit EmitPriority = 0> : InstAlias<Asm, Result, EmitPriority>, Requires<[IsARM]>; class ARMInstSubst<string Asm, dag Result, bit EmitPriority = 0> : InstAlias<Asm, Result, EmitPriority>, Requires<[IsARM,UseNegativeImmediates]>; class tInstAlias<string Asm, dag Result, bit EmitPriority = 0> : InstAlias<Asm, Result, EmitPriority>, Requires<[IsThumb]>; class tInstSubst<string Asm, dag Result, bit EmitPriority = 0> : InstAlias<Asm, Result, EmitPriority>, Requires<[IsThumb,UseNegativeImmediates]>; class t2InstAlias<string Asm, dag Result, bit EmitPriority = 0> : InstAlias<Asm, Result, EmitPriority>, Requires<[IsThumb2]>; class t2InstSubst<string Asm, dag Result, bit EmitPriority = 0> : InstAlias<Asm, Result, EmitPriority>, Requires<[IsThumb2,UseNegativeImmediates]>; class VFP2InstAlias<string Asm, dag Result, bit EmitPriority = 0> : InstAlias<Asm, Result, EmitPriority>, Requires<[HasVFP2]>; class VFP2DPInstAlias<string Asm, dag Result, bit EmitPriority = 0> : InstAlias<Asm, Result, EmitPriority>, Requires<[HasVFP2,HasDPVFP]>; class VFP3InstAlias<string Asm, dag Result, bit EmitPriority = 0> : InstAlias<Asm, Result, EmitPriority>, Requires<[HasVFP3]>; class NEONInstAlias<string Asm, dag Result, bit EmitPriority = 0> : InstAlias<Asm, Result, EmitPriority>, Requires<[HasNEON]>; class MVEInstAlias<string Asm, dag Result, bit EmitPriority = 1> : InstAlias<Asm, Result, EmitPriority>, Requires<[HasMVEInt, IsThumb]>; class VFP2MnemonicAlias<string src, string dst> : MnemonicAlias<src, dst>, Requires<[HasVFP2]>; class NEONMnemonicAlias<string src, string dst> : MnemonicAlias<src, dst>, Requires<[HasNEON]>; //===----------------------------------------------------------------------===// // ARM Instruction templates. // class InstTemplate<AddrMode am, int sz, IndexMode im, Format f, Domain d, string cstr, InstrItinClass itin> : Instruction { let Namespace = "ARM"; AddrMode AM = am; int Size = sz; IndexMode IM = im; bits<2> IndexModeBits = IM.Value; Format F = f; bits<6> Form = F.Value; Domain D = d; bit isUnaryDataProc = 0; bit canXformTo16Bit = 0; // The instruction is a 16-bit flag setting Thumb instruction. Used // by the parser and if-converter to determine whether to require the 'S' // suffix on the mnemonic (when not in an IT block) or preclude it (when // in an IT block). bit thumbArithFlagSetting = 0; bits<2> VecSize = 0; bit validForTailPredication = 0; bit retainsPreviousHalfElement = 0; bit horizontalReduction = 0; bit doubleWidthResult = 0; // If this is a pseudo instruction, mark it isCodeGenOnly. let isCodeGenOnly = !eq(!cast<string>(f), "Pseudo"); // The layout of TSFlags should be kept in sync with ARMBaseInfo.h. let TSFlags{4-0} = AM.Value; let TSFlags{6-5} = IndexModeBits; let TSFlags{12-7} = Form; let TSFlags{13} = isUnaryDataProc; let TSFlags{14} = canXformTo16Bit; let TSFlags{18-15} = D.Value; let TSFlags{19} = thumbArithFlagSetting; let TSFlags{20} = validForTailPredication; let TSFlags{21} = retainsPreviousHalfElement; let TSFlags{22} = horizontalReduction; let TSFlags{23} = doubleWidthResult; let TSFlags{25-24} = VecSize; let Constraints = cstr; let Itinerary = itin; } class Encoding { field bits<32> Inst; // Mask of bits that cause an encoding to be UNPREDICTABLE. // If a bit is set, then if the corresponding bit in the // target encoding differs from its value in the "Inst" field, // the instruction is UNPREDICTABLE (SoftFail in abstract parlance). field bits<32> Unpredictable = 0; // SoftFail is the generic name for this field, but we alias it so // as to make it more obvious what it means in ARM-land. field bits<32> SoftFail = Unpredictable; } class InstARM<AddrMode am, int sz, IndexMode im, Format f, Domain d, string cstr, InstrItinClass itin> : InstTemplate<am, sz, im, f, d, cstr, itin>, Encoding { let DecoderNamespace = "ARM"; } // This Encoding-less class is used by Thumb1 to specify the encoding bits later // on by adding flavors to specific instructions. class InstThumb<AddrMode am, int sz, IndexMode im, Format f, Domain d, string cstr, InstrItinClass itin> : InstTemplate<am, sz, im, f, d, cstr, itin> { let DecoderNamespace = "Thumb"; } // Pseudo-instructions for alternate assembly syntax (never used by codegen). // These are aliases that require C++ handling to convert to the target // instruction, while InstAliases can be handled directly by tblgen. class AsmPseudoInst<string asm, dag iops, dag oops = (outs)> : InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo, GenericDomain, "", NoItinerary> { let OutOperandList = oops; let InOperandList = iops; let Pattern = []; let isCodeGenOnly = 0; // So we get asm matcher for it. let AsmString = asm; let isPseudo = 1; let hasNoSchedulingInfo = 1; } class ARMAsmPseudo<string asm, dag iops, dag oops = (outs)> : AsmPseudoInst<asm, iops, oops>, Requires<[IsARM]>; class tAsmPseudo<string asm, dag iops, dag oops = (outs)> : AsmPseudoInst<asm, iops, oops>, Requires<[IsThumb]>; class t2AsmPseudo<string asm, dag iops, dag oops = (outs)> : AsmPseudoInst<asm, iops, oops>, Requires<[IsThumb2]>; class VFP2AsmPseudo<string asm, dag iops, dag oops = (outs)> : AsmPseudoInst<asm, iops, oops>, Requires<[HasVFP2]>; class NEONAsmPseudo<string asm, dag iops, dag oops = (outs)> : AsmPseudoInst<asm, iops, oops>, Requires<[HasNEON]>; class MVEAsmPseudo<string asm, dag iops, dag oops = (outs)> : AsmPseudoInst<asm, iops, oops>, Requires<[HasMVEInt]>; // Pseudo instructions for the code generator. class PseudoInst<dag oops, dag iops, InstrItinClass itin, list<dag> pattern> : InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo, GenericDomain, "", itin> { let OutOperandList = oops; let InOperandList = iops; let Pattern = pattern; let isCodeGenOnly = 1; let isPseudo = 1; } // PseudoInst that's ARM-mode only. class ARMPseudoInst<dag oops, dag iops, int sz, InstrItinClass itin, list<dag> pattern> : PseudoInst<oops, iops, itin, pattern> { let Size = sz; list<Predicate> Predicates = [IsARM]; } // PseudoInst that's Thumb-mode only. class tPseudoInst<dag oops, dag iops, int sz, InstrItinClass itin, list<dag> pattern> : PseudoInst<oops, iops, itin, pattern> { let Size = sz; list<Predicate> Predicates = [IsThumb]; } // PseudoInst that's in ARMv8-M baseline (Somewhere between Thumb and Thumb2) class t2basePseudoInst<dag oops, dag iops, int sz, InstrItinClass itin, list<dag> pattern> : PseudoInst<oops, iops, itin, pattern> { let Size = sz; list<Predicate> Predicates = [IsThumb,HasV8MBaseline]; } // PseudoInst that's Thumb2-mode only. class t2PseudoInst<dag oops, dag iops, int sz, InstrItinClass itin, list<dag> pattern> : PseudoInst<oops, iops, itin, pattern> { let Size = sz; list<Predicate> Predicates = [IsThumb2]; } class ARMPseudoExpand<dag oops, dag iops, int sz, InstrItinClass itin, list<dag> pattern, dag Result> : ARMPseudoInst<oops, iops, sz, itin, pattern>, PseudoInstExpansion<Result>; class tPseudoExpand<dag oops, dag iops, int sz, InstrItinClass itin, list<dag> pattern, dag Result> : tPseudoInst<oops, iops, sz, itin, pattern>, PseudoInstExpansion<Result>; class t2PseudoExpand<dag oops, dag iops, int sz, InstrItinClass itin, list<dag> pattern, dag Result> : t2PseudoInst<oops, iops, sz, itin, pattern>, PseudoInstExpansion<Result>; // Almost all ARM instructions are predicable. class I<dag oops, dag iops, AddrMode am, int sz, IndexMode im, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : InstARM<am, sz, im, f, GenericDomain, cstr, itin> { bits<4> p; let Inst{31-28} = p; let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", asm); let Pattern = pattern; list<Predicate> Predicates = [IsARM]; } // A few are not predicable class InoP<dag oops, dag iops, AddrMode am, int sz, IndexMode im, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : InstARM<am, sz, im, f, GenericDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = iops; let AsmString = !strconcat(opc, asm); let Pattern = pattern; let isPredicable = 0; list<Predicate> Predicates = [IsARM]; } // Same as I except it can optionally modify CPSR. Note it's modeled as an input // operand since by default it's a zero register. It will become an implicit def // once it's "flipped". class sI<dag oops, dag iops, AddrMode am, int sz, IndexMode im, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : InstARM<am, sz, im, f, GenericDomain, cstr, itin> { bits<4> p; // Predicate operand bits<1> s; // condition-code set flag ('1' if the insn should set the flags) let Inst{31-28} = p; let Inst{20} = s; let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p, cc_out:$s)); let AsmString = !strconcat(opc, "${s}${p}", asm); let Pattern = pattern; list<Predicate> Predicates = [IsARM]; } // Special cases class XI<dag oops, dag iops, AddrMode am, int sz, IndexMode im, Format f, InstrItinClass itin, string asm, string cstr, list<dag> pattern> : InstARM<am, sz, im, f, GenericDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; list<Predicate> Predicates = [IsARM]; } class AI<dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrModeNone, 4, IndexModeNone, f, itin, opc, asm, "", pattern>; class AsI<dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, list<dag> pattern> : sI<oops, iops, AddrModeNone, 4, IndexModeNone, f, itin, opc, asm, "", pattern>; class AXI<dag oops, dag iops, Format f, InstrItinClass itin, string asm, list<dag> pattern> : XI<oops, iops, AddrModeNone, 4, IndexModeNone, f, itin, asm, "", pattern>; class AXIM<dag oops, dag iops, AddrMode am, Format f, InstrItinClass itin, string asm, list<dag> pattern> : XI<oops, iops, am, 4, IndexModeNone, f, itin, asm, "", pattern>; class AInoP<dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, list<dag> pattern> : InoP<oops, iops, AddrModeNone, 4, IndexModeNone, f, itin, opc, asm, "", pattern>; // Ctrl flow instructions class ABI<bits<4> opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrModeNone, 4, IndexModeNone, BrFrm, itin, opc, asm, "", pattern> { let Inst{27-24} = opcod; } class ABXI<bits<4> opcod, dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : XI<oops, iops, AddrModeNone, 4, IndexModeNone, BrFrm, itin, asm, "", pattern> { let Inst{27-24} = opcod; } // BR_JT instructions class JTI<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : XI<oops, iops, AddrModeNone, 0, IndexModeNone, BrMiscFrm, itin, asm, "", pattern>; class AIldr_ex_or_acq<bits<2> opcod, bits<2> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrModeNone, 4, IndexModeNone, LdStExFrm, itin, opc, asm, "", pattern> { bits<4> Rt; bits<4> addr; let Inst{27-23} = 0b00011; let Inst{22-21} = opcod; let Inst{20} = 1; let Inst{19-16} = addr; let Inst{15-12} = Rt; let Inst{11-10} = 0b11; let Inst{9-8} = opcod2; let Inst{7-0} = 0b10011111; } class AIstr_ex_or_rel<bits<2> opcod, bits<2> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrModeNone, 4, IndexModeNone, LdStExFrm, itin, opc, asm, "", pattern> { bits<4> Rt; bits<4> addr; let Inst{27-23} = 0b00011; let Inst{22-21} = opcod; let Inst{20} = 0; let Inst{19-16} = addr; let Inst{11-10} = 0b11; let Inst{9-8} = opcod2; let Inst{7-4} = 0b1001; let Inst{3-0} = Rt; } // Atomic load/store instructions class AIldrex<bits<2> opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AIldr_ex_or_acq<opcod, 0b11, oops, iops, itin, opc, asm, pattern>; class AIstrex<bits<2> opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AIstr_ex_or_rel<opcod, 0b11, oops, iops, itin, opc, asm, pattern> { bits<4> Rd; let Inst{15-12} = Rd; } // Exclusive load/store instructions class AIldaex<bits<2> opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AIldr_ex_or_acq<opcod, 0b10, oops, iops, itin, opc, asm, pattern>, Requires<[IsARM, HasAcquireRelease, HasV7Clrex]>; class AIstlex<bits<2> opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AIstr_ex_or_rel<opcod, 0b10, oops, iops, itin, opc, asm, pattern>, Requires<[IsARM, HasAcquireRelease, HasV7Clrex]> { bits<4> Rd; let Inst{15-12} = Rd; } class AIswp<bit b, dag oops, dag iops, string opc, list<dag> pattern> : AI<oops, iops, MiscFrm, NoItinerary, opc, "\t$Rt, $Rt2, $addr", pattern> { bits<4> Rt; bits<4> Rt2; bits<4> addr; let Inst{27-23} = 0b00010; let Inst{22} = b; let Inst{21-20} = 0b00; let Inst{19-16} = addr; let Inst{15-12} = Rt; let Inst{11-4} = 0b00001001; let Inst{3-0} = Rt2; let Unpredictable{11-8} = 0b1111; let DecoderMethod = "DecodeSwap"; } // Acquire/Release load/store instructions class AIldracq<bits<2> opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AIldr_ex_or_acq<opcod, 0b00, oops, iops, itin, opc, asm, pattern>, Requires<[IsARM, HasAcquireRelease]>; class AIstrrel<bits<2> opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AIstr_ex_or_rel<opcod, 0b00, oops, iops, itin, opc, asm, pattern>, Requires<[IsARM, HasAcquireRelease]> { let Inst{15-12} = 0b1111; } // addrmode1 instructions class AI1<bits<4> opcod, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrMode1, 4, IndexModeNone, f, itin, opc, asm, "", pattern> { let Inst{24-21} = opcod; let Inst{27-26} = 0b00; } class AsI1<bits<4> opcod, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, list<dag> pattern> : sI<oops, iops, AddrMode1, 4, IndexModeNone, f, itin, opc, asm, "", pattern> { let Inst{24-21} = opcod; let Inst{27-26} = 0b00; } class AXI1<bits<4> opcod, dag oops, dag iops, Format f, InstrItinClass itin, string asm, list<dag> pattern> : XI<oops, iops, AddrMode1, 4, IndexModeNone, f, itin, asm, "", pattern> { let Inst{24-21} = opcod; let Inst{27-26} = 0b00; } // loads // LDR/LDRB/STR/STRB/... class AI2ldst<bits<3> op, bit isLd, bit isByte, dag oops, dag iops, AddrMode am, Format f, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, am, 4, IndexModeNone, f, itin, opc, asm, "", pattern> { let Inst{27-25} = op; let Inst{24} = 1; // 24 == P // 23 == U let Inst{22} = isByte; let Inst{21} = 0; // 21 == W let Inst{20} = isLd; } // Indexed load/stores class AI2ldstidx<bit isLd, bit isByte, bit isPre, dag oops, dag iops, IndexMode im, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : I<oops, iops, AddrMode2, 4, im, f, itin, opc, asm, cstr, pattern> { bits<4> Rt; let Inst{27-26} = 0b01; let Inst{24} = isPre; // P bit let Inst{22} = isByte; // B bit let Inst{21} = isPre; // W bit let Inst{20} = isLd; // L bit let Inst{15-12} = Rt; } class AI2stridx_reg<bit isByte, bit isPre, dag oops, dag iops, IndexMode im, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : AI2ldstidx<0, isByte, isPre, oops, iops, im, f, itin, opc, asm, cstr, pattern> { // AM2 store w/ two operands: (GPR, am2offset) // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> Rn; let Inst{25} = 1; let Inst{23} = offset{12}; let Inst{19-16} = Rn; let Inst{11-5} = offset{11-5}; let Inst{4} = 0; let Inst{3-0} = offset{3-0}; } class AI2stridx_imm<bit isByte, bit isPre, dag oops, dag iops, IndexMode im, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : AI2ldstidx<0, isByte, isPre, oops, iops, im, f, itin, opc, asm, cstr, pattern> { // AM2 store w/ two operands: (GPR, am2offset) // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> Rn; let Inst{25} = 0; let Inst{23} = offset{12}; let Inst{19-16} = Rn; let Inst{11-0} = offset{11-0}; } // FIXME: Merge with the above class when addrmode2 gets used for STR, STRB // but for now use this class for STRT and STRBT. class AI2stridxT<bit isByte, bit isPre, dag oops, dag iops, IndexMode im, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : AI2ldstidx<0, isByte, isPre, oops, iops, im, f, itin, opc, asm, cstr, pattern> { // AM2 store w/ two operands: (GPR, am2offset) // {17-14} Rn // {13} 1 == Rm, 0 == imm12 // {12} isAdd // {11-0} imm12/Rm bits<18> addr; let Inst{25} = addr{13}; let Inst{23} = addr{12}; let Inst{19-16} = addr{17-14}; let Inst{11-0} = addr{11-0}; } // addrmode3 instructions class AI3ld<bits<4> op, bit op20, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrMode3, 4, IndexModeNone, f, itin, opc, asm, "", pattern> { bits<14> addr; bits<4> Rt; let Inst{27-25} = 0b000; let Inst{24} = 1; // P bit let Inst{23} = addr{8}; // U bit let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm let Inst{21} = 0; // W bit let Inst{20} = op20; // L bit let Inst{19-16} = addr{12-9}; // Rn let Inst{15-12} = Rt; // Rt let Inst{11-8} = addr{7-4}; // imm7_4/zero let Inst{7-4} = op; let Inst{3-0} = addr{3-0}; // imm3_0/Rm let DecoderMethod = "DecodeAddrMode3Instruction"; } class AI3ldstidx<bits<4> op, bit op20, bit isPre, dag oops, dag iops, IndexMode im, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : I<oops, iops, AddrMode3, 4, im, f, itin, opc, asm, cstr, pattern> { bits<4> Rt; let Inst{27-25} = 0b000; let Inst{24} = isPre; // P bit let Inst{21} = isPre; // W bit let Inst{20} = op20; // L bit let Inst{15-12} = Rt; // Rt let Inst{7-4} = op; } // FIXME: Merge with the above class when addrmode2 gets used for LDR, LDRB // but for now use this class for LDRSBT, LDRHT, LDSHT. class AI3ldstidxT<bits<4> op, bit isLoad, dag oops, dag iops, IndexMode im, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : I<oops, iops, AddrMode3, 4, im, f, itin, opc, asm, cstr, pattern> { // {13} 1 == imm8, 0 == Rm // {12-9} Rn // {8} isAdd // {7-4} imm7_4/zero // {3-0} imm3_0/Rm bits<4> addr; bits<4> Rt; let Inst{27-25} = 0b000; let Inst{24} = 0; // P bit let Inst{21} = 1; let Inst{20} = isLoad; // L bit let Inst{19-16} = addr; // Rn let Inst{15-12} = Rt; // Rt let Inst{7-4} = op; } // stores class AI3str<bits<4> op, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrMode3, 4, IndexModeNone, f, itin, opc, asm, "", pattern> { bits<14> addr; bits<4> Rt; let Inst{27-25} = 0b000; let Inst{24} = 1; // P bit let Inst{23} = addr{8}; // U bit let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm let Inst{21} = 0; // W bit let Inst{20} = 0; // L bit let Inst{19-16} = addr{12-9}; // Rn let Inst{15-12} = Rt; // Rt let Inst{11-8} = addr{7-4}; // imm7_4/zero let Inst{7-4} = op; let Inst{3-0} = addr{3-0}; // imm3_0/Rm let DecoderMethod = "DecodeAddrMode3Instruction"; } // addrmode4 instructions class AXI4<dag oops, dag iops, IndexMode im, Format f, InstrItinClass itin, string asm, string cstr, list<dag> pattern> : XI<oops, iops, AddrMode4, 4, im, f, itin, asm, cstr, pattern> { bits<4> p; bits<16> regs; bits<4> Rn; let Inst{31-28} = p; let Inst{27-25} = 0b100; let Inst{22} = 0; // S bit let Inst{19-16} = Rn; let Inst{15-0} = regs; } // Unsigned multiply, multiply-accumulate instructions. class AMul1I<bits<7> opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrModeNone, 4, IndexModeNone, MulFrm, itin, opc, asm, "", pattern> { let Inst{7-4} = 0b1001; let Inst{20} = 0; // S bit let Inst{27-21} = opcod; } class AsMul1I<bits<7> opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : sI<oops, iops, AddrModeNone, 4, IndexModeNone, MulFrm, itin, opc, asm, "", pattern> { let Inst{7-4} = 0b1001; let Inst{27-21} = opcod; } // Most significant word multiply class AMul2I<bits<7> opcod, bits<4> opc7_4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrModeNone, 4, IndexModeNone, MulFrm, itin, opc, asm, "", pattern> { bits<4> Rd; bits<4> Rn; bits<4> Rm; let Inst{7-4} = opc7_4; let Inst{20} = 1; let Inst{27-21} = opcod; let Inst{19-16} = Rd; let Inst{11-8} = Rm; let Inst{3-0} = Rn; } // MSW multiple w/ Ra operand class AMul2Ia<bits<7> opcod, bits<4> opc7_4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AMul2I<opcod, opc7_4, oops, iops, itin, opc, asm, pattern> { bits<4> Ra; let Inst{15-12} = Ra; } // SMUL<x><y> / SMULW<y> / SMLA<x><y> / SMLAW<x><y> class AMulxyIbase<bits<7> opcod, bits<2> bit6_5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrModeNone, 4, IndexModeNone, MulFrm, itin, opc, asm, "", pattern> { bits<4> Rn; bits<4> Rm; let Inst{4} = 0; let Inst{7} = 1; let Inst{20} = 0; let Inst{27-21} = opcod; let Inst{6-5} = bit6_5; let Inst{11-8} = Rm; let Inst{3-0} = Rn; } class AMulxyI<bits<7> opcod, bits<2> bit6_5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AMulxyIbase<opcod, bit6_5, oops, iops, itin, opc, asm, pattern> { bits<4> Rd; let Inst{19-16} = Rd; } // AMulxyI with Ra operand class AMulxyIa<bits<7> opcod, bits<2> bit6_5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AMulxyI<opcod, bit6_5, oops, iops, itin, opc, asm, pattern> { bits<4> Ra; let Inst{15-12} = Ra; } // SMLAL* class AMulxyI64<bits<7> opcod, bits<2> bit6_5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AMulxyIbase<opcod, bit6_5, oops, iops, itin, opc, asm, pattern> { bits<4> RdLo; bits<4> RdHi; let Inst{19-16} = RdHi; let Inst{15-12} = RdLo; } // Extend instructions. class AExtI<bits<8> opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrModeNone, 4, IndexModeNone, ExtFrm, itin, opc, asm, "", pattern> { // All AExtI instructions have Rd and Rm register operands. bits<4> Rd; bits<4> Rm; let Inst{15-12} = Rd; let Inst{3-0} = Rm; let Inst{7-4} = 0b0111; let Inst{9-8} = 0b00; let Inst{27-20} = opcod; let Unpredictable{9-8} = 0b11; } // Misc Arithmetic instructions. class AMiscA1I<bits<8> opcod, bits<4> opc7_4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrModeNone, 4, IndexModeNone, ArithMiscFrm, itin, opc, asm, "", pattern> { bits<4> Rd; bits<4> Rm; let Inst{27-20} = opcod; let Inst{19-16} = 0b1111; let Inst{15-12} = Rd; let Inst{11-8} = 0b1111; let Inst{7-4} = opc7_4; let Inst{3-0} = Rm; } // Division instructions. class ADivA1I<bits<3> opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrModeNone, 4, IndexModeNone, ArithMiscFrm, itin, opc, asm, "", pattern> { bits<4> Rd; bits<4> Rn; bits<4> Rm; let Inst{27-23} = 0b01110; let Inst{22-20} = opcod; let Inst{19-16} = Rd; let Inst{15-12} = 0b1111; let Inst{11-8} = Rm; let Inst{7-4} = 0b0001; let Inst{3-0} = Rn; } // PKH instructions def PKHLSLAsmOperand : ImmAsmOperand<0,31> { let Name = "PKHLSLImm"; let ParserMethod = "parsePKHLSLImm"; } def pkh_lsl_amt: Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 32; }]>{ let PrintMethod = "printPKHLSLShiftImm"; let ParserMatchClass = PKHLSLAsmOperand; } def PKHASRAsmOperand : AsmOperandClass { let Name = "PKHASRImm"; let ParserMethod = "parsePKHASRImm"; } def pkh_asr_amt: Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm <= 32; }]>{ let PrintMethod = "printPKHASRShiftImm"; let ParserMatchClass = PKHASRAsmOperand; } class APKHI<bits<8> opcod, bit tb, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : I<oops, iops, AddrModeNone, 4, IndexModeNone, ArithMiscFrm, itin, opc, asm, "", pattern> { bits<4> Rd; bits<4> Rn; bits<4> Rm; bits<5> sh; let Inst{27-20} = opcod; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-7} = sh; let Inst{6} = tb; let Inst{5-4} = 0b01; let Inst{3-0} = Rm; } //===----------------------------------------------------------------------===// // ARMPat - Same as Pat<>, but requires that the compiler be in ARM mode. class ARMPat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [IsARM]; } class ARMV5TPat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [IsARM, HasV5T]; } class ARMV5TEPat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [IsARM, HasV5TE]; } // ARMV5MOPat - Same as ARMV5TEPat with UseMulOps. class ARMV5MOPat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [IsARM, HasV5TE, UseMulOps]; } class ARMV6Pat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [IsARM, HasV6]; } class VFPPat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [HasVFP2]; } class VFPNoNEONPat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [HasVFP2, DontUseNEONForFP]; } class Thumb2DSPPat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [IsThumb2, HasDSP]; } class Thumb2DSPMulPat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [IsThumb2, UseMulOps, HasDSP]; } class FPRegs16Pat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [HasFPRegs16]; } class FP16Pat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [HasFP16]; } class FullFP16Pat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [HasFullFP16]; } //===----------------------------------------------------------------------===// // Thumb Instruction Format Definitions. // class ThumbI<dag oops, dag iops, AddrMode am, int sz, InstrItinClass itin, string asm, string cstr, list<dag> pattern> : InstThumb<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; list<Predicate> Predicates = [IsThumb]; } // TI - Thumb instruction. class TI<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : ThumbI<oops, iops, AddrModeNone, 2, itin, asm, "", pattern>; // Two-address instructions class TIt<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : ThumbI<oops, iops, AddrModeNone, 2, itin, asm, "$lhs = $dst", pattern>; // tBL, tBX 32-bit instructions class TIx2<bits<5> opcod1, bits<2> opcod2, bit opcod3, dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : ThumbI<oops, iops, AddrModeNone, 4, itin, asm, "", pattern>, Encoding { let Inst{31-27} = opcod1; let Inst{15-14} = opcod2; let Inst{12} = opcod3; } // BR_JT instructions class TJTI<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : ThumbI<oops, iops, AddrModeNone, 0, itin, asm, "", pattern>; // Thumb1 only class Thumb1I<dag oops, dag iops, AddrMode am, int sz, InstrItinClass itin, string asm, string cstr, list<dag> pattern> : InstThumb<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; list<Predicate> Predicates = [IsThumb, IsThumb1Only]; } class T1I<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : Thumb1I<oops, iops, AddrModeNone, 2, itin, asm, "", pattern>; class T1Ix2<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : Thumb1I<oops, iops, AddrModeNone, 4, itin, asm, "", pattern>; // Two-address instructions class T1It<dag oops, dag iops, InstrItinClass itin, string asm, string cstr, list<dag> pattern> : Thumb1I<oops, iops, AddrModeNone, 2, itin, asm, cstr, pattern>; // Thumb1 instruction that can either be predicated or set CPSR. class Thumb1sI<dag oops, dag iops, AddrMode am, int sz, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : InstThumb<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> { let OutOperandList = !con(oops, (outs s_cc_out:$s)); let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${s}${p}", asm); let Pattern = pattern; let thumbArithFlagSetting = 1; list<Predicate> Predicates = [IsThumb, IsThumb1Only]; let DecoderNamespace = "ThumbSBit"; } class T1sI<dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : Thumb1sI<oops, iops, AddrModeNone, 2, itin, opc, asm, "", pattern>; // Two-address instructions class T1sIt<dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : Thumb1sI<oops, iops, AddrModeNone, 2, itin, opc, asm, "$Rn = $Rdn", pattern>; // Thumb1 instruction that can be predicated. class Thumb1pI<dag oops, dag iops, AddrMode am, int sz, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : InstThumb<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", asm); let Pattern = pattern; list<Predicate> Predicates = [IsThumb, IsThumb1Only]; } class T1pI<dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : Thumb1pI<oops, iops, AddrModeNone, 2, itin, opc, asm, "", pattern>; // Two-address instructions class T1pIt<dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : Thumb1pI<oops, iops, AddrModeNone, 2, itin, opc, asm, "$Rn = $Rdn", pattern>; class T1pIs<dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : Thumb1pI<oops, iops, AddrModeT1_s, 2, itin, opc, asm, "", pattern>; class Encoding16 : Encoding { let Inst{31-16} = 0x0000; } // A6.2 16-bit Thumb instruction encoding class T1Encoding<bits<6> opcode> : Encoding16 { let Inst{15-10} = opcode; } // A6.2.1 Shift (immediate), add, subtract, move, and compare encoding. class T1General<bits<5> opcode> : Encoding16 { let Inst{15-14} = 0b00; let Inst{13-9} = opcode; } // A6.2.2 Data-processing encoding. class T1DataProcessing<bits<4> opcode> : Encoding16 { let Inst{15-10} = 0b010000; let Inst{9-6} = opcode; } // A6.2.3 Special data instructions and branch and exchange encoding. class T1Special<bits<4> opcode> : Encoding16 { let Inst{15-10} = 0b010001; let Inst{9-6} = opcode; } // A6.2.4 Load/store single data item encoding. class T1LoadStore<bits<4> opA, bits<3> opB> : Encoding16 { let Inst{15-12} = opA; let Inst{11-9} = opB; } class T1LdStSP<bits<3> opB> : T1LoadStore<0b1001, opB>; // SP relative class T1BranchCond<bits<4> opcode> : Encoding16 { let Inst{15-12} = opcode; } // Helper classes to encode Thumb1 loads and stores. For immediates, the // following bits are used for "opA" (see A6.2.4): // // 0b0110 => Immediate, 4 bytes // 0b1000 => Immediate, 2 bytes // 0b0111 => Immediate, 1 byte class T1pILdStEncode<bits<3> opcode, dag oops, dag iops, AddrMode am, InstrItinClass itin, string opc, string asm, list<dag> pattern> : Thumb1pI<oops, iops, am, 2, itin, opc, asm, "", pattern>, T1LoadStore<0b0101, opcode> { bits<3> Rt; bits<8> addr; let Inst{8-6} = addr{5-3}; // Rm let Inst{5-3} = addr{2-0}; // Rn let Inst{2-0} = Rt; } class T1pILdStEncodeImm<bits<4> opA, bit opB, dag oops, dag iops, AddrMode am, InstrItinClass itin, string opc, string asm, list<dag> pattern> : Thumb1pI<oops, iops, am, 2, itin, opc, asm, "", pattern>, T1LoadStore<opA, {opB,?,?}> { bits<3> Rt; bits<8> addr; let Inst{10-6} = addr{7-3}; // imm5 let Inst{5-3} = addr{2-0}; // Rn let Inst{2-0} = Rt; } // A6.2.5 Miscellaneous 16-bit instructions encoding. class T1Misc<bits<7> opcode> : Encoding16 { let Inst{15-12} = 0b1011; let Inst{11-5} = opcode; } // Thumb2I - Thumb2 instruction. Almost all Thumb2 instructions are predicable. class Thumb2I<dag oops, dag iops, AddrMode am, int sz, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : InstARM<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", asm); let Pattern = pattern; list<Predicate> Predicates = [IsThumb2]; let DecoderNamespace = "Thumb2"; } // Same as Thumb2I except it can optionally modify CPSR. Note it's modeled as an // input operand since by default it's a zero register. It will become an // implicit def once it's "flipped". // // FIXME: This uses unified syntax so {s} comes before {p}. We should make it // more consistent. class Thumb2sI<dag oops, dag iops, AddrMode am, int sz, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : InstARM<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> { bits<1> s; // condition-code set flag ('1' if the insn should set the flags) let Inst{20} = s; let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p, cc_out:$s)); let AsmString = !strconcat(opc, "${s}${p}", asm); let Pattern = pattern; list<Predicate> Predicates = [IsThumb2]; let DecoderNamespace = "Thumb2"; } // Special cases class Thumb2XI<dag oops, dag iops, AddrMode am, int sz, InstrItinClass itin, string asm, string cstr, list<dag> pattern> : InstARM<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; list<Predicate> Predicates = [IsThumb2]; let DecoderNamespace = "Thumb2"; } class ThumbXI<dag oops, dag iops, AddrMode am, int sz, InstrItinClass itin, string asm, string cstr, list<dag> pattern> : InstARM<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; list<Predicate> Predicates = [IsThumb, IsThumb1Only]; let DecoderNamespace = "Thumb"; } class T2I<dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern, AddrMode am = AddrModeNone> : Thumb2I<oops, iops, am, 4, itin, opc, asm, "", pattern>; class T2Ii12<dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : Thumb2I<oops, iops, AddrModeT2_i12, 4, itin, opc, asm, "",pattern>; class T2Ii8p<dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : Thumb2I<oops, iops, AddrModeT2_i8pos, 4, itin, opc, asm, "", pattern>; class T2Ii8n<dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : Thumb2I<oops, iops, AddrModeT2_i8neg, 4, itin, opc, asm, "", pattern>; class T2Iso<dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : Thumb2I<oops, iops, AddrModeT2_so, 4, itin, opc, asm, "", pattern>; class T2Ipc<dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : Thumb2I<oops, iops, AddrModeT2_pc, 4, itin, opc, asm, "", pattern>; class T2Ii8s4<bit P, bit W, bit isLoad, dag oops, dag iops, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : Thumb2I<oops, iops, AddrModeT2_i8s4, 4, itin, opc, asm, cstr, pattern> { bits<4> Rt; bits<4> Rt2; bits<13> addr; let Inst{31-25} = 0b1110100; let Inst{24} = P; let Inst{23} = addr{8}; let Inst{22} = 1; let Inst{21} = W; let Inst{20} = isLoad; let Inst{19-16} = addr{12-9}; let Inst{15-12} = Rt{3-0}; let Inst{11-8} = Rt2{3-0}; let Inst{7-0} = addr{7-0}; } class T2Ii8s4post<bit P, bit W, bit isLoad, dag oops, dag iops, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : Thumb2I<oops, iops, AddrModeT2_i8s4, 4, itin, opc, asm, cstr, pattern> { bits<4> Rt; bits<4> Rt2; bits<4> addr; bits<9> imm; let Inst{31-25} = 0b1110100; let Inst{24} = P; let Inst{23} = imm{8}; let Inst{22} = 1; let Inst{21} = W; let Inst{20} = isLoad; let Inst{19-16} = addr; let Inst{15-12} = Rt{3-0}; let Inst{11-8} = Rt2{3-0}; let Inst{7-0} = imm{7-0}; } class T2sI<dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : Thumb2sI<oops, iops, AddrModeNone, 4, itin, opc, asm, "", pattern>; class T2XI<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : Thumb2XI<oops, iops, AddrModeNone, 4, itin, asm, "", pattern>; class T2JTI<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : Thumb2XI<oops, iops, AddrModeNone, 0, itin, asm, "", pattern>; // Move to/from coprocessor instructions class T2Cop<bits<4> opc, dag oops, dag iops, string opcstr, string asm, list<dag> pattern> : T2I <oops, iops, NoItinerary, opcstr, asm, pattern>, Requires<[IsThumb2]> { let Inst{31-28} = opc; } // Two-address instructions class T2XIt<dag oops, dag iops, InstrItinClass itin, string asm, string cstr, list<dag> pattern> : Thumb2XI<oops, iops, AddrModeNone, 4, itin, asm, cstr, pattern>; // T2Ipreldst - Thumb2 pre-indexed load / store instructions. class T2Ipreldst<bit signed, bits<2> opcod, bit load, bit pre, dag oops, dag iops, AddrMode am, IndexMode im, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : InstARM<am, 4, im, ThumbFrm, GenericDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", asm); let Pattern = pattern; list<Predicate> Predicates = [IsThumb2]; let DecoderNamespace = "Thumb2"; bits<4> Rt; bits<13> addr; let Inst{31-27} = 0b11111; let Inst{26-25} = 0b00; let Inst{24} = signed; let Inst{23} = 0; let Inst{22-21} = opcod; let Inst{20} = load; let Inst{19-16} = addr{12-9}; let Inst{15-12} = Rt{3-0}; let Inst{11} = 1; // (P, W) = (1, 1) Pre-indexed or (0, 1) Post-indexed let Inst{10} = pre; // The P bit. let Inst{9} = addr{8}; // Sign bit let Inst{8} = 1; // The W bit. let Inst{7-0} = addr{7-0}; let DecoderMethod = "DecodeT2LdStPre"; } // T2Ipostldst - Thumb2 post-indexed load / store instructions. class T2Ipostldst<bit signed, bits<2> opcod, bit load, bit pre, dag oops, dag iops, AddrMode am, IndexMode im, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : InstARM<am, 4, im, ThumbFrm, GenericDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", asm); let Pattern = pattern; list<Predicate> Predicates = [IsThumb2]; let DecoderNamespace = "Thumb2"; bits<4> Rt; bits<4> Rn; bits<9> offset; let Inst{31-27} = 0b11111; let Inst{26-25} = 0b00; let Inst{24} = signed; let Inst{23} = 0; let Inst{22-21} = opcod; let Inst{20} = load; let Inst{19-16} = Rn; let Inst{15-12} = Rt{3-0}; let Inst{11} = 1; // (P, W) = (1, 1) Pre-indexed or (0, 1) Post-indexed let Inst{10} = pre; // The P bit. let Inst{9} = offset{8}; // Sign bit let Inst{8} = 1; // The W bit. let Inst{7-0} = offset{7-0}; let DecoderMethod = "DecodeT2LdStPre"; } // T1Pat - Same as Pat<>, but requires that the compiler be in Thumb1 mode. class T1Pat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [IsThumb, IsThumb1Only]; } // T2v6Pat - Same as Pat<>, but requires V6T2 Thumb2 mode. class T2v6Pat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [IsThumb2, HasV6T2]; } // T2Pat - Same as Pat<>, but requires that the compiler be in Thumb2 mode. class T2Pat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [IsThumb2]; } //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ARM VFP Instruction templates. // // Almost all VFP instructions are predicable. class VFPI<dag oops, dag iops, AddrMode am, int sz, IndexMode im, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : InstARM<am, sz, im, f, VFPDomain, cstr, itin> { bits<4> p; let Inst{31-28} = p; let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", asm); let Pattern = pattern; let PostEncoderMethod = "VFPThumb2PostEncoder"; let DecoderNamespace = "VFP"; list<Predicate> Predicates = [HasVFP2]; } // Special cases class VFPXI<dag oops, dag iops, AddrMode am, int sz, IndexMode im, Format f, InstrItinClass itin, string asm, string cstr, list<dag> pattern> : InstARM<am, sz, im, f, VFPDomain, cstr, itin> { bits<4> p; let Inst{31-28} = p; let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; let PostEncoderMethod = "VFPThumb2PostEncoder"; let DecoderNamespace = "VFP"; list<Predicate> Predicates = [HasVFP2]; } class VFPAI<dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : VFPI<oops, iops, AddrModeNone, 4, IndexModeNone, f, itin, opc, asm, cstr, pattern> { let PostEncoderMethod = "VFPThumb2PostEncoder"; } // ARM VFP addrmode5 loads and stores class ADI5<bits<4> opcod1, bits<2> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : VFPI<oops, iops, AddrMode5, 4, IndexModeNone, VFPLdStFrm, itin, opc, asm, "", pattern> { // Instruction operands. bits<5> Dd; bits<13> addr; // Encode instruction operands. let Inst{23} = addr{8}; // U (add = (U == '1')) let Inst{22} = Dd{4}; let Inst{19-16} = addr{12-9}; // Rn let Inst{15-12} = Dd{3-0}; let Inst{7-0} = addr{7-0}; // imm8 let Inst{27-24} = opcod1; let Inst{21-20} = opcod2; let Inst{11-9} = 0b101; let Inst{8} = 1; // Double precision // Loads & stores operate on both NEON and VFP pipelines. let D = VFPNeonDomain; } class ASI5<bits<4> opcod1, bits<2> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : VFPI<oops, iops, AddrMode5, 4, IndexModeNone, VFPLdStFrm, itin, opc, asm, "", pattern> { // Instruction operands. bits<5> Sd; bits<13> addr; // Encode instruction operands. let Inst{23} = addr{8}; // U (add = (U == '1')) let Inst{22} = Sd{0}; let Inst{19-16} = addr{12-9}; // Rn let Inst{15-12} = Sd{4-1}; let Inst{7-0} = addr{7-0}; // imm8 let Inst{27-24} = opcod1; let Inst{21-20} = opcod2; let Inst{11-9} = 0b101; let Inst{8} = 0; // Single precision // Loads & stores operate on both NEON and VFP pipelines. let D = VFPNeonDomain; } class AHI5<bits<4> opcod1, bits<2> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : VFPI<oops, iops, AddrMode5FP16, 4, IndexModeNone, VFPLdStFrm, itin, opc, asm, "", pattern> { list<Predicate> Predicates = [HasFullFP16]; // Instruction operands. bits<5> Sd; bits<13> addr; // Encode instruction operands. let Inst{23} = addr{8}; // U (add = (U == '1')) let Inst{22} = Sd{0}; let Inst{19-16} = addr{12-9}; // Rn let Inst{15-12} = Sd{4-1}; let Inst{7-0} = addr{7-0}; // imm8 let Inst{27-24} = opcod1; let Inst{21-20} = opcod2; let Inst{11-8} = 0b1001; // Half precision // Loads & stores operate on both NEON and VFP pipelines. let D = VFPNeonDomain; let isUnpredicable = 1; // FP16 instructions cannot in general be conditional } // VFP Load / store multiple pseudo instructions. class PseudoVFPLdStM<dag oops, dag iops, InstrItinClass itin, string cstr, list<dag> pattern> : InstARM<AddrMode4, 4, IndexModeNone, Pseudo, VFPNeonDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let Pattern = pattern; list<Predicate> Predicates = [HasVFP2]; } // Load / store multiple // Unknown precision class AXXI4<dag oops, dag iops, IndexMode im, string asm, string cstr, list<dag> pattern> : VFPXI<oops, iops, AddrMode4, 4, im, VFPLdStFrm, NoItinerary, asm, cstr, pattern> { // Instruction operands. bits<4> Rn; bits<13> regs; // Encode instruction operands. let Inst{19-16} = Rn; let Inst{22} = 0; let Inst{15-12} = regs{11-8}; let Inst{7-1} = regs{7-1}; let Inst{27-25} = 0b110; let Inst{11-8} = 0b1011; let Inst{0} = 1; } // Double precision class AXDI4<dag oops, dag iops, IndexMode im, InstrItinClass itin, string asm, string cstr, list<dag> pattern> : VFPXI<oops, iops, AddrMode4, 4, im, VFPLdStMulFrm, itin, asm, cstr, pattern> { // Instruction operands. bits<4> Rn; bits<13> regs; // Encode instruction operands. let Inst{19-16} = Rn; let Inst{22} = regs{12}; let Inst{15-12} = regs{11-8}; let Inst{7-1} = regs{7-1}; let Inst{27-25} = 0b110; let Inst{11-9} = 0b101; let Inst{8} = 1; // Double precision let Inst{0} = 0; } // Single Precision class AXSI4<dag oops, dag iops, IndexMode im, InstrItinClass itin, string asm, string cstr, list<dag> pattern> : VFPXI<oops, iops, AddrMode4, 4, im, VFPLdStMulFrm, itin, asm, cstr, pattern> { // Instruction operands. bits<4> Rn; bits<13> regs; // Encode instruction operands. let Inst{19-16} = Rn; let Inst{22} = regs{8}; let Inst{15-12} = regs{12-9}; let Inst{7-0} = regs{7-0}; let Inst{27-25} = 0b110; let Inst{11-9} = 0b101; let Inst{8} = 0; // Single precision } // Double precision, unary class ADuI<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4, bit opcod5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : VFPAI<oops, iops, VFPUnaryFrm, itin, opc, asm, cstr, pattern> { // Instruction operands. bits<5> Dd; bits<5> Dm; // Encode instruction operands. let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let Inst{15-12} = Dd{3-0}; let Inst{22} = Dd{4}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{19-16} = opcod3; let Inst{11-9} = 0b101; let Inst{8} = 1; // Double precision let Inst{7-6} = opcod4; let Inst{4} = opcod5; let Predicates = [HasVFP2, HasDPVFP]; } // Double precision, unary, not-predicated class ADuInp<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4, bit opcod5, dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : VFPXI<oops, iops, AddrModeNone, 4, IndexModeNone, VFPUnaryFrm, itin, asm, "", pattern> { // Instruction operands. bits<5> Dd; bits<5> Dm; let Inst{31-28} = 0b1111; // Encode instruction operands. let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let Inst{15-12} = Dd{3-0}; let Inst{22} = Dd{4}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{19-16} = opcod3; let Inst{11-9} = 0b101; let Inst{8} = 1; // Double precision let Inst{7-6} = opcod4; let Inst{4} = opcod5; } // Double precision, binary class ADbI<bits<5> opcod1, bits<2> opcod2, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : VFPAI<oops, iops, VFPBinaryFrm, itin, opc, asm, "", pattern> { // Instruction operands. bits<5> Dd; bits<5> Dn; bits<5> Dm; // Encode instruction operands. let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let Inst{19-16} = Dn{3-0}; let Inst{7} = Dn{4}; let Inst{15-12} = Dd{3-0}; let Inst{22} = Dd{4}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{11-9} = 0b101; let Inst{8} = 1; // Double precision let Inst{6} = op6; let Inst{4} = op4; let Predicates = [HasVFP2, HasDPVFP]; } // FP, binary, not predicated class ADbInp<bits<5> opcod1, bits<2> opcod2, bit opcod3, dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : VFPXI<oops, iops, AddrModeNone, 4, IndexModeNone, VFPBinaryFrm, itin, asm, "", pattern> { // Instruction operands. bits<5> Dd; bits<5> Dn; bits<5> Dm; let Inst{31-28} = 0b1111; // Encode instruction operands. let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let Inst{19-16} = Dn{3-0}; let Inst{7} = Dn{4}; let Inst{15-12} = Dd{3-0}; let Inst{22} = Dd{4}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{11-9} = 0b101; let Inst{8} = 1; // double precision let Inst{6} = opcod3; let Inst{4} = 0; let Predicates = [HasVFP2, HasDPVFP]; } // Single precision, unary, predicated class ASuI<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4, bit opcod5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : VFPAI<oops, iops, VFPUnaryFrm, itin, opc, asm, cstr, pattern> { // Instruction operands. bits<5> Sd; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{19-16} = opcod3; let Inst{11-9} = 0b101; let Inst{8} = 0; // Single precision let Inst{7-6} = opcod4; let Inst{4} = opcod5; } // Single precision, unary, non-predicated class ASuInp<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4, bit opcod5, dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : VFPXI<oops, iops, AddrModeNone, 4, IndexModeNone, VFPUnaryFrm, itin, asm, "", pattern> { // Instruction operands. bits<5> Sd; bits<5> Sm; let Inst{31-28} = 0b1111; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{19-16} = opcod3; let Inst{11-9} = 0b101; let Inst{8} = 0; // Single precision let Inst{7-6} = opcod4; let Inst{4} = opcod5; } // Single precision unary, if no NEON. Same as ASuI except not available if // NEON is enabled. class ASuIn<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4, bit opcod5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : ASuI<opcod1, opcod2, opcod3, opcod4, opcod5, oops, iops, itin, opc, asm, "", pattern> { list<Predicate> Predicates = [HasVFP2,DontUseNEONForFP]; } // Single precision, binary class ASbI<bits<5> opcod1, bits<2> opcod2, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : VFPAI<oops, iops, VFPBinaryFrm, itin, opc, asm, "", pattern> { // Instruction operands. bits<5> Sd; bits<5> Sn; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{19-16} = Sn{4-1}; let Inst{7} = Sn{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{11-9} = 0b101; let Inst{8} = 0; // Single precision let Inst{6} = op6; let Inst{4} = op4; } // Single precision, binary, not predicated class ASbInp<bits<5> opcod1, bits<2> opcod2, bit opcod3, dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : VFPXI<oops, iops, AddrModeNone, 4, IndexModeNone, VFPBinaryFrm, itin, asm, "", pattern> { // Instruction operands. bits<5> Sd; bits<5> Sn; bits<5> Sm; let Inst{31-28} = 0b1111; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{19-16} = Sn{4-1}; let Inst{7} = Sn{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{11-9} = 0b101; let Inst{8} = 0; // Single precision let Inst{6} = opcod3; let Inst{4} = 0; } // Single precision binary, if no NEON. Same as ASbI except not available if // NEON is enabled. class ASbIn<bits<5> opcod1, bits<2> opcod2, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : ASbI<opcod1, opcod2, op6, op4, oops, iops, itin, opc, asm, pattern> { list<Predicate> Predicates = [HasVFP2,DontUseNEONForFP]; // Instruction operands. bits<5> Sd; bits<5> Sn; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{19-16} = Sn{4-1}; let Inst{7} = Sn{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; } // Half precision, unary, predicated class AHuI<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4, bit opcod5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : VFPAI<oops, iops, VFPUnaryFrm, itin, opc, asm, "", pattern> { list<Predicate> Predicates = [HasFullFP16]; // Instruction operands. bits<5> Sd; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{19-16} = opcod3; let Inst{11-8} = 0b1001; // Half precision let Inst{7-6} = opcod4; let Inst{4} = opcod5; let isUnpredicable = 1; // FP16 instructions cannot in general be conditional } // Half precision, unary, non-predicated class AHuInp<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4, bit opcod5, dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : VFPXI<oops, iops, AddrModeNone, 4, IndexModeNone, VFPUnaryFrm, itin, asm, "", pattern> { list<Predicate> Predicates = [HasFullFP16]; // Instruction operands. bits<5> Sd; bits<5> Sm; let Inst{31-28} = 0b1111; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{19-16} = opcod3; let Inst{11-8} = 0b1001; // Half precision let Inst{7-6} = opcod4; let Inst{4} = opcod5; let isUnpredicable = 1; // FP16 instructions cannot in general be conditional } // Half precision, binary class AHbI<bits<5> opcod1, bits<2> opcod2, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : VFPAI<oops, iops, VFPBinaryFrm, itin, opc, asm, "", pattern> { list<Predicate> Predicates = [HasFullFP16]; // Instruction operands. bits<5> Sd; bits<5> Sn; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{19-16} = Sn{4-1}; let Inst{7} = Sn{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{11-8} = 0b1001; // Half precision let Inst{6} = op6; let Inst{4} = op4; let isUnpredicable = 1; // FP16 instructions cannot in general be conditional } // Half precision, binary, not predicated class AHbInp<bits<5> opcod1, bits<2> opcod2, bit opcod3, dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern> : VFPXI<oops, iops, AddrModeNone, 4, IndexModeNone, VFPBinaryFrm, itin, asm, "", pattern> { list<Predicate> Predicates = [HasFullFP16]; // Instruction operands. bits<5> Sd; bits<5> Sn; bits<5> Sm; let Inst{31-28} = 0b1111; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{19-16} = Sn{4-1}; let Inst{7} = Sn{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{11-8} = 0b1001; // Half precision let Inst{6} = opcod3; let Inst{4} = 0; let isUnpredicable = 1; // FP16 instructions cannot in general be conditional } // VFP conversion instructions class AVConv1I<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<4> opcod4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : VFPAI<oops, iops, VFPConv1Frm, itin, opc, asm, "", pattern> { let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{19-16} = opcod3; let Inst{11-8} = opcod4; let Inst{6} = 1; let Inst{4} = 0; } // VFP conversion between floating-point and fixed-point class AVConv1XI<bits<5> op1, bits<2> op2, bits<4> op3, bits<4> op4, bit op5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AVConv1I<op1, op2, op3, op4, oops, iops, itin, opc, asm, pattern> { bits<5> fbits; // size (fixed-point number): sx == 0 ? 16 : 32 let Inst{7} = op5; // sx let Inst{5} = fbits{0}; let Inst{3-0} = fbits{4-1}; } // VFP conversion instructions, if no NEON class AVConv1In<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<4> opcod4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm, pattern> { list<Predicate> Predicates = [HasVFP2,DontUseNEONForFP]; } class AVConvXI<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, list<dag> pattern> : VFPAI<oops, iops, f, itin, opc, asm, "", pattern> { let Inst{27-20} = opcod1; let Inst{11-8} = opcod2; let Inst{4} = 1; } class AVConv2I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AVConvXI<opcod1, opcod2, oops, iops, VFPConv2Frm, itin, opc, asm, pattern>; class AVConv3I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AVConvXI<opcod1, opcod2, oops, iops, VFPConv3Frm, itin, opc, asm, pattern>; class AVConv4I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AVConvXI<opcod1, opcod2, oops, iops, VFPConv4Frm, itin, opc, asm, pattern>; class AVConv5I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : AVConvXI<opcod1, opcod2, oops, iops, VFPConv5Frm, itin, opc, asm, pattern>; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ARM NEON Instruction templates. // class NeonI<dag oops, dag iops, AddrMode am, IndexMode im, Format f, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : InstARM<am, 4, im, f, NeonDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", ".", dt, "\t", asm); let Pattern = pattern; list<Predicate> Predicates = [HasNEON]; let DecoderNamespace = "NEON"; } // Same as NeonI except it does not have a "data type" specifier. class NeonXI<dag oops, dag iops, AddrMode am, IndexMode im, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : InstARM<am, 4, im, f, NeonDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", "\t", asm); let Pattern = pattern; list<Predicate> Predicates = [HasNEON]; let DecoderNamespace = "NEON"; } // Same as NeonI except it is not predicated class NeonInp<dag oops, dag iops, AddrMode am, IndexMode im, Format f, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : InstARM<am, 4, im, f, NeonDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = iops; let AsmString = !strconcat(opc, ".", dt, "\t", asm); let Pattern = pattern; list<Predicate> Predicates = [HasNEON]; let DecoderNamespace = "NEON"; let Inst{31-28} = 0b1111; } class NLdSt<bit op23, bits<2> op21_20, bits<4> op11_8, bits<4> op7_4, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : NeonI<oops, iops, AddrMode6, IndexModeNone, NLdStFrm, itin, opc, dt, asm, cstr, pattern> { let Inst{31-24} = 0b11110100; let Inst{23} = op23; let Inst{21-20} = op21_20; let Inst{11-8} = op11_8; let Inst{7-4} = op7_4; let PostEncoderMethod = "NEONThumb2LoadStorePostEncoder"; let DecoderNamespace = "NEONLoadStore"; bits<5> Vd; bits<6> Rn; bits<4> Rm; let Inst{22} = Vd{4}; let Inst{15-12} = Vd{3-0}; let Inst{19-16} = Rn{3-0}; let Inst{3-0} = Rm{3-0}; } class NLdStLn<bit op23, bits<2> op21_20, bits<4> op11_8, bits<4> op7_4, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : NLdSt<op23, op21_20, op11_8, op7_4, oops, iops, itin, opc, dt, asm, cstr, pattern> { bits<3> lane; } class PseudoNLdSt<dag oops, dag iops, InstrItinClass itin, string cstr> : InstARM<AddrMode6, 4, IndexModeNone, Pseudo, NeonDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); list<Predicate> Predicates = [HasNEON]; } class PseudoNeonI<dag oops, dag iops, InstrItinClass itin, string cstr, list<dag> pattern> : InstARM<AddrModeNone, 4, IndexModeNone, Pseudo, NeonDomain, cstr, itin> { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let Pattern = pattern; list<Predicate> Predicates = [HasNEON]; } class NDataI<dag oops, dag iops, Format f, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : NeonI<oops, iops, AddrModeNone, IndexModeNone, f, itin, opc, dt, asm, cstr, pattern> { let Inst{31-25} = 0b1111001; let PostEncoderMethod = "NEONThumb2DataIPostEncoder"; let DecoderNamespace = "NEONData"; } class NDataXI<dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : NeonXI<oops, iops, AddrModeNone, IndexModeNone, f, itin, opc, asm, cstr, pattern> { let Inst{31-25} = 0b1111001; let PostEncoderMethod = "NEONThumb2DataIPostEncoder"; let DecoderNamespace = "NEONData"; } // NEON "one register and a modified immediate" format. class N1ModImm<bit op23, bits<3> op21_19, bits<4> op11_8, bit op7, bit op6, bit op5, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : NDataI<oops, iops, N1RegModImmFrm, itin, opc, dt, asm, cstr, pattern> { let Inst{23} = op23; let Inst{21-19} = op21_19; let Inst{11-8} = op11_8; let Inst{7} = op7; let Inst{6} = op6; let Inst{5} = op5; let Inst{4} = op4; // Instruction operands. bits<5> Vd; bits<13> SIMM; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{24} = SIMM{7}; let Inst{18-16} = SIMM{6-4}; let Inst{3-0} = SIMM{3-0}; let DecoderMethod = "DecodeVMOVModImmInstruction"; } // NEON 2 vector register format. class N2V<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : NDataI<oops, iops, N2RegFrm, itin, opc, dt, asm, cstr, pattern> { let Inst{24-23} = op24_23; let Inst{21-20} = op21_20; let Inst{19-18} = op19_18; let Inst{17-16} = op17_16; let Inst{11-7} = op11_7; let Inst{6} = op6; let Inst{4} = op4; // Instruction operands. bits<5> Vd; bits<5> Vm; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{3-0} = Vm{3-0}; let Inst{5} = Vm{4}; } // Same as N2V but not predicated. class N2Vnp<bits<2> op19_18, bits<2> op17_16, bits<3> op10_8, bit op7, bit op6, dag oops, dag iops, InstrItinClass itin, string OpcodeStr, string Dt, list<dag> pattern> : NeonInp<oops, iops, AddrModeNone, IndexModeNone, N2RegFrm, itin, OpcodeStr, Dt, "$Vd, $Vm", "", pattern> { bits<5> Vd; bits<5> Vm; // Encode instruction operands let Inst{22} = Vd{4}; let Inst{15-12} = Vd{3-0}; let Inst{5} = Vm{4}; let Inst{3-0} = Vm{3-0}; // Encode constant bits let Inst{27-23} = 0b00111; let Inst{21-20} = 0b11; let Inst{19-18} = op19_18; let Inst{17-16} = op17_16; let Inst{11} = 0; let Inst{10-8} = op10_8; let Inst{7} = op7; let Inst{6} = op6; let Inst{4} = 0; let DecoderNamespace = "NEON"; } // Same as N2V except it doesn't have a datatype suffix. class N2VX<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : NDataXI<oops, iops, N2RegFrm, itin, opc, asm, cstr, pattern> { let Inst{24-23} = op24_23; let Inst{21-20} = op21_20; let Inst{19-18} = op19_18; let Inst{17-16} = op17_16; let Inst{11-7} = op11_7; let Inst{6} = op6; let Inst{4} = op4; // Instruction operands. bits<5> Vd; bits<5> Vm; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{3-0} = Vm{3-0}; let Inst{5} = Vm{4}; } // NEON 2 vector register with immediate. class N2VImm<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : NDataI<oops, iops, f, itin, opc, dt, asm, cstr, pattern> { let Inst{24} = op24; let Inst{23} = op23; let Inst{11-8} = op11_8; let Inst{7} = op7; let Inst{6} = op6; let Inst{4} = op4; // Instruction operands. bits<5> Vd; bits<5> Vm; bits<6> SIMM; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{3-0} = Vm{3-0}; let Inst{5} = Vm{4}; let Inst{21-16} = SIMM{5-0}; } // NEON 3 vector register format. class N3VCommon<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : NDataI<oops, iops, f, itin, opc, dt, asm, cstr, pattern> { let Inst{24} = op24; let Inst{23} = op23; let Inst{21-20} = op21_20; let Inst{11-8} = op11_8; let Inst{6} = op6; let Inst{4} = op4; } class N3V<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : N3VCommon<op24, op23, op21_20, op11_8, op6, op4, oops, iops, f, itin, opc, dt, asm, cstr, pattern> { // Instruction operands. bits<5> Vd; bits<5> Vn; bits<5> Vm; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{19-16} = Vn{3-0}; let Inst{7} = Vn{4}; let Inst{3-0} = Vm{3-0}; let Inst{5} = Vm{4}; } class N3Vnp<bits<5> op27_23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4, dag oops, dag iops,Format f, InstrItinClass itin, string OpcodeStr, string Dt, list<dag> pattern> : NeonInp<oops, iops, AddrModeNone, IndexModeNone, f, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm", "", pattern> { bits<5> Vd; bits<5> Vn; bits<5> Vm; // Encode instruction operands let Inst{22} = Vd{4}; let Inst{15-12} = Vd{3-0}; let Inst{19-16} = Vn{3-0}; let Inst{7} = Vn{4}; let Inst{5} = Vm{4}; let Inst{3-0} = Vm{3-0}; // Encode constant bits let Inst{27-23} = op27_23; let Inst{21-20} = op21_20; let Inst{11-8} = op11_8; let Inst{6} = op6; let Inst{4} = op4; } class N3VLane32<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : N3VCommon<op24, op23, op21_20, op11_8, op6, op4, oops, iops, f, itin, opc, dt, asm, cstr, pattern> { // Instruction operands. bits<5> Vd; bits<5> Vn; bits<5> Vm; bit lane; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{19-16} = Vn{3-0}; let Inst{7} = Vn{4}; let Inst{3-0} = Vm{3-0}; let Inst{5} = lane; } class N3VLane16<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : N3VCommon<op24, op23, op21_20, op11_8, op6, op4, oops, iops, f, itin, opc, dt, asm, cstr, pattern> { // Instruction operands. bits<5> Vd; bits<5> Vn; bits<5> Vm; bits<2> lane; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{19-16} = Vn{3-0}; let Inst{7} = Vn{4}; let Inst{2-0} = Vm{2-0}; let Inst{5} = lane{1}; let Inst{3} = lane{0}; } // Same as N3V except it doesn't have a data type suffix. class N3VX<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, string cstr, list<dag> pattern> : NDataXI<oops, iops, f, itin, opc, asm, cstr, pattern> { let Inst{24} = op24; let Inst{23} = op23; let Inst{21-20} = op21_20; let Inst{11-8} = op11_8; let Inst{6} = op6; let Inst{4} = op4; // Instruction operands. bits<5> Vd; bits<5> Vn; bits<5> Vm; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{19-16} = Vn{3-0}; let Inst{7} = Vn{4}; let Inst{3-0} = Vm{3-0}; let Inst{5} = Vm{4}; } // NEON VMOVs between scalar and core registers. class NVLaneOp<bits<8> opcod1, bits<4> opcod2, bits<2> opcod3, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string dt, string asm, list<dag> pattern> : InstARM<AddrModeNone, 4, IndexModeNone, f, NeonDomain, "", itin> { let Inst{27-20} = opcod1; let Inst{11-8} = opcod2; let Inst{6-5} = opcod3; let Inst{4} = 1; // A8.6.303, A8.6.328, A8.6.329 let Inst{3-0} = 0b0000; let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", ".", dt, "\t", asm); let Pattern = pattern; list<Predicate> Predicates = [HasNEON]; let PostEncoderMethod = "NEONThumb2DupPostEncoder"; let DecoderNamespace = "NEONDup"; bits<5> V; bits<4> R; bits<4> p; bits<4> lane; let Inst{31-28} = p{3-0}; let Inst{7} = V{4}; let Inst{19-16} = V{3-0}; let Inst{15-12} = R{3-0}; } class NVGetLane<bits<8> opcod1, bits<4> opcod2, bits<2> opcod3, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, list<dag> pattern> : NVLaneOp<opcod1, opcod2, opcod3, oops, iops, NGetLnFrm, itin, opc, dt, asm, pattern>; class NVSetLane<bits<8> opcod1, bits<4> opcod2, bits<2> opcod3, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, list<dag> pattern> : NVLaneOp<opcod1, opcod2, opcod3, oops, iops, NSetLnFrm, itin, opc, dt, asm, pattern>; class NVDup<bits<8> opcod1, bits<4> opcod2, bits<2> opcod3, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, list<dag> pattern> : NVLaneOp<opcod1, opcod2, opcod3, oops, iops, NDupFrm, itin, opc, dt, asm, pattern>; // Vector Duplicate Lane (from scalar to all elements) class NVDupLane<bits<4> op19_16, bit op6, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, list<dag> pattern> : NDataI<oops, iops, NVDupLnFrm, itin, opc, dt, asm, "", pattern> { let Inst{24-23} = 0b11; let Inst{21-20} = 0b11; let Inst{19-16} = op19_16; let Inst{11-7} = 0b11000; let Inst{6} = op6; let Inst{4} = 0; bits<5> Vd; bits<5> Vm; let Inst{22} = Vd{4}; let Inst{15-12} = Vd{3-0}; let Inst{5} = Vm{4}; let Inst{3-0} = Vm{3-0}; } // NEONFPPat - Same as Pat<>, but requires that the compiler be using NEON // for single-precision FP. class NEONFPPat<dag pattern, dag result> : Pat<pattern, result> { list<Predicate> Predicates = [HasNEON,UseNEONForFP]; } // VFP/NEON Instruction aliases for type suffices. // Note: When EmitPriority == 1, the alias will be used for printing class VFPDataTypeInstAlias<string opc, string dt, string asm, dag Result, bit EmitPriority = 0> : InstAlias<!strconcat(opc, dt, "\t", asm), Result, EmitPriority>, Requires<[HasFPRegs]>; // Note: When EmitPriority == 1, the alias will be used for printing multiclass VFPDTAnyInstAlias<string opc, string asm, dag Result, bit EmitPriority = 0> { def : VFPDataTypeInstAlias<opc, ".8", asm, Result, EmitPriority>; def : VFPDataTypeInstAlias<opc, ".16", asm, Result, EmitPriority>; def : VFPDataTypeInstAlias<opc, ".32", asm, Result, EmitPriority>; def : VFPDataTypeInstAlias<opc, ".64", asm, Result, EmitPriority>; } // Note: When EmitPriority == 1, the alias will be used for printing multiclass NEONDTAnyInstAlias<string opc, string asm, dag Result, bit EmitPriority = 0> { let Predicates = [HasNEON] in { def : VFPDataTypeInstAlias<opc, ".8", asm, Result, EmitPriority>; def : VFPDataTypeInstAlias<opc, ".16", asm, Result, EmitPriority>; def : VFPDataTypeInstAlias<opc, ".32", asm, Result, EmitPriority>; def : VFPDataTypeInstAlias<opc, ".64", asm, Result, EmitPriority>; } } // The same alias classes using AsmPseudo instead, for the more complex // stuff in NEON that InstAlias can't quite handle. // Note that we can't use anonymous defm references here like we can // above, as we care about the ultimate instruction enum names generated, unlike // for instalias defs. class NEONDataTypeAsmPseudoInst<string opc, string dt, string asm, dag iops> : AsmPseudoInst<!strconcat(opc, dt, "\t", asm), iops>, Requires<[HasNEON]>; // Extension of NEON 3-vector data processing instructions in coprocessor 8 // encoding space, introduced in ARMv8.3-A. class N3VCP8<bits<2> op24_23, bits<2> op21_20, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : NeonInp<oops, iops, AddrModeNone, IndexModeNone, N3RegCplxFrm, itin, opc, dt, asm, cstr, pattern> { bits<5> Vd; bits<5> Vn; bits<5> Vm; let DecoderNamespace = "VFPV8"; // These have the same encodings in ARM and Thumb2 let PostEncoderMethod = ""; let Inst{31-25} = 0b1111110; let Inst{24-23} = op24_23; let Inst{22} = Vd{4}; let Inst{21-20} = op21_20; let Inst{19-16} = Vn{3-0}; let Inst{15-12} = Vd{3-0}; let Inst{11-8} = 0b1000; let Inst{7} = Vn{4}; let Inst{6} = op6; let Inst{5} = Vm{4}; let Inst{4} = op4; let Inst{3-0} = Vm{3-0}; } // Extension of NEON 2-vector-and-scalar data processing instructions in // coprocessor 8 encoding space, introduced in ARMv8.3-A. class N3VLaneCP8<bit op23, bits<2> op21_20, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : NeonInp<oops, iops, AddrModeNone, IndexModeNone, N3RegCplxFrm, itin, opc, dt, asm, cstr, pattern> { bits<5> Vd; bits<5> Vn; bits<5> Vm; let DecoderNamespace = "VFPV8"; // These have the same encodings in ARM and Thumb2 let PostEncoderMethod = ""; let Inst{31-24} = 0b11111110; let Inst{23} = op23; let Inst{22} = Vd{4}; let Inst{21-20} = op21_20; let Inst{19-16} = Vn{3-0}; let Inst{15-12} = Vd{3-0}; let Inst{11-8} = 0b1000; let Inst{7} = Vn{4}; let Inst{6} = op6; // Bit 5 set by sub-classes let Inst{4} = op4; let Inst{3-0} = Vm{3-0}; } // In Armv8.2-A, some NEON instructions are added that encode Vn and Vm // differently: // if Q == ‘1’ then UInt(N:Vn) else UInt(Vn:N); // if Q == ‘1’ then UInt(M:Vm) else UInt(Vm:M); // Class N3VCP8 above describes the Q=1 case, and this class the Q=0 case. class N3VCP8Q0<bits<2> op24_23, bits<2> op21_20, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, string cstr, list<dag> pattern> : NeonInp<oops, iops, AddrModeNone, IndexModeNone, N3RegCplxFrm, itin, opc, dt, asm, cstr, pattern> { bits<5> Vd; bits<5> Vn; bits<5> Vm; let DecoderNamespace = "VFPV8"; // These have the same encodings in ARM and Thumb2 let PostEncoderMethod = ""; let Inst{31-25} = 0b1111110; let Inst{24-23} = op24_23; let Inst{22} = Vd{4}; let Inst{21-20} = op21_20; let Inst{19-16} = Vn{4-1}; let Inst{15-12} = Vd{3-0}; let Inst{11-8} = 0b1000; let Inst{7} = Vn{0}; let Inst{6} = op6; let Inst{5} = Vm{0}; let Inst{4} = op4; let Inst{3-0} = Vm{4-1}; } // Operand types for complex instructions class ComplexRotationOperand<int Angle, int Remainder, string Type, string Diag> : AsmOperandClass { let PredicateMethod = "isComplexRotation<" # Angle # ", " # Remainder # ">"; let DiagnosticString = "complex rotation must be " # Diag; let Name = "ComplexRotation" # Type; } def complexrotateop : Operand<i32> { let ParserMatchClass = ComplexRotationOperand<90, 0, "Even", "0, 90, 180 or 270">; let PrintMethod = "printComplexRotationOp<90, 0>"; } def complexrotateopodd : Operand<i32> { let ParserMatchClass = ComplexRotationOperand<180, 90, "Odd", "90 or 270">; let PrintMethod = "printComplexRotationOp<180, 90>"; } def MveSaturateOperand : AsmOperandClass { let PredicateMethod = "isMveSaturateOp"; let DiagnosticString = "saturate operand must be 48 or 64"; let Name = "MveSaturate"; } def saturateop : Operand<i32> { let ParserMatchClass = MveSaturateOperand; let PrintMethod = "printMveSaturateOp"; } // Data type suffix token aliases. Implements Table A7-3 in the ARM ARM. def : TokenAlias<".s8", ".i8">; def : TokenAlias<".u8", ".i8">; def : TokenAlias<".s16", ".i16">; def : TokenAlias<".u16", ".i16">; def : TokenAlias<".s32", ".i32">; def : TokenAlias<".u32", ".i32">; def : TokenAlias<".s64", ".i64">; def : TokenAlias<".u64", ".i64">; def : TokenAlias<".i8", ".8">; def : TokenAlias<".i16", ".16">; def : TokenAlias<".i32", ".32">; def : TokenAlias<".i64", ".64">; def : TokenAlias<".p8", ".8">; def : TokenAlias<".p16", ".16">; def : TokenAlias<".f32", ".32">; def : TokenAlias<".f64", ".64">; def : TokenAlias<".f", ".f32">; def : TokenAlias<".d", ".f64">;